
 Open access Proceedings Article DOI:10.1109/GLOCOMW.2010.5700263

Error characterization and coding schemes for flash memories — Source link

Eitan Yaakobi, Jing Ma, Laura M. Grupp, Paul H. Siegel ...+2 more authors

Institutions: University of California, San Diego, National University of Singapore

Published on: 01 Dec 2010 - Global Communications Conference

Topics: BCH code

Related papers:

 Characterization and error-correcting codes for TLC flash memories

 Bit error rate in NAND Flash memories

 Error patterns in MLC NAND flash memory: measurement, characterization, and analysis

 Characterizing flash memory: anomalies, observations, and applications

 Threshold voltage distribution in MLC NAND flash memory: characterization, analysis, and modeling

Share this paper:

View more about this paper here: https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-
2hbeu11cj6

https://typeset.io/
https://www.doi.org/10.1109/GLOCOMW.2010.5700263
https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-2hbeu11cj6
https://typeset.io/authors/eitan-yaakobi-241e6qbxn5
https://typeset.io/authors/jing-ma-4ia4wkxxr8
https://typeset.io/authors/laura-m-grupp-4zrk1wbynz
https://typeset.io/authors/paul-h-siegel-ne55yuxkmx
https://typeset.io/institutions/university-of-california-san-diego-wdy3fmoa
https://typeset.io/institutions/national-university-of-singapore-24b050gz
https://typeset.io/conferences/global-communications-conference-22otdon7
https://typeset.io/topics/bch-code-1fxbq1eu
https://typeset.io/papers/characterization-and-error-correcting-codes-for-tlc-flash-56ud1i7ws8
https://typeset.io/papers/bit-error-rate-in-nand-flash-memories-ap9hc0e17v
https://typeset.io/papers/error-patterns-in-mlc-nand-flash-memory-measurement-598fgyt3mx
https://typeset.io/papers/characterizing-flash-memory-anomalies-observations-and-4wm5bkm8sz
https://typeset.io/papers/threshold-voltage-distribution-in-mlc-nand-flash-memory-3iznque2z7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-2hbeu11cj6
https://twitter.com/intent/tweet?text=Error%20characterization%20and%20coding%20schemes%20for%20flash%20memories&url=https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-2hbeu11cj6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-2hbeu11cj6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-2hbeu11cj6
https://typeset.io/papers/error-characterization-and-coding-schemes-for-flash-memories-2hbeu11cj6

Error Characterization and Coding Schemes for

Flash Memories
Eitan Yaakobi∗, Jing Ma†, Laura Grupp∗, Paul H. Siegel∗, Steven Swanson∗, and Jack K. Wolf∗

∗University of California, San Diego †National University of Singapore
La Jolla, CA 92093, USA 21 Lower Kent Ridge Road, Singapore 119077

{eyaakobi, psiegel, jwolf}@ucsd.edu, {lgrupp, swanson}@cs.ucsd.edu u0607245@nus.edu.sg

Abstract—In this work, we use an extensive empirical database
of errors induced by write, read, and erase operations to de-
velop a comprehensive understanding of the error behavior of
flash memories. Error characterization of MLC and SLC flash
is given on the block, page, and bit level. Based on our error
characterization in MLC flash, we propose an error-correcting
scheme which outperforms the conventional BCH code. We com-
pare several schemes which use an MLC block as an SLC block.
Finally, an implementation of two-write WOM-codes in SLC flash
is given as well as the BER for the first and second write.

I. INTRODUCTION

Data storage devices rely upon error detection and correction

(EDAC) codes to ensure highly reliable information re-

trieval. Optical storage devices, such as CD- and DVD-based

recorders, allocate significant overhead for the redun-

dancy introduced by the encoding of data into codewords.

High-performance hard disk drives also devote overhead for

high-rate EDAC codes that can correct multiple erroneous

symbols within a codeword. The powerful codes used in

these storage devices are the culmination of decades of re-

search and development, and efforts to design more powerful

and efficient EDAC coding algorithms are ongoing.

Non-volatile, solid-state NAND-flash memory devices are

finding use in an increasing number of computing and con-

sumer electronic devices. They have replaced hard drives in

many of these applications because of their high data-transfer

rates, mechanical durability, and low power consumption.

They are also being combined with disk drives in so-called

“hybrid drives” that take advantage of the benefits offered by

both types of non-volatile storage media.

Flash memory chips may use single-level cell (SLC) tech-

nology, where each cell can store one binary digit, or multi-

level cell (MLC) technology, where each cell can store multi-

ple binary digits. In this work, we assume that MLC chips store

two bits in a cell. For years, flash storage devices have used

only low-redundancy EDAC codes that offer minimal error

correction and detection capabilities, such as single-bit error-

correcting Hamming codes and error-detecting cyclic redun-

dancy check (CRC) codes. The demand for increased storage

capacity, coupled with the introduction of MLC flash technol-

ogy, has created the need for more powerful coding methods:

for example BCH, RS, or LDPC codes.

To help address this need, we used in this work an extensive

empirical database of errors observed during erase, write, and

read operations on a flash memory device to develop a more

comprehensive understanding of the error mechanisms and er-

ror characteristics. Error statistics were gathered from several

blocks on SLC and MLC flash memory chips. For each block,

we repeated continuously the following process hundreds of

thousands to millions of times:

1) Erase the block.

2) Write pseudo-random data into the block.

3) Read the block and identify errors by comparing the

originally recorded data to the data that was read.

Using this database, we analyzed the error behavior on a block,

page, and bit level and also characterized the error types.

Remark 1. We note that the experiments were conducted in

a controlled laboratory environment, and the results do not

reflect the impact of other performance-related factors such

as varying time intervals between erasures, ambient tempera-

ture changes, and multiple read operations between erasures.

Consequently, the observed lifetimes of the tested flash blocks

were much longer than the lifetimes specified by the manufac-

turer, namely 105 program/erase cycles for the SLC devices

and 104 cycles for the MLC devices. Also, it should be pointed

out that we collected the error data from only a few blocks

on each chip, so our results and conclusions do not account

for possible variability among blocks on any given chip. A

similar disclaimer applies to flash devices produced by dif-

ferent manufacturers. Therefore, we do not pretend to give in

this paper a complete and comprehensive study of error char-

acteristics in flash memories. For further discussion of flash

memory characterization, see [4].

One of the distinctive properties of flash memory is its read-

write asymmetry. That is, reading an individual page is eas-

ily implemented, whereas rewriting a previously stored page

requires the erasure of the entire block containing the page,

followed by the rewriting of the entire contents of the block,

including the updated page [2]. This erase-rewrite operation in-

curs a substantial cost in time and power consumption. More-

over, flash memory performance is degraded by repeated block

erasures, thereby limiting the lifetime of the device. An SLC

block can typically tolerate 105 to 106 erasures whereas an

MLC block may withstand only 104 or even fewer erasures.

To enhance their lifetime, flash memories use “wear-

leveling” algorithms to balance the number of erasures among

blocks within a single device [2]. We propose a coding

scheme, to be used in conjunction with wear-leveling, that

makes it possible to write the pages of a block twice (or

more) before the block needs to be erased. The technique,

based on Write-Once-Memory (WOM) codes [6], operates as

follows. First, encoded data is written into successive pages

in the block. When the wear-leveling algorithm determines

that a block needs to be erased, all of the pages in the block

are marked as invalid and encoded data can again be written

into the pages, one after the other, without erasing the block.

We explore the degradation in the BER resulting from the

additional write.

Fig. 1. Single-Level and Multi-Level Cells.

TABLE I
A TYPICAL LAYOUT OF AN SLC BLOCK

Row Index First 214 cells Last 214 cells

1 page 0 page 1

2 page 2 page 3

3 page 4 page 5

.

.

.
.
.
.

.

.

.

31 page 60 page 61

32 page 62 page 63

The rest of the paper is organized as follows. In Section II

we give a description of the flash memory structure. Then, a

characterization of the error behavior is given in Section III.

We explore the asymmetric behavior and burstiness of the er-

rors and give a characterization of the errors on the block,

page, and bit level. Section IV discusses the error distribution

in MLC flash and a new error-correcting scheme is given. In

Section V, a comparison is made between different schemes

that use an MLC block as an SLC block. The implementa-

tion of WOM-codes in SLC flash is discussed in Section VI.

Section VII concludes the paper.

II. FLASH MEMORY STRUCTURE

A flash memory chip is built from floating-gate cells which

are organized in blocks. Each block typically contains either

64 pages (SLC) or 128 pages (MLC), where the size of a

page can range between 2KB and 8KB [2].

In SLC flash, each cell has two levels and stores one bit.

A non-programmed cell represents bit value ‘0’ and once it is

charged the bit value is ‘1’ (see Fig. 1). In MLC flash, each

cell has four levels and stores two bits. The left bit among

the two bits is called the Most Significant Bit (MSB) and the

right bit is the Least Significant Bit (LSB). The cell has four

levels and the mapping between charge values and bit values

is depicted in Fig. 1.

Remark 2. In this paper, we use a bit value ‘0’ to denote the

erased state of an SLC cell, and a bit value ‘1’ for the pro-

grammed state, as shown in Fig. 1. For an MLC device that

stores 2 bits per cell, we use the convention shown in Fig. 1

to assign 2-bit values to the cell threshold voltages.

A typical SLC block consists of 32 rows of 215 cells, such

that each row contains two pages. One page consists of the

first 214 cells in each row and another page consists of the

last 214 cells in the row. A typical layout of the pages within

an SLC block is demonstrated in Table I. In MLC flash, the

two bits within a single cell are not mapped to the same page.

Rather, the collection of MSB’s constitute a page called the

MSB page and, similarly, the LSB’s form a page called the

LSB page. The layout of an MLC block is similar to that of

an SLC block, as depicted in Table II.

In order to reduce the number of block erasure operations,

an updated version of a stored page is simply written into an-

other available physical location, and its previous location is

TABLE II
A TYPICAL LAYOUT OF AN MLC BLOCK

Row MSB of the LSB of the MSB of the LSB of the

Index first 214 cells first 214 cells last 214 cells last 214 cells

1 page 0 page 4 page 1 page 5

2 page 2 page 8 page 3 page 9

3 page 6 page 12 page 7 page 13

4 page 10 page 16 page 11 page 17

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

31 page 118 page 124 page 119 page 125

32 page 122 page 126 page 123 page 127

Fig. 2. Raw BER for SLC and MLC blocks.

marked as invalid. A table, called the Flash Transition Layer

(FTL) [2], keeps a record of the latest mapping between logical

and physical pages and is maintained in the memory device.

When the memory becomes full (or reaches a pre-specified

storage capacity), blocks no longer in active use need to be

erased to allow new data to be stored. To enhance device life-

time, “wear-leveling” algorithms are used to balance the num-

ber of erasures among blocks within a single device [2].

Each page in a flash memory block contains a spare area.

If the page size is 2KB then a typical spare area can be 64B.

A portion of this spare area is used to store metadata in order

to build the FTL once the flash memory is activated. The rest

of the spare area is dedicated to storing the redundancy bytes

of EDAC codes [3].

Remark 3. The organization of pages in a flash memory block

may differ from one manufacturer to another. The configura-

tions shown in Tables I and II are consistent with the informa-

tion available to us about the devices tested, as well as with

the results of our experiments.

III. ERROR CHARACTERIZATION OF FLASH MEMORIES

In order to have a basic characterization of the error behav-

ior in flash memories we picked a block from an SLC chip

and another block from an MLC chip. Then, we repeated the

process of erasing, writing pseudo-random data, and reading

to compare and find errors. This process was repeated over

3, 615, 224 iterations for the SLC block and 1, 054, 031 it-

erations for the MLC block. The raw BER as a function of

the program/erase cycle of the two blocks is given in Fig. 2.

We now use the results of these experiments to gain further

understanding about the error characteristics and mechanisms

in these chips.

A. Error Asymmetry and Error Burstiness

The asymmetry between programming and erasing a flash cell

suggests that there might be a corresponding asymmetry in

the direction of errors [1]. A “plus” error is one where a bit of

value ‘0’ is read as a ‘1’, and a “minus” error is one where a bit

of value ‘1’ is read as a ‘0’. For each iteration, we compared

the number of plus and minus errors in order to determine if

one or the other of these error types was more prevalent. We

made this comparison on a block, page, and bit level and saw

that for the SLC block, the two types of errors are in essen-

tially equal proportion. We also made a similar comparison

for each bit in a small number of consecutive iterations dur-

ing which the BER is fairly constant. We conclude that there

is no significant disparity between the number of plus errors

and minus errors. For MLC blocks, on the other hand, the

error behavior is different and will be discussed in Section IV.

Another important characterization of errors within a page

is their degree of burstiness. One measure of burstiness is ob-

tained by partitioning the page into non-overlapping “symbols”

of a given length and counting the average number of bit er-

rors per symbol error. We computed this statistic as a func-

tion of the iteration number. In view of the length of a flash

memory page, we subdivided each page into 11-bit symbols,

thereby allowing the use of only one RS codeword (over the

field GF(211)) per 2KB page. The results indicated that only a

small percentage of the symbols that were in error contained

more than a single bit error. These observations suggest that

a bit-based BCH code might be more efficient in correcting

errors within a page than a symbol-based RS code. In partic-

ular, they support the view that BCH codes will outperform

RS codes and other burst-correcting codes.

B. Page-level BER

We also examined the BER of each individual page in the

block in order to determine if the BER has any significant

page dependency. The page-level BER measurements were

used to generate a three-dimensional picture, as shown in

Fig. 3 for the SLC block and in Fig. 4 for the MLC block.

The raw BER as a function of the program/erase cycle is

given for each page individually.

In the SLC case, we observed that in general the BERs of

the pages in the left-hand part of the block are significantly

larger than those of the pages in the right-hand part. One pos-

sible explanation for this phenomenon is related to the way

in which the cells are programmed. In each row, the left-hand

page is programmed first, followed by the programming of

the corresponding right-hand page. We speculate that the pro-

gramming of the right-hand page somehow disturbs the cells

in the left-hand page, inducing more errors when the left-hand

page is later read.

In the MLC case, we see that the LSB pages generally have

a higher BER than the MSB pages. This is due to the fact that

the assignment of 2-bit patterns to threshold values within a

cell makes the LSB more susceptible to errors than the MSB.

This will be discussed in more detail in Section IV. We also

noted anomalous BER characteristics in the first and last few

pages of the MLC block. We have not yet found an explana-

tion for this behavior.

Fig. 3. BER per Page for SLC Block.

Fig. 4. BER per Page for MLC Block.

C. Bit-level BER

Next, we investigated the error performance at the bit level

within each block. The number of errors in each bit was ac-

cumulated over a small number of consecutive program/erase

cycles during which the error statistics could be assumed to

be fairly constant. For the SLC block, we considered cycles

1.5 × 106 to 1.6 × 106. The total number of errors in each

bit location was counted and the results were plotted in a

three-dimensional histogram, shown in Fig. 5. In the figure,

the results for the left-hand pages and right-hand pages are

shown separately. It can be seen that the errors are clustered in

columns rather than rows. We also can see that there are fewer

errors overall in the right-hand part of the block, as is to be ex-

pected from Fig. 3. Bit-level BER measurements for the MLC

block (not shown here) displayed different characteristics.

IV. ECC FOR MLC FLASH

In this section, we give a more complete characterization of

the errors in MLC flash blocks. We then propose a new ECC

scheme designed to correct the dominant errors. We already

saw in Section III that in an SLC block there is essentially

no difference between the number of plus errors and minor

errors. For the 2-bit MLC flash blocks, we want to determine

the most likely transitions between the four states that a cell

can support.

To that end, we collected the errors found as we iterated

the operation of erasing a block, programming pseudo-random

Fig. 5. Bit Error Map for SLC Block.

data, and then reading back the data. Using the MLC block

layout shown in Table II, we then characterized the observed

error types in terms of cell state transitions. In theory, an error

corresponding to any change in cell level is possible. However,

we found in our experiments that the different error transitions

are not equally likely. Rather, the dominant errors were those

in which the cell voltage changed by one level, particularly

from state 01 to state 11 or from state 11 to state 10. Errors

where the voltage changed by two or three levels were very

rare.

These results suggest a new ECC scheme for 2-bit MLC

flash. Today, the ECC in MLC flash operates on individual

pages. That is, even though an MSB page and an LSB page

share the same group of cells, the errors in each page are cor-

rected independently. The idea behind the new ECC scheme

is to focus on correcting the dominant single-level cell-state

errors by sharing some redundancy between the pair of MSB

and LSB pages.

Let C1 be a t1-error-correcting BCH code and let C2 be

a t2-error-correcting BCH code, where t2 > t1. We use sys-

tematic encoders for both codes, and we choose them to be

“compatible” in the following sense. Suppose that for a given

information word, the encoder for C1 generates r1 redundancy

bits and the encoder for C2 generates r2 redundancy bits. Then

we assume that the first r1 redundancy bits generated by the

encoder for C2 are identical to the r1 redundancy bits gener-

ated by the encoder for C1. This last property of the codes

can be achieved for example by requiring that the set of roots

used to construct C1 is a subset of the set of roots used to

construct C2.

Let pMSB = (a0, . . . , an−1), pLSB = (b0, . . . , bn−1) be an

MSB page and an LSB page sharing the same group of cells.

The encoding proceeds as follows.

Encoding:

1) Calculate s1, the r1 redundancy bits of C1 corresponding

to the information page pMSB.

2) Calculate s2, the r2 redundancy bits of C2 corresponding

to the information page pMSB + pLSB.

Note that, by the linearity of the codes C1 and C2, the r1 re-

dundancy bits of C1 corresponding to the information page

pLSB are the sum of s1 and the first r1 redundancy bits of s2.

Therefore, it is possible to correct t1 errors in the LSB page, as

well. The decoding procedure, which we now describe, makes

use of this property.

Decoding:

1) Using the r2 bits corresponding to s2 and a decoder for

the code C2, find up to t2 errors in pMSB + pLSB.

2) Change the states of the cells identified as erroneous by

the C2 decoder by one level, according to the rule: state

00 is changed to state 01, and vice versa, state 11 is

changed to state 01, and state 10 is changed to state 11.

3) Using the r1 bits corresponding to s1 and a decoder for

the code C1, find up to t1 errors in the page pMSB.

4) Compute the sum of the r1 bits corresponding to s1 and

the associated r1 bits of s2. Using this sum and a de-

coder for the code C1, find up to t1 errors in pLSB.

We applied this ECC scheme to the MLC flash device and

compared its page-level performance to that of a BCH code.

Fig. 6. Comparison Between ECC schemes.

Fig. 6 shows the results for a BCH code that corrects 20 er-

rors in each page and the new ECC scheme, where the code

C2 can correct 35 errors and the code C1 can correct 5 errors.

With these parameters, the two coding schemes have the same

overall redundancy. In the error-rate evaluation, we assume for

each code that decoding is successful if the number of errors

in a codeword is no greater than the code’s specified error

correction capability. If the number exceeds the correction ca-

pability, we assume this condition is detected, and the received

word remains unchanged. Our results show that for sufficiently

low or suffiently high raw error rates, the two coded behave

similarly. However, when the number of errors is in the range

typically found after 32, 000 to 40, 000 program/erase cycles,

the new coding scheme can correctly decode both the MSB

and the LSB pages, while the BCH code tends to fail, as shown

in Fig. 6.

Remark 4. Our goal in this section was to suggest the possi-

bility of a new ECC scheme for MLC flash memories that si-

multaneously protects MSB and LSB pages. The performance

evaluation is based upon certain assumptions about the de-

coder that need to be more carefully assessed. In particular, a

full analysis should consider the vulnerability of the scheme

to miscorrection by the C2 decoder. We also note that the code

design was motivated by the error data collected from a partic-

ular MLC chip in a controlled laboratory environment. A more

thorough evaluation of the scheme would have to take into ac-

count device variability arising from different manufacturers

(see, for example, [5]) and operating conditions.

V. SINGLE BIT STORAGE IN MLC FLASH

Even though MLC flash memories can increase storage

capacity, they tend to be less reliable and to have shorter life-

times. In this section, we wish to explore the use of an MLC

device as if it were SLC. The idea is that this will provide

additional immunity to errors in the stored information.

There are several ways in which one could store only a

single bit per 2-bit cell:

1) Program only the MSB pages.

2) Program only the LSB pages.

3) Program the LSB and MSB pages with the same values.

(The cells will therefore be in state 00 or 11.)

4) Program the data in the MSB pages, and program all

LSB pages to all-0 bit values. (The cells will therefore

be in state 00 or 10.)

Fig. 7 shows the measured BER for all four of these schemes.

The results show that the best approach is the first one, in

which we program only the MSB pages.

Fig. 7. Different Schemes for Storing a Single Bit in an MLC Block.

TABLE III
WOM-CODE EXAMPLE

Bits Value First Write Second Write

00 000 111

01 001 110

10 010 101

11 100 011

This technique can also be made adaptive by initially us-

ing the MLC device in its native mode, and then switching to

SLC mode after a certain number of iterations, when the BER

has become larger due to device wear. Experimental results

confirmed that this mode of operation can indeed enhance the

MLC device endurance.

VI. WOM-CODES FOR FLASH MEMORIES

Write-Once-Memory (WOM) codes were first introduced

by Rivest and Shamir [6]. These codes are intended to per-

mit reuse of memories whose cells can be programmed only

once, such as punch cards or optical storage memories. In the

general WOM model, the memory consists of a group of bi-

nary cells, initialized in state 0. The cells can be programmed

to state 1, but this operation is irreversible. In [6], a simple

WOM-code that can store two bits twice using three cells

was presented. Table III gives the encoding and decoding

rules for this WOM-code. As an example, if the input on the

first write is 11, then the cells are programmed to 100. If the

information to be stored on the second write is 01, then the

cells can be programmed to 110, respecting the write-once

property of the cells.

A block in a flash memory chip is very similar to a

write-once memory in that a cell level can only be increased,

not decreased, on successive writes, unless the entire block is

erased. This observation suggests the use of WOM-codes in

flash memories as a means of reducing the number of block

erasures and, accordingly, increasing the device endurance.

As an example, we describe the application of the two-write

WOM-code in Table III to an SLC flash memory. For every

2KB page in a block, we encode ⌊2KB/1.5⌋ = ⌊4/3KB⌋
of data using the rate-2/3 WOM encoder. The encoded pages

are written successively into the block using a conventional

wear-leveling algorithm, but with a slight modification. Specif-

ically, when the wear-leveling algorithm calls for a block to

be erased, the block is not physically erased but, rather, is

marked as “invalid.” In subsequent page-write operations to

the block, the wear-leveling algorithm treats the block as if it

were erased, but first reads the page to be rewritten, and then

makes use of the encoding rules for the second write of the

WOM-code to program the page. Such rewrite operations can

Fig. 8. BER for first and second write of WOM-codes in SLC flash.

continue until the wear-leveling algorithm determines that the

block must be erased, at which point the block is physically

erased, and the programming cycle begins anew.

We implemented this WOM-code programming scheme on

an SLC device and investigated the effect of the second write

on the block BER. The results are shown in Fig. 8. The block

BERs associated with the first and second writes are shown in

blue and red, respectively, as a function of the iteration num-

ber. Clearly, the BER of the second write exceeds that of the

first write, and quite substantially after about 8 × 105 itera-

tions. However, below 5 × 105 iterations, the increase in BER

appears to be small, and it appears that the degradation in per-

formance could be offset by the use of an appropriate error

correction strategy with minimal extra overhead. Further dis-

cussion of WOM-codes and their application to MLC flash

memory can be found in [4].

VII. SUMMARY AND CONCLUSIONS

In this work, we used empirical data to investigate the charac-

teristics of errors in SLC and MLC flash memory devices. We

studied the error behavior at the block level, page level, and bit

level. Our observations motivated the design of a new error-

correcting scheme for 2-bit/cell MLC flash that outperforms

conventional BCH codes. We also investigated the potential

performance advantages of using a 2-bit/cell MLC device as an

SLC memory. Finally, we described the application of WOM-

codes to flash memories, and we experimentally evaluated

the performance of a simple WOM-code on an SLC device.

ACKNOWLEDGMENT

This work was supported in part by the UC Lab Fees

Research Program and by the National Science Foundation

under Grant CCF-0829865.

REFERENCES

[1] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for asym-
metric limited-magnitude errors with applications to multilevel flash
memories,” IEEE Trans. on Inform. Theory, vol. 56, no. 4, pp. 1582–
1595, April 2010.

[2] E. Gal and S. Toledo, “Algorithms and data structures for flash memo-
ries,” ACM Computing Surveys, vol. 37, pp. 138–163, June 2005.

[3] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error correct-
ing techniques for new-generation flash memories,” Proceedings of The

IEEE, vol. 91, no. 4, pp. 602–616, April 2003.
[4] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel,

and J.K. Wolf, “Characterizing flash memory : anomalies, observations,
and applications,” MICRO-42, pp. 24–33, December 2009.

[5] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Triverdi, “Bit error rate in NAND flash memories,”in Proceedings

of IEEE Reliability Physics Symposium, pp. 9–19, May 2008.
[6] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Infor-

mation and Control, vol. 55, no. 1–3, pp. 1–19, December 1982.

