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ABSTRACT

When estimating linear models using grouped data researchers typically
weight each observation by the group size. Under the assumption that the
regression errors for the underlying micro data have expected values of
zero, are independent and are homoscedastic, this procedure produces best
linear unbiased estimates.

This note argues that for most applications in economics the
assumption that errors are independent within groups 1is inappropriate.
Since grouping 1is commonly done on the basis of common observed
characteristics, it is inappropriate to assume that there are no uncbserved
characteristics in commoen. If group members have unobserved
characteristics in common, individual errors will be correlated. If errors
are correlated within groups and group sizes are large then
heteroscedasticity may be relatively unimportant and weighting by group
size may exacerbate heteroscedasticity rather than eliminate it. Two
examples presented here suggest that this may be the effect of weighting in
most non-experimental applications. In many situations unweighted ordinary
least squares may be a preferred alternative. For those cases where it is
not, a maximum 1likelihood and an asymptotically efficient two-step
generalized least squares estimator are proposed. An extension of the

two-step estimator for grouped binary data is also presented.
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Despite the proliferation of micro data sets with extensive informa-
tion on individuals, researchers often find it necessary to use group
average data to estimate models of economic behavior. For example, some
recent exercises have used the average population characteristics of
states, counties or SMSAs.l When such data is used to estimate linear
mcdels, researchers typically weight each group observation by the group
size. Under the assumption that the regression error for the individual
observations used to compute the group means are independent and
identically distributed, this weighting eliminates the heteroscedasticity
in the regression error caused by grouping. Many econometrics texts use
this as an example of the appropriate use of weighted least squares.

This note argues that for most applications in economics, this method
is inappropriate. There is good reason to believe that individual
observations within groups are not independent when group membership is
determined by a common observed characteristic. If observations are not
independent, the variance of the regression errors for the grouped data may
not vary substantially with group size. When heteroscedasticity introduced
by differences in group size is inconsequential, weighting by group size
will introduce more heteroscedasticity rather than eliminate it, causing
coefficient estimates to be inefficient and estimates of the variance of
the coefficients to be biased. Two examples are presented to demonstrate
this. In both cases results suggest that weighting by group size produces
estimates which are inferior to ordinary least squares (0LS). Further, for
many purposes OLS results are inconsequentially different from ideal
estimates. For those cases where OLS is not adequate, alternative

estimators are proposed.
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I. Grouped Data with Error Components

Consider the standard linear regression model with grouped data.

Y. =X,B +¢e,,

15~ *i5® T fqy
describes the relation between the dependent variable Y, one or more in-
dependent variables X, a vector of coefficients B, and an error . The
first subscript denotes group, the second the individual within the group.
When the micro data are not available the coefficients B8 can be estimated

using group means

N,

_ 1

Yi = I Yi'/N
=1
N,

. 1

X, = I Xi./N
=1

where Ni is the size of group 1. If each Eij is independently and
identically distributed (i.i.d.) with mean zero and variance 02 then the

errors in the equation

. . 2 , . ,
will have mean zero and variance o /Ni. Estimating equation 2 using OLS
will produce unbiased estimates of R but not minimum variance estimates.
Minimum variance estimates can be obtained by estimating the equation

(3) /Ni Yi = /Ni Xiﬁ ..



The error v, = Jﬁ;'ei has a constant variance 02.
The problem with this as a practical appreach to grouped data is the
assumption that the Eij's are independent. The errors represent
unobserved determinants of Y. To assume these errors are independent is
to assume that individuals in the same group share no common unobserved
determinants. When grouping is done by common characteristics such as
geographic location or industry, this assumption is untenable. We know
that for most observed characteristics two people within a state, SMSA, or
occupation will most likely differ by less than two people from different
groups. Why shouldn't we expect the same of unobserved characteristics?

1f people within groups share common unobserved characteristics this

can be represented by writing

where uij is an individual error component--those unobserved determinants
of Y unique to the individual--and Yy is a shared group component. If
both the u's and y's are i.i.d. with expected value zero and variance

02 and 02 respectively, then var(e,) = 02
u Y i ¥

+ 02/N..
u i
Now 1f G$ equals zero (no shared error component), and if the
smallest groups have Ni'S in the low hundreds while the largest groups
have nearly ten-thousand members, heteroscedasticity will be substantial.
The value of the Ei's will differ by over 1000%. On the other hand, if
03 equals Ui , and group sizes are in the hundreds or higher, the
variance of observations will differ by less than 1% no matter how large

the differences in group sizes, With group sizes in the thousands or

sq1s . 2 . 2
millions, even if Gu is substantially larger than OY, hetercscedasticity
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will be minimal and unweighted OLS will differ insubstantially from
best-linear-unbiased (BLU)} estimates. DBut, if there are large differences
in group sizes, weighting each group observation by group size will
introduce considerable heteroscedasticity, produce inefficient parameter
estimates and biased estimates of the standard errors.

Of course, if the wvariance of the group error component is
sufficiently small relative to the variance of the individual component,
weighting by group size will be appropriate., It has been argued above that
since nearly all applications of this technique in economics use data which
are grouped by some common characteristic, 03 is likely to be large. To

demonstrate this for one particular case, ceonsider the following,

IT. An Example

Dooley (1982) estimates reduced form equations for labor force par-
ticipation and fertility using a number of data sources. One of these
sources is 1970 census data on average characteristics of women and house-
holds for each of 79 SMSAs, Separate equations are estimated for black and
white women in a number of different age groups; Before estimating, Dooley
weights each observation by the number of ever married women of the partic-
ular age group and race living in each SMSA. A replication of his results
for the age-race category with the smallest group sizes is presented in the
first column of table 1.3 This category is chosen since for a given ratio
of group to individual error component variances, the smaller the group
sizes, the worse the heteroscedasticity.

What are the sizes of the error component's variances? There are a
number of approaches that could be taken to determine this. Two approaches

are used here. For the first it is assumed that the gi's are normally



distributed. The error variances and the coefficients are estimated

. . . 4
simultaneously using maximum likelihood. Column 4 of table 1 presents
these estimates for the error components model. An alternative approach is

S ~

to obtain initial consistent estimates of R , to compute €, T Y, - X8

~

and then to regress the si's on the l/Ni's and a constant. The

appendix demonstrates that the coefficient of the l/Ni's will be a
consistent estimate of oi and the constant will be a consistent estimate
of ¢ . The appendix also demonstrates that these estimates of the error

Y

compeonents variances can be used to construct an asymptotically efficient
estimate of B by multiplying each observation by Jéf + Si/wi . The
estimates presented in column 3 of table 1 were obtained by repeating this
procedure using the estimates of é obtained one time as the initial
consistent estimates for the next repetition. The process was continued
until two consecutive estimates of both error component variances were the
same to three decimal places. Column 1 presents group size weighted
‘estimates, and column 2 presents unweighted OLS estimates for comparison.
Both weighted and unweighted data were used to obtain initial estimates of
é . Both initial estimates converged to the same final values.

Using either the maximum likelihood or the two-step approach, the
estimated variances for the group error components in both equations are
substantial. Still the estimated variances of the individual error
components are between nine hundred and sixteen thousand times larger than
the variances of the common error components, The smallest group size is
568 and the largest is 52,690. By these estimates, the variances of the
errors of smallest and largest observation coculd differ by over 2200%.5

How much of a difference will this make for estimation?



The first concern is that using group sizes as weights will lead to a
loss of efficiency. As a standard for comparison the efficiency of group
size weighted estimates may be compared to ideal GLS estimates. If the

ratio of 02 to 02 was known to equal R, we could obtain minimum
Y

u

variance estimates by weighting each observation i by

1

VI+R/N

‘ i
Column 1 in table 2 presents the difference between the variance of the
group size weighted estimates and the ideal estimates as a percent of the
variance of the ideal estimates.6 The computation is made assuming the
true variances of the error components are equal to the maximum likelihood
estimates in table 1. Column 2 presents the same figures for unweighted
OLS estimates.

The results are striking. Despite large difference in the variance of
the largest and smallest groups' error terms, group size weighted
estimates are substantially less efficient than properly weighted
estimates. Coefficient variances are in some cases twice as large as those
of the ideal estimates. Also surprising is the comparison with unweighted
OLS which is nearly as efficient as the ideal estimator. Using the
estimated variances from the iterated two step method produces results
which are more favorable to unweighted OLS.

Using imprope; weights may also produce biased estimates of the
variance-covariance matrix of the coefficients. Columns 3 and 4 of table 2
present the percent bias of the estimated standard errors cf the

coefficients for the group size weighted and unweighted estimators.7 The



bias 1is substantial for the group size weighted estimator and relatively
small for the unweighted estimator. Once again, using the two-step
variance estimates would produce results more favorable to unweighted OLS.

It should alsoc be remembered that the group for which these results
were computed was the smallest of those analyzed by Dooley. Other groups
had similar variance components but efficiency losses and biases were
bigger for group size weighted estimates and smaller for unweighted OLS
because of the larger group sizes.

Despite the relatively good performance of unweighted OLS, it is
possible to do better, at least if the number of groups 1s large. Maximum
likelihood is one alternative. The estimator is asymptotically efficient
and the corresponding estimator of the coefficient's covariances is also
consistent. However, maximum likelihood estimates are biased in small
samples. Since group average data sets typically have few observations
this may be a concern. One must also know the distribution of the errcrs a
priori to use maximum likelihood.

Like maximum likelihood, the two-step GLS coefficient estimates are
consistent and efficient. However, the expected value of the estimates is
not defined and the small sample properties of the estimator cannot be
analyzed without imposing a priori bounds on the regression errors.

None of these three estimators (OLS, ML, or TSGLS) is clearly superior
for practical application., All that is clear is that, at least for these
data and these estimates of the ratic of the variances of the error

conmponents, weighting by group size is inappropriate,



III. Is It Ever Worth Weighting?

The calculations presented in table 2 were done assuming that the
variances of the error components were those estimated using maximum
likelihood. However, the estimates are not exact so the sensitivity of the
results in table 2 to changes in the assumption about the ratio of the
variance of the error components should be considered.

The values for table 2 were recomputed assuming that the standard
deviation of the group error component was over-estimated by two standard
errors and that the standard deviation of the individual component was
underestimated by two standard errors.8 Even at these values, the loss of
efficiency using group size weighted estimates is over 10%Z for 5 of the 13
coefficients and standard errors are understated by as much as 20%. The
unweighted estimator is also very inefficient and seriously biased. Still,
it produces less biased estimates of the coefficient variances for several
coefficients. Other variations of this sensitivity analysis produce
similar results, but perhaps these findings are unique to these data,.

From the discussion in section I, we know that heteroscedasticity
introduced by different group sizes is most likely to be large when groups
are small on average but vary a great deal in size. It will also be large
when the individual error variance is large relative to the shared error
variance. It is difficult to know a priori when individual error variance
will be large relative to group error variance. However, it is possible to

find an example with small but highly variable group size.

IV. Grouped Binary Data

The example presented here is a model of voting in union representa-

tion elections similar to that estimated by Dickens, Wholey and Robinson



(1984).9 The groups are prospective collective bargaining units voting on
whether they should be represented by a union. The independent variables
are characteristics of the bargaining unit thought to influence how workers
will vote or proxies for such characteristics. The average number of
workers voting in these elections is 56 and the actual numbers range from 2
to 16,953.10

One standard approach to the estimation of models of this type is
minimum x? logit (Berksom, 1953). Taking this approach it is assumed

that

- 1 - 1 -
L, = log [(p; + ZNi)/(1 p; * 2Ni)] = X6

where Py is the probability of a person voting union in election 1 ,

; o .th - oo 11
and Xi is a vector of characteristics of the i bargaining unit.
Adding the transformation of the observed probabilities to each side of the
equation and subtracting the transformation of the observed proportion of

~

workers voting union (pi) yields

~

— - 1 Ly - _
Ly = logl(p; *+ 2Ni)/(1 Pyt 2Ni)] =X L - Ly

~

The difference between the two logit variables on the R.,H.S. 1is an
unobserved random variable. Gart and Zweifel (1967) suggest several good
approximations to the variance of this random variable, so the method of
- 2 L R Sy
minimum ¥ logit involves dividing the transformed true probabilities for
.th ' .

the 1 group and the Xi s by the square root of the approximate
variance for the ith group and running OLS on the weighted data to obtain
estimates of B . Since the variance of Li - Li is declining in ¥,

i

this procedure is analogous to WLS using group size weights from the case

of a continuous dependent variable.
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The problem with weighted minimum x2 estimation as a practical
approach to this problem is that one must assume that the observed X's
are all the bargaining unit characteristics which determine the probability
of workers in an election voting union. But, it is likely that there are
many unchserved characteristics that affect the probability of voting
union, so a more appropriate specification is

Ly =Xy L= Ly
where Yy is an i.i.d. group error component representing the unobserved
determinants of Li .  With this specification the B8's can be
efficiently estimated using a two-step procedure analogous to the one used
above for continuous data. Initial consistent estimates of the B's can

be obtained by regressing the unweighted Li's on the Xi's . Then a

. . 2
consistent estimate of GY can be constructed as

. ~g o
CLy - X8 -V

n oo =2

2 i=1

M-K

. . , . 12 ,
where Vi is a consistent approximation tc the variance of Li - Li .

~

Each Li and Xi can then be multiplied by /G/(Ui + Vi) and the

~

weighted data used to obtain asymptotically efficient estimates of g
Table 3 presents unweighted OLS, weighted minimum X2 , and asymptotically
efficient two-step GLS estimates of the voting model. The coefficient
estimates for all three specifications are qualitatively similar. With the
exception of the constant and the coefficient on the number of voters the
signs are all the same., However, there is a big difference between the
estimated standard errors for the weighted minimum x2 and the other two

estimators. Since the variance is assumed to be known for the minimum

estimator, and much smaller than it truly is,
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the coefficient standard errors are seriously underestimated. Table 4
shows the bias in the estimated standard errors for this sample, assuming
the GLS estimate of the variance of the group error components is correct.
The table also presents the efficiency of OLS and minimum XZ relative to
the ideal GLS estimator. The bias is small for unweighted OLS and very
large for minimum xz logit. The efficiency comparisons are also stark --
OLS is nearly as efficient as GLS, while the minimum x2 estimates have
true variances which are up to five times greater than those of GLS.
V. Conclusion

When estimating linear models using grouped data, weighting each
observation by the size of the group is only appropriate if individual
error terms are not ccerrelated within groups. If the ccrrelation is large
or if group size is large, group size weighted estimates will be
inefficient and coefficient variance estimates may be badly biased. This
turns out to be true for both examples presented here. This suggests that
the use of group sizes as weights is unlikely to be appropriate for
applications where data are grouped by some common characteristic. Only if
group assignment is entirely random, such as in experimental situations,
does weighting by group size make sense. In many cases OLS may be a
preferred alternative, For both examples examined here OLS coefficient
estimates were nearly as efficient as GLS and estimated standard errors
suffered little bias. Consistent estimates which are asymptotically
efficient can be obtained with little additional computational difficulty,

using maximum likelihood or two-step CLS.
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Footnotes

For example, Cogan (1982) uses state average data on black teenagers
to examine the causes of changes in their labor force participation
rates. Higgs (1982) uses county average data to examine property
accumulation by black farmers before World War I, and Dooley (1982)
uses SMSA average data to investigate the determinants of women's
labor force participation and fertility,

For example see Maddala (1977, p. 268-279), Johnston (1984, p. 293-
296) and Rao and Miller (1971, p. 116-121).

See Dooley (1982, p. 503-505) for a complete description of the data.
Dooley's results presented in his article are estimated using
seemingly unrelated regressions. To simplify the presentation only
single equation techniques are discussed here., The extension to
multiple equation estimation is straight forward.

The Berndt, Hall, Hall and Hausman (1974) iterative method was used.
The program was written in APL and implemented on a SP9000
micro-computer. The likelihood function is described in the Appendizx.
The reader may note that the standard errors of the individual error
components are implausibly large -- a four to eight children per woman
difference in fertility and a 117 to 136 percent difference in labor
force participation. This probably indicates that the group error
components are not homoscedastic but have variances which decrease
with group size., Although this changes the interpretation of the
variances, it does not affect the analysis being performed here.

The formula for computing these wvariances can be found in the

Appendix.
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11.

12,

13

These formula are also in the Appendix.

These are extreme values. A Wald test rejects the hypothesis that the
true standard deviations of the error components are equal to or more
extreme than these values at the .001 level.

The labor force participation equation in the last section also
involves a binary dependent variable. In that case the relatively
small differences between SMSA's in the participation rate justifies
the assumption of a linear probability model, and the very large size
of the groups justifies the normal approximation to the binomial
distribution. Neither of those conditicns is met here.

Dickens, Wholey and Robinson (1984) contains a complete description of
the data.

Since in some of the elections all or none of the workers voted union,
the standard logit transformation of the observed proportions voting
union (log[;/(l-;)]) is undefined., This is the modified logit
transformation suggested by Haldane (1955).

Gart and Zweifel (1967) analyze several approximations of varying
accuracy and complexity. All are consistent as group size goes to
infinity. The better approximations have biases of less than 10% when

~

Nipi is greater than 1.5. GY is consistent in the sense that by
choosing M  and a lower bound for the Ni's sufficiently large, the

probability that 03 lies within § of 03 can be made arbitrarily

close to one for any value of § .
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Table 1

ESTIMATED COEFFICIENTS AND STANDARD ERRORS FOR A MODEL OF LABOR FORCE
PARTICIPATION AND FERTILITY FOR BLACK WOMEN AGED 45-49 YEARS

Dependent Variable: Labor Iterated Maximum

Force Participation Rate Group Size Unweighted Two-Step Likelihood

(percent) Weighted Estimates Estimates Estimates Estimates
Constant 52.819 60.124 59.546 59.247
(8.278) (7.538) (7.345) {(7.296)
Wife's wage 495 .620 .691 .706
(5100's/year) (.130) (.146) (.139) (.119)
Husband's income -.496 -.521 -.554 -.562
($100's/year) (.120) (.104) (.104) (.091)
Nonlabor income -1.179 -1.472 -1.582 -1.665
($100's/year) (1.519) (1.193) (1.212) (1.361)
Education 1.709 .924 911 L942
(Years completed) (1.036) {.858) (.869) (.839)
Percent rural SMSA .050 -.076 -.066 -.063
residents (.115) (.096) (.093) (.099)
Unemployment rate in -.609 -.573 -.635 -.655
SMSA (.388) (.354) (.357) (.389)

S5.E. Individual Error 297.771 - 117.286 135.52

Component (43.574)
S.E. Group Error - 4,921 3.833 3.451
Component (.746)

{continued)



Dependent Variable: Group Size Unweighted Iterated Maximum
Fertility Two-Step Likelihood
{children/married women) Weighted Estimates Estimates Estimates Estimates
Constant 5.201 4,811 4,840 4,920
(.442) (.436) (.433) (.432)
Wife's wage -.023 -.006 -.008 -.011
($100"s/vear) (.007) (.008) (.008) (.010)
Husband's income 000 .011 -.010 -.008
{(8100's/year) (.006) (.006) (.006) (.006)
Nonlabor income .259 121 . 130 152
($100's/year) {.080) (.069) (.070) (.080)
Education ~-. 174 -.098 -.105 -.120
(Years completed) (.055) (.050) (.050) (.047)
Percent rural SMSA .025 .019 .020 .021
residents (.006) (.0086) (.005) (.006)
S.E. Individual Error 15.916 - 4.643 8.355
Component (3.028)
S.E. Group Error - 258 .251 .197
Component (.052)

Sample: 79 SMSAs (standard errors in parentheses)



Table 2

EFFICIENCY AND BIAS ANALYSIS FOR GROUP SIZE WEIGHTED AND UNWEIGHTED
ESTIMATES OF LABOR FORCE PARTICIPATION AND FERTILITY MODELS

Dependent Variable:

Labor Force
Participation Rate

Constant

Wife's wage
Husband's income
Nonlabor income
Education

Percent Rural SMSA
residents

Unemployment trate

Dependent Variable:

Labor Force
Participation Rate

Percent Bias in Estimated
Coefficient Standard Error
Group Size

Relative Efficiency
Group Size

Constant

Wife's wage
Husband's income
Nonlabor income
Education

Percent rural SMSA
residents

Weighted Unweighted Weighted Unweighted

Estimates Estimates Estimates Estimates
63.87 7.38 -17.99 - .91
90.08 11.26 -36.49 14
95.02 7.97 -23.85 -4.93
79.49 6.22 -14.15 - 5.85
83.30 .22 -18.91 - 6.59
49.69 3.99 - 5.72 .12
70.44 12.16 -22.75 - 6.74
60.38 8.82 -17.56 -0.90
105.08 13.80 -41.66 0.28
103.11 9.94 -28.92 -4,73
79.00 7.46 -15.40 - 6.15
77.94 10.94 -18.58 - 7.05
45.09 5.04 -4.86 1.07

1. Relative efficiency is defined as the percent difference between the
variance of the estimator and the variance of the minimum variance
estimator. See the Appendix for the formulas used to compute these

numbers.

2. The bias in the Estimated Coefficients' standard errors are defined as
the percent difference between the expected value of the standard
estimate of the coefficient standard errors and the true standard errors
given the structure of the error components. See the Appendix for the
formula used to compute these numbers.



Table 3

ESTIMATED COEFFICIENTS AND STANDARD ERRORS FOR
A MODEL OF VOTING IN UNION CERTIFICATION ELECTIONS

Dependent Variable: Weighted
Haldane-Logit Transforma- Minimum
tion of the Percent 5 Unweighted Iterated Two-
Voting Union x~ Estimates Estimates step Estimates
Constant -.482 .022 -.058
(.018) (.083) (.082)
Number of eligible voters . 152 ~-.051 -.012
in thousands (.002) (.053) (.048)
Dummy Variable: Did
management consent to . 304 .324 .314
the election? (.016) (.050) (.052)

Log of number of months
between petition for

election and date -.070 ~.168 -.147

election was held (.004) (.021) (.020)
Difference between average

unicn and nonunion wages .080 .079 .073

in Industry ($/hour) (.004) (.015) (.015)

Difference between the
standard deviation of

union and nonunion wages -.049 -.060 -.054

in industry {(S$/hour) (.002) (.009) {(.009)
Percent of workers in 1.091 1.785 1.582

industry who are black (.076) (.423) (.411)
Percent of workers in

industry who are union . 209 .019 . 080

members (.015) (.074) (.073)
Percent of workforce in

industry which is -.453 -2.338 ~1.965

unemp loyed (.213) (.878) (.878)
Dummy Variable: Election

held in a state with a .003 007 .002

right to work law {.007) (.039) (.038)
Dummy Variable: Election -.009 -.066 -.058

held in a Southern state (.007) (.038) (.037)
Standard errer of group 1.523

e€rror component

Data: 13,545 union certification elections held between 1977 and 1979
(standard erros in parentheses)



Table 4
EFFICIENCY AND BTAS ANALYSIS FOR GROUP SIZE WEIGHTED AND UNWEIGHTED
ESTIMATES OF A MODEL OF VOTING IN UNION CERTIFICATION ELECTIONS

Percent Bias in Estimated

Dependent Variable: Relative Efficiency Coefficient Standard Errors
Haldane-Logit Transforma- Weighted Weighted
tion of the Percent Minimum Unweighted Minimum Unweighted
Voting Union x~ Estimates Estimates x Estimates Estimates
Constant 361.50 3.52 -89.88 - .42

Number of eligible voters
in thousands 43,92 .36 -95.99 10.42

Dummy Variable: Did
management consent to
the election? 282.34 4,15 -84.66 - 4,60

Log of number of months
between petition for
election and date
election was held 317.52 3.19 ~-31.54 1.58

Difference between average
union and nonunion wages
in Industry ($/hour) 397.53 3.75 -89.16 -1.70

Difference between the
standard deviation of
union and nonunion wages
in industry ($/hour) 389.13 4.05 -89.15 -2.04

Percent of workers in
industry who are black 382.60 3.27 -391.556 1.30

Percent of workers in
industry who are union

members 470.38 3.53 -91.62 -.20
(continued)
1. Relative efficiency is defined as the percent difference between the

variance of the estimator and the variance of the minimum variance
estimator. See the Appendix for the formulas used to compute these
numbers.

The bias in the Estimated Coefficients' standard errors are defined as
the percent difference between the expected value of the standard
estimate of the coefficient stamdard errprs and the true standard given
the structure of the error components. See the Appendix for the formula
used to compute these numbers.



Percent Bias in Estimated

Dependent Variable: Relative Efficiencyl Coefficient Standard Errors
Haldane-Logit Transforma-  Weighted Weighted
tion of the Percent Minimum Unweighted Minimum Unweighted
Voting Union x~ Estimates Estimates ¥ Estimates Estimates
Percent of workforce in
industry which is
unempleoyed 419.08 3.72 -89.36 -1.75
Dummy Variable: Election
held in a state with a
right to work law 507.03 3.65 -92.27 .09

Dummy Variable: Election
held in a Southern state 484.58 3.57

-92.14 .30




AEEendix

Log likelihood function for variance components model:

,~X.B
2 y
L(YthB,OZ, 02) = - %’log(Zn) - %- Y log {0 + g " ] + 1 12
e =1 Y 1 l 2 5 ]
o + _u
LA
i
2 2 + - . .
where Y, X, B, 0 , ¢© and Ni are defined as in sectien 1. M is the

number of group observations.

Formula used to compute values in Tables 2 and 4:

Define X as the matrix of unweighted grouped data, X as grouped data

where each row is multiplied by /ﬁ;, and X as the grouped data where each

row is multiplied by (1/J;$ + Ui/Ni)' Define Y, Y and § similarly. Then

~ - =,z _1_ -

— ]
Bu X'Xx) X'y
- TS
BS = (X'X) X'y
A vy =125
B, = X'X)X'Y,

and
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Var (Eu) - @R
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Var (BS) = (x'x)‘ix' 2 :»((x'x)'1
~2
i 0 GM |
. TR

Var (BI) = (X'X)
where

5? = 02 + O’Z/N.

1 Y [T

CI:,Z = 02 N, + 02

i vy i u

c .th - . ,
The relative efficiency of the i coefficient estimate for the unweighted and

group size weighted estimators are defined as:
[Var (Bu)ii ~ Var (Bl)ii/Var(SI)ii
[Var (Bs)ii - Var (BI)ii/Var(BI)ii

The standard estimate for the variance of the unweighted and weighted

estimators are

— —_—— — _1_ —
coay Y OXXBTRDY e
V) = T '
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e g
Y'{I-X(X'X XY Lol
: (151 5 e

V(BS) =



where K is the number of ¥ wvariables, The expected value of V(gu) and

G(és) are

M
) (03 +ci /Nl) (I-Eii)
N |
M
7 (02 N+ oi) (I—Eii)
s e foron=l i=1
E(V(Bu)) = (X'X) (M-K)
wvhere
E. = @E@DHHEH
ii ii
.= @@Enlxy, ..
11 11
th

Finally, the percent bias of the i coefficient standard error is defined as
via n Y
[E(V(R)),, / Var (8), 1% - 1

and

te

[E(V(Bg)),, / Var (B, 17 =1

For the grouped binomial dependent variable case, GS/Ni is replaced by the

variance approximation presented later in this appendix. To get the "true

-~

variance" 1 is replaced by P; where 1 is assumed to equal Xiél .
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Proof of the consistency of the two-step estimates of UY and UU and the

asymptotic efficiency of the two-step estimator:

Theil (1971, p. 399) shows that if

sl -1

i) plimM'l (V- -V )X=0
M-+o0

and

. N IS RS T

i) plim M X' (v -V D)e=20
Moo

~

where V is the true covariance matrix of the €s and V is an estimate of

that matrix then the estimators

GVvH TR
and
@vin vl
have the same limiting distribution. Since the first estimator is the true

GLS estimator, and is therefore asymptotically efficient, if conditions i) and
ii) hold the second estimator, the two-step estimator, will also be
asymptotically efficient.

To show that conditions i) and ii) hold,

first define
- R
= _ ] '
e, Y Xi(X Xy X'y
where the ~ 's denote an arbitrary weighting of the X's and vy's

. 2 2 .
Consistent estimates of UY and 0Ll can be obtained as
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________ =i
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and

~ PN - - -2 2 2,
Zi = (Xi(B-B)) + si Xi(B—B) + €7 - GY - cu/hi

Assuming 1im Q/M = Q' and [Q'| =0 's are bounded,

N M0

and cﬁ will be consistent iff

and that the Ni

M
plim Z Zi/M =0

Mo i=1
Expanding the first term of Zi we get K2 terms of the form
- ~ MK Xy
plim (B-B). (B-B), N ——J-3f—— .
Moo J i=1

~

B dis a consistent estimator of B , these terms will equal 0

Since

second term of Zi can be expanded to obtain K terms of the form

M X, £,
z ij i

i=1

plim (B-B) .
M—)—oo J

A
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all of which have the probability 1limits equal te =zero since B is

consistent. Finally, the last three terms can be rewritten

% 2 2 Df Ei 01?1 }f Vit

plim Yo/M - ol + - +

Mo =] Yoogn N MONMO o NN

The first term has a probability limit of oi so the first two terms cancel.

Since the Ni's are all positive integers, the absclute value of the third
term is less than or equal to
M
plim ( } ﬁi/M) - cri =0 .
Moo i=1

By the assumptions that the \f 's and the uij 's are independent and that

the Ni 's are positive integers, the probability limit of the last term is

"2 "2 2 2

zero. Thus 0; and GU are consistent estimates of 0; and ou
. , .. th _
Now, to show that condition (i) holds, note that the ij element of

the matrix may be written

M0 Ky 1 1
plim | M 7 "2 ) 2 -
o0 = a
M k=1 OY + Uu/Nk UY + u/Nk

M By

plim van ) o,
Mro =1 M k
If the Nk 's are positive integers with an upper bound of U and values of
"2 "2 " "2
c or O < (O are treated as ¢ or o =0 , then
Y M Y u
V(N $ max(V(1),V(U))

and



Mo, X, MO0, X),.
plim —~k—li——kl v(N) £ plim max(V(1),V(0)) —E‘-}M——lﬁl
M+« k=1 M k=1
. ~2 "2 , . 2 2
Since ¢ and ou are consistent estimates of GY and Gu , both V(1)

and V(u) go to zero in probability as M goes to infinity. If

plim XXM = Q , a matrix of constants, then the first condition holds.
Moo th
Similarly the 1j element of the second condition can be written:

M Dy 1 1
plin ] o 2 . o2 T 22
Mre k=1 M GY + ou/Nk oY + GY/NR

By the same argument made above, this can be rewritten as

M (X),. €
plim max(V(1),V{U)) Z k& .
Mo k=1 /M

-

~ 9
Cnce again the consistency of OY and 0; assures that V(1) and V(U)

have a zerc probability limit. The distributional assumptions made in section

I are sufficient for

oMy
plim —_
Mro k=1 M

to have a limiting normal distribution. Thus the second condition holds and
two-step estimation is fully efficient.

The proof of the consistency and efficiency of the two-step GLS minimum
2 . , -
X logit follows the same steps as above, except that Vi replaces Oi/N. s
i

~

the consistency of Vi is proved by Gart and Zweifel (1967) and the

2
consistency of BY follows easily from the consistency of Vi
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Approximation to the Variance of Li - Li

The approximation used here is one developed by Goodman and reported by

Gart and Zweifel (1967). It is an unbiased estimate of the true variance of

Li - Li » except for terms of O(N;4 ). or higher, and converges in

probability to the true variance as Ni +

- 2 \ 4V
V., =V, + [(N_+1)2/(2N‘?‘)] 1 - 1A . Sy 2o _3.548
i 3 i i 2 3 N, 2
N.p.+1 N,-N.p.+1 i N
iti i ifi i

where
N, +1
V3 = 1N } + la »
i Nipi+1 Ni—Nipi+1

~

Ni is the number of workers voting, and P is the proportion veting union.



