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Error Control for Probabilistic Model Checking⋆

H̊akan L. S. Younes

Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract. We introduce a framework for expressing correctness guar-
antees of model-checking algorithms. The framework allows us to qual-
itatively compare different solution techniques for probabilistic model
checking, both techniques based on statistical sampling and numeri-
cal computation of probability estimates. We provide several new in-
sights into the relative merits of the different approaches. In addition,
we present a new statistical solution method that can bound the prob-
ability of error under any circumstances by sometimes reporting unde-
cided results. Previous statistical solution methods could only bound the
probability of error outside of an “indifference region”.

1 Introduction

Probabilistic model checking, based on the model-checking paradigm pioneered
by Clarke and Emerson [4], is a technique for automated verification of stochastic
processes. Given a model of a stochastic process, for example a Markov chain, the
model-checking task is to determine whether the model satisfies some property
Φ. For instance, consider a queuing system with random (according to some
distribution) arrivals and departures. We may ask whether the probability is at
most 0.5 that the queue will become full in the next hour of operation. This is
an example of a probabilistic time-bounded property. Techniques for verifying
such properties are the focus of this paper.

Algorithms for probabilistic model checking of time-bounded properties come
in two flavors: numerical [3, 12] and statistical [18, 8, 14, 16]. The former rely on
numerical algorithms for probability computations, while the latter use statisti-
cal sampling and discrete-event simulation to assess the validity of probabilistic
properties. Some insights into the relative merits of the two approaches are
given by Younes et al. [17]. Yet, a direct comparison is difficult because numer-
ical and statistical techniques provided quite different correctness guarantees.
Furthermore, conflicting claims have been made about the benefits of competing
statistical solution methods. Hérault et al. [8] state that their solution method,
based on statistical estimation, is better than the method of Younes and Sim-
mons [18], based on hypothesis testing, because the sample size of the former
method is known exactly. Sen et al. [14] provide empirical data that seem to

⋆ Supported in part by the US Army Research Office (ARO), under contract no.
DAAD190110485.
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suggest that hypothesis testing with fixed-size samples consistently outperforms
sequential hypothesis testing (the latter being advocated by Younes et al. [17]).

This paper is an attempt to set the record straight regarding the relative
merits of different solution methods for probabilistic model checking. We estab-
lish a framework for expressing the correctness guarantees of model-checking
algorithms (Sect. 3). Section 4 shows how to connect the truncation error, ǫ, of
numerical methods with the parameter δ (the half-width of the “indifference
region”) of statistical methods. We conclude that numerical and statistical solu-
tion methods can, indeed, be interpreted as solving the same problem. Statistical
solution methods are simply randomized algorithms for the same problems that
numerical methods solve. We are also able to prove that statistical estimation,
when used for probabilistic model checking, reduces to hypothesis testing with
fixed-size samples. It follows that Younes and Simmons’ solution method never

needs to use a larger sample size than Hérault et al.’s estimation-based method,
and it will often use a much smaller sample size to achieve the same correctness
guarantees. Our framework for error control also helps us understand the results
of Sen et al., which seem to contradict results presented by Younes [16].

The second contribution of this paper is a new statistical method for prob-
abilistic model checking. Current statistical solution methods provide bounds
for the probability of error only when a formula holds (or does not hold) with

some margin. Our new method bounds the probability of error under all circum-

stances. This is accomplished by permitting an undecided result. Sen et al. [14]
have previously toyed with the idea of undecided results for statistical solu-
tion methods, but only for nested probabilistic operators and without providing
any mechanisms for bounding the probability of producing an undecided result
(or even an incorrect result, for that matter). Section 5 shows, for the first time,
how to bound the probability of undecided and incorrect results for any formula,
including conjunctions of probabilistic statements and nested probabilistic state-
ments. Section 6 discusses the computational complexity of statistical solution
methods in general. A brief empirical evaluation of the new statistical solution
method is provided in Sect. 7.

2 Probabilistic Model Checking

This section describes stochastic discrete-event systems, which is the class of
models that we consider for probabilistic model checking. A logic, UTSL, for
expressing properties of such models is introduced. We describe the semantics
of UTSL and of UTSLδ, the latter being a relaxation of the former logic that
permits practical model-checking algorithms.

2.1 Stochastic Discrete-Event Systems

A stochastic discrete-event system is any stochastic process that can be thought
of as occupying a single state for a duration of time before an event causes
an instantaneous state transition to occur. The canonical example is a queuing
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system, with the state being the number of items currently in the queue. The
state changes at the occurrence of an arrival or departure event.

The evolution of a stochastic discrete-event system over time is captured by
a trajectory. The trajectory of a stochastic discrete-event system is piecewise
constant and can be represented as a sequence σ = {〈s0, t0〉, 〈s1, t1〉, . . .}, with
si ∈ S and ti > 0. Let

Ti =

{

0 if i = 0
∑i−1

j=0 ti if i > 0
, (1)

so that Ti is the time at which state si is entered and ti is the duration of time
for which the process remains in si before an event triggers a transition to state
si+1. It is assumed that limi→∞ Ti < ∞. This implies that only a finite number
of events can trigger in a finite interval of time, which is a reasonable assumption
for any physical process (cf. [1]).

A measurable stochastic discrete-event system is a triple M = 〈S, T, µ〉,
where S is the state space, T is the time domain (ZZ∗ for discrete-time models
and [0,∞) for continuous-time models), and µ is a probability measure over sets
of trajectories with common prefix. A prefix of σ = {〈s0, t0〉, 〈s1, t1〉, . . .} is a

sequence σ≤τ = {〈s′0, t
′
0〉, . . . , 〈s

′
k, t′k〉}, with s′i = si for all i ≤ k,

∑k
i=0 t′i = τ ,

t′i = ti for all i < k, and t′k < tk. Let Path(σ≤τ ) denote the set of trajectories with
common prefix σ≤τ . This set must be measurable for probabilistic model checking
to have meaning and its measure is determined by µ. The exact definition of µ
depends on the structure of the process. Baier et al. [3] provide a definition for
continuous-time Markov chains and Younes [16] discusses the construction of a
probability space for trajectories of stochastic discrete-event systems in general.

2.2 UTSL: The Unified Temporal Stochastic Logic

A stochastic discrete-event system is a triple 〈S, T, µ〉. We assume a factored
representation of S, with a set of state variables SV and a value assignment
function V (s, x) providing the value of x ∈ SV in state s. The domain of x is the
set Dx =

⋃

s∈S V (s, x) of possible values that x can take on. We define the syntax
of UTSL for a factored stochastic discrete-event system M = 〈S, T, µ,SV , V 〉 as

Φ ::= x ∼ v
∣

∣ ¬Φ
∣

∣ Φ ∧ Φ
∣

∣ P⊲⊳ θ[Φ UI Φ] ,

where x ∈ SV , v ∈ Dx, ∼ ∈ {≤, =,≥}, θ ∈ [0, 1], ⊲⊳ ∈ {≤,≥}, and I ⊂ T .
Additional UTSL formulae can be derived in the usual way. For example, ⊥ ≡
(x = v)∧¬(x = v) for some x ∈ SV and v ∈ Dx, ⊤ ≡ ¬⊥, Φ∨Ψ ≡ ¬(¬Φ∧¬Ψ),
Φ → Ψ ≡ ¬Φ ∨ Ψ, and P< θ[ϕ] ≡ ¬P≥ θ[ϕ].

The standard logic operators have their usual meaning. P⊲⊳ θ[ϕ] asserts that
the probability measure over the set of trajectories satisfying the path formula ϕ
is related to θ according to ⊲⊳. Path formulae are constructed using the temporal
path operator UI (“until”). The path formula Φ UI Ψ asserts that Ψ becomes
true t ∈ I time units into the future while Φ holds continuously prior to t. The



4 H̊akan L. S. Younes

validity of a UTSL formula is inductively defined as follows:

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |= x ∼ v if V (sk, x) ∼ v

M, σ≤τ |= ¬Φ if M, σ≤τ |6= Φ

M, σ≤τ |= Φ ∧ Ψ if (M, σ≤τ |= Φ) ∧ (M, σ≤τ |= Ψ)

M, σ≤τ |= P⊲⊳ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ⊲⊳ θ

M, σ, τ |= Φ UI Ψ if ∃t ∈ I.
(

(M, σ≤τ+t |= Ψ)

∧ ∀t′ ∈ T.
(

(t′ < t) → (M, σ≤τ+t′ |= Φ)
))

The semantics of Φ UI Ψ requires that Φ holds continuously, i.e. at every
point in time, along a trajectory until Ψ is satisfied. For Markov chains, it is
sufficient to consider time points at which state transitions occur. The semantics
of UTSL therefore coincides with the semantics for Hansson and Jonsson’s [7]
PCTL interpreted over discrete-time Markov chains and Baier et al.’s [3] CSL
interpreted over continuous-time Markov chains. For non-Markovian models,
however, the validity of Φ or Ψ may vary over time in the same state if these
formulae contain probabilistic operators. Because of this, the statistical solution
method for probabilistic model checking presented in this paper is restricted
to Markov chains for properties with nested probabilistic operators. Without
nesting, the method does not rely on this restriction.

We typically want to know whether a property Φ holds for a model M if
execution starts in a specific state s. A model-checking problem 〈M, s, Φ〉 has an
affirmative answer if and only if M, {s, 0} |= Φ.

2.3 UTSLδ: UTSL with Indifference Regions

Consider the model-checking problem 〈M, s,P⊲⊳ θ[ϕ]〉 and let p be the probability
measure for the set of trajectories that start in s and satisfy ϕ. If p is “sufficiently
close” to θ, then it is likely to make little difference to a user whether or not
P⊲⊳ θ[ϕ] is reported to hold by a model-checking algorithm.

To formalize this idea, we introduce UTSLδ as a relaxation of UTSL. With
each formula of the form P⊲⊳ θ[ϕ], we associate an indifference region centered
around θ with half-width δ. If |p − θ| < δ, then the truth value of P⊲⊳ θ[ϕ] is
undetermined for UTSLδ; otherwise, it is the same as for UTSL.

The formal semantics of UTSLδ is given by a satisfaction relation |≈δ
⊤

and
an unsatisfaction relation |≈δ

⊥
. For standard logic formulae, |≈δ

⊤
replaces |= and

|≈δ
⊥

replaces |6=. For probabilistic formulae we have the following rules:

M, σ≤τ |≈δ
⊤
P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊤
ϕ}) ≥ θ + δ

M, σ≤τ |≈δ
⊥
P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥
ϕ}) ≥ 1 − (θ − δ)

M, σ≤τ |≈δ
⊤
P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊤
ϕ}) ≤ θ − δ

M, σ≤τ |≈δ
⊥
P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥
ϕ}) ≤ 1 − (θ + δ)

A model-checking problem 〈M, s, Φ〉 may very well belong to neither of the two
relations |≈δ

⊤
and |≈δ

⊥
, in which case the problem is considered “too close to call”.
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3 Error Control

This section discusses error control for model-checking algorithms in general
terms. The discussion establishes ideal conditions for the correctness guarantees
of a model-checking algorithm. These conditions are used as a point of refer-
ence in later sections when we discuss error control in practical algorithms for
probabilistic model checking.

Given a model-checking problem 〈M, s, Φ〉 and a model-checking algorithm
A, let M, s ⊢⊤ Φ represent the fact that Φ is accepted as true by A and M, s ⊢⊥

Φ that Φ is rejected as false by A (for the remainder of the paper we will leave out
M from relations for the sake of brevity). Ideally, we would like the probability
to be low that A produces an incorrect answer. More precisely, the probability
of a false negative should be at most α and the probability of a false positive at
most β, as expressed by the following conditions:

Pr[s ⊢⊥ Φ | s |= Φ] ≤ α (2)

Pr[s ⊢⊤ Φ | s |6= Φ] ≤ β (3)

In addition, the probability should be low that A does not produce a definite
answer. Let s ⊢⊥⊤ Φ denote that A is undecided. We add

Pr[s ⊢⊥⊤ Φ] ≤ γ (4)

to represent this requirement. Finally, A should always terminate with one of
the three possible answers (accept, reject, or undecided):

Pr[(s ⊢⊤ Φ) ∨ (s ⊢⊥ Φ) ∨ (s ⊢⊥⊤ Φ)] = 1 (5)

A model-checking algorithm that satisfies (2) through (5) is guaranteed to
produce a correct answer with probability at least 1 − α − γ when Φ holds and
1−β−γ when Φ does not hold. To make these probabilities high, α, β, and γ need
to be low. If all three parameters are zero, then A is a deterministic algorithm
for probabilistic model checking. If both α + γ and β + γ are less than 0.5, but
non-zero, then A is a randomized algorithm for probabilistic model checking.

Unfortunately, it is generally not possible, in practice, to satisfy all four con-
ditions with low values for all three parameters. Next, we will discuss how these
conditions are relaxed by current solution methods, and then we will present a
new statistical solution method based on an alternative relaxation.

4 Current Solution Methods

Current solution methods, both numerical and statistical, can be seen as relying
on a relaxation of (2) and (3) to become tractable. The reference point for error
is changed from UTSL to UTSLδ semantics, replacing (2) and (3) with:

Pr[s ⊢⊥ Φ | s |≈δ
⊤

Φ] ≤ α (6)

Pr[s ⊢⊤ Φ | s |≈δ
⊥

Φ] ≤ β (7)
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4.1 Statistical Hypothesis Testing

The predominant statistical solution method for verifying P⊲⊳ θ[ϕ] in a single
state s is based on statistical hypothesis testing. This method was first proposed
by Younes and Simmons [18] and further refined by Younes [16]. The approach
always produces a definite result (γ = 0). This ensures a high probability of a
correct answer when s |≈δ

⊤
Φ or s |≈δ

⊥
Φ holds.

Let Φ be P≥ θ[ϕ], let p be the probability measure of the set of trajectories
that start in s and satisfy ϕ, and let Xi be Bernoulli variates with Pr[Xi = 1] = p.
To verify Φ we test the hypothesis H0 : p ≥ θ + δ against the alternative
hypothesis H1 : p ≤ θ − δ based on observations of Xi (the result of verifying
ϕ over a sample trajectory starting in s). Note that H0 corresponds to s |≈δ

⊤
Φ

and H1 corresponds to s |≈δ
⊥

Φ. If we take acceptance of H0 to mean acceptance
of Φ as true and acceptance of H1 to mean rejection of Φ as false, then we can
use acceptance sampling to verify Φ. Acceptance sampling is a well-established
technique for statistical hypothesis testing. An acceptance sampling test with
strength 〈α, β〉 guarantees that H1 is accepted with probability at most α when
H0 holds and H0 is accepted with probability at most β when H1 holds. Hence,
we can use such a test to satisfy (6) and (7) for the verification of Φ.

Any acceptance sampling test with the prescribed strength can be used. A
straightforward approach is to use a fixed number of observations x1, . . . , xn of
the Bernoulli variates X1, . . . , Xn and pick a constant c. If

∑n
i=1 xi is greater

than c, then H0 is accepted, otherwise H1 is accepted. The pair 〈n, c〉 is called a
single sampling plan [5]. The sum of n Bernoulli variates with parameter p has
a binomial distribution with cumulative distribution function

F (c; n, p) =
c

∑

i=0

(

n

i

)

pi(1 − p)n−i . (8)

Using a single sampling plan 〈n, c〉 we accept hypothesis H1 with probability
F (c; n, p) and hypothesis H0 with probability 1−F (c; n, p). To achieve strength
〈α, β〉 we need to choose n and c so that F (c; n, θ+δ) ≤ α and 1−F (c; n, θ−δ) ≤
β. For optimal performance we choose n and c so that n is minimized. There
is no closed-form solution for n, in general. Younes [16] describes an algorithm
based on binary search that finds an optimal single sampling plan.

The sample size for a single sampling plan is fixed and therefore independent
of the actual observations made. It is often possible to reduce the expected sam-
ple size required to achieve a desired test strength by taking the observations
into account as they are made. This is called sequential acceptance sampling.
Wald’s [15] sequential probability ratio test (SPRT) is a particularly efficient
sequential test. The reduction in expected sample size, compared to a single
sampling plan, is often substantial, although there is no fixed upper bound on
the sample size. The SPRT is carried out as follows. At the mth stage, i.e. after
making m observations x1, . . . , xm we calculate the quantity

fm =

m
∏

i=1

Pr[Xi = xi | p = p1]

Pr[Xi = xi | p = p0]
=

pdm

1 (1 − p1)
m−dm

pdm

0 (1 − p0)m−dm

, (9)
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where dm =
∑m

i=1 xi. Hypothesis H0 is accepted if fm ≤ β/(1−α), and hypoth-
esis H1 is accepted if fm ≥ (1 − β)/α. Otherwise, additional observations are
made until either termination condition is satisfied.

4.2 Statistical Estimation

An alternative statistical solution method, based on estimation instead of hy-
pothesis testing, has been developed by Lassaigne and Peyronnet [13]. Hérault
et al. [8] provide more details of this approach.

As before, let Φ be P≥ θ[ϕ] and p the probability measure of the set of trajec-
tories that start in s and satisfy ϕ. This approach uses n observations x1, . . . , xn

to compute an estimate of p: p̃ = 1
n

∑n
i=1 xi. The estimate is such that

Pr
[

|p̃ − p| < δ
]

≥ 1 − α . (10)

Using a result derived by Hoeffding [10, Theorem 1], it can be shown that

n =

⌈

1

2δ2
log

2

α

⌉

(11)

is sufficient to satisfy (10). If we accept Φ as true when p̃ ≥ θ and reject Φ as false
otherwise, then it follows from (10) that the answer is correct with probability
at least 1 − α if either s |≈δ

⊤
Φ or s |≈δ

⊥
Φ holds. Consequently, the verification

procedure satisfies (6) and (7) with β = α. As with the solution method based
on hypothesis testing, a definite answer is always generated (γ = 0).

To compare the estimation-based approach with the approach based on hy-
pothesis testing, let c = ⌊nθ + 1⌋ and d = np̃ =

∑n
i=1 xi. It should be clear that

p̃ ≥ θ ⇐⇒ d > c. This means that the estimation-based approach can be in-
terpreted as a single sampling plan 〈n, c〉. It follows that the approach proposed
by Younes and Simmons [18], when using a single sampling plan, will always

be at least as efficient as the estimation-based approach. Typically, it will be
more efficient because: (i) the sample size is derived using the true underlying
distribution, (ii) c is not restricted to be ⌊nθ + 1⌋, and (iii) β 6= α can be ac-
commodated. The last property, in particular, is important when dealing with
conjunctive and nested probabilistic statements. The advantage of hypothesis
testing is demonstrated in Table 1. Note, also, that the SPRT often can be used
to improve efficiency even further for the approach based on hypothesis testing.

4.3 Numerical Transient Analysis

To verify the formula P⊲⊳ θ[ϕ] in some state s we can compute p—the probability
measure of the set of trajectories that start in s and satisfy ϕ—numerically and
test if p ⊲⊳ θ holds.

For time-bounded properties (ϕ = Φ U [0,τ ] Ψ), which are the focus of this
paper, such numerical computation is primarily feasible for Markov chains. Let
M be a continuous-time Markov chain. First, as initially proposed by Baier
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Table 1. Sample sizes for estimation and optimal single sampling plan (δ = 10−2)

θ α β nest nopt nest/nopt

0.5 10−2 10−2 26,492 13,527 1.96
0.5 10−8 10−2 95,570 39,379 2.43
0.5 10−8 10−8 95,570 78,725 1.21
0.9 10−2 10−2 26,492 4,861 5.45
0.9 10−8 10−2 95,570 13,982 6.84
0.9 10−8 10−8 95,570 28,280 3.38

et al. [2], the problem is reduced to transient analysis of a modified Markov
chain M′, where all states in M satisfying ¬Φ ∨ Ψ have been made absorbing.
Now, p is equal to the probability of occupying a state satisfying Ψ at time
τ in model M′. This probability can be computed using a technique called
uniformization, originally proposed by Jensen [11]. Let Q be the generator matrix
of M′, q = maxi −qii, and P = I + Q/q. Then p can be expressed as follows:

p = µ0 ·

∞
∑

k=0

e−q·τ (q · τ)k

k!
Pk · χΨ (12)

Here, µ0 is a 0-1 row vector with a 1 in the column for the initial state s and
χΨ is a 0-1 column vector with a 1 in each row corresponding to a state that
satisfies Ψ.

In practice, the infinite summation in (12) is truncated by using the tech-
niques of Fox and Glynn [6], so that the truncation error is bounded by ǫ. If p̃ is
the computed probability, then p̃ ≤ p ≤ p̃+ǫ. It follows that by accepting P⊲⊳ θ[ϕ]
as true if p̃+ ǫ/2 ⊲⊳ θ and rejecting the formula as false otherwise, the numerical
solution method satisfies (6) and (7) with δ = ǫ/2 and α = β = 0. As with
the statistical solution methods, a definite answer is always given (γ = 0). This
shows that numerical and statistical solution methods for probabilistic model
checking can, indeed, be viewed as solving the same problem, i.e. UTSLδ model
checking rather than UTSL model checking. Statistical solution methods are
truly randomized algorithms for UTSLδ model checking.

When using uniformization to verify P≥ θ[Φ U [0,τ ] Ψ], it is actually possible
to know when we cannot make an informed decision. If we accept the formula
as true when p̃ ≥ θ, reject it as false when p̃ + ǫ < θ, and report “undecided”
otherwise, then (2) and (3) can be satisfied with α = β = 0. This alternative
implementation of the numerical solution method no longer satisfies (4). That
condition is replaced by Pr[s ⊢⊥⊤ Φ | (s |= Φ) ∨ (s |≈δ

⊥
Φ)] = 0, with δ = ǫ, for

P≥ θ[ϕ] without nested probabilistic operators, and

Pr[s ⊢⊥⊤ Φ | (s |≈δ
⊤

Φ) ∨ (s |≈δ
⊥

Φ)] = 0 (13)

for an arbitrary formula Φ. The use of undecided results with numerical methods
for probabilistic model checking has been suggested by Hermanns et al. [9],
although it is not clear if any tool implements this approach. The leading tool for
probabilistic model checking, PRISM [12], does not produce undecided results.
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5 Statistical Solution Method with Undecided Results

Existing statistical solution methods provide no meaningful error bounds if nei-
ther s |≈δ

⊤
Φ nor s |≈δ

⊥
Φ holds. This section presents a new statistical solution

method that satisfies (2) and (3), so whenever a definite result is given the prob-
ability of error is bounded. We accomplish this by allowing an undecided result
with some probability. The goal is to replace (4) with

Pr[s ⊢⊥⊤ Φ | (s |≈δ
⊤

Φ) ∨ (s |≈δ
⊥

Φ)] ≤ γ . (14)

5.1 Probabilistic Operator without Nesting

Let Φ be P≥ θ[ϕ] without nested probabilistic operators (P≤ θ[ϕ] is analogous).
To satisfy (2), (3), and (14) simultaneously using a sample of size n we pick two
constants c0 and c1 such that 0 ≤ c1 < c0 < n and the following conditions hold:

F (c1; n, θ) ≤ α (15)

1 − F (c1; n, θ − δ) ≤ γ (16)

1 − F (c0; n, θ) ≤ β (17)

F (c0; n, θ + δ) ≤ γ (18)

Let d =
∑n

i=1 xi. We accept Φ as true if d > c0, we reject Φ as false if d ≤ c1,
otherwise (c1 < d ≤ c0) the result is undecided.

The procedure just given can be interpreted as using two simultaneous accep-
tance sampling tests. The first is used to tests H⊥

0 : p ≥ θ against H⊥

1 : p ≤ θ− δ
with strength 〈α, γ〉. The second is used to tests H⊤

0 : p ≥ θ+δ against H⊤

1 : p ≤ θ
with strength 〈γ, β〉. H⊤

0 represents acceptance of Φ as true, H⊥

1 represents re-
jection of Φ as false, and the remaining two hypotheses represent an undecided
result. Combining the results from both tests, Φ is accepted as true if both H⊤

0

and H⊥

0 are accepted, Φ is rejected as false if both H⊤

1 and H⊥

1 are accepted,
otherwise the result is undecided. Of course, this means that we do not need to
use hypothesis testing with fixed-size samples. We could use any acceptance sam-
pling plans with the prescribed strengths and combine their results as specified.
In particular, we could use the SPRT to reduce the expected sample size.

Graphical representations of two acceptance sampling tests with undecided
results are shown in Fig. 1 for θ = 0.5, δ = 0.1, α = 0.04, β = 0.08, and γ =
0.1. The horizontal axis represents the number of observations and the vertical
axis represents the number of positive observations. Figure 1(a) represents a
sequential version of a single sampling plan with n = 232, c0 = 128, c1 = 102.
The line dm = 129 is the boundary for acceptance of Φ. There is a line for
rejection of Φ and two lines defining the boundary of the region that represents
an undecided result. Figure 1(b) shows the corresponding decision boundaries
for the SPRT.



10 H̊akan L. S. Younes

m0 50 100 15 0 200 25 0
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0

50

100

15 0
accept Φ

reject Φ

? ?
?

(a) Sequential single sampling plan

m0 50 100 15 0 200 25 0

dm

0

50

100

15 0

accept Φ

reject Φ

? ? ?

(b) SPRT

Fig. 1. Graphical representation of acceptance sampling tests

5.2 Composite Formulae

For a negation ¬Φ we have s ⊢⊥⊤ ¬Φ ⇐⇒ s ⊢⊥⊤ Φ. Hence, if we can satisfy
(14) for Φ, then we have the same bound, γ, on the probability of an undecided
result for the negation of Φ. The roles of α and β are reversed for negation (cf.
Younes and Simmons [18] and Younes [16]).

For a conjunction Φ∧Ψ we get the following general bound on the probability
of an undecided result (see Appendix A for proof):

Pr[s ⊢⊥⊤ Φ ∧ Ψ | (s |≈δ
⊤

Φ ∧ Ψ) ∨ (s |≈δ
⊥

Φ ∧ Ψ)]

≤ max(γΦ + γΨ, γΦ + βΦ, 2γΨ + βΨ) (19)

In practice, the dependence on βΦ and βΨ can be disregarded. We have βΦ in
(19) because Pr[s ⊢⊤ Φ | s |≈δ

⊥
Φ] ≤ Pr[s ⊢⊤ Φ | s |6= Φ] ≤ βΦ (similarly for βΨ),

but Pr[s ⊢⊤ Φ | s |≈δ
⊥

Φ] is typically negligible compared to Pr[s ⊢⊤ Φ | s |6= Φ].
Let γ′ = γΦ = γΨ. Then (19) can, for all practical purposes, be replaced by

Pr[s ⊢⊥⊤ Φ ∧ Ψ | (s |≈δ
⊤

Φ ∧ Ψ) ∨ (s |≈δ
⊥

Φ ∧ Ψ)] ≤ 2γ′ . (20)

Consequently, if we want to ensure at most a γ probability of an undecided result
for Φ ∧ Ψ, and we use the same bound for both conjuncts, then we can use γ/2
when verifying Φ and Ψ. For a conjunction of size n, the symmetric bound for
each conjunct could be set to γ/n.

To satisfy (2) we should choose αΦ and αΨ such that αΦ+αΨ ≤ α (cf. Younes
and Simmons [18]1):

Pr[(s ⊢⊥ Φ) ∨ (s ⊢⊥ Ψ) | (s |= Φ) ∧ (s |= Ψ)]

≤ Pr[s ⊢⊥ Φ | s |= Φ] + Pr[s ⊢⊥ Ψ | s |= Ψ] ≤ αΦ + αΨ (21)

1 Younes [16] gives the bound min(αΦ, αΨ), but this is a bound only for each individual

way of rejecting a conjunction as false. The result due to Younes and Simmons [18]
and reproduced here bounds the probability of rejecting a conjunction in any way.
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Similar to γ, we can use α/n when verifying the parts of a conjunction of size
n. Unlike γ, however, this does not involve any approximation. To satisfy (3), it
suffices to use the same error bound, β, for the individual conjuncts:

Pr[(s ⊢⊤ Φ) ∧ (s ⊢⊤ Ψ) | (s |6= Φ) ∨ (s |6= Ψ)]

≤ max(Pr[s ⊢⊤ Φ | s |6= Φ], Pr[s ⊢⊤ Ψ | s |6= Ψ]) ≤ max(βΦ, βΨ) (22)

5.3 Nested Probabilistic Statements

We use acceptance sampling to verify probabilistic statements. The observations
that are used by the acceptance sampling test correspond to the verification of a
path formula, ϕ, over sample trajectories. If ϕ contains probabilistic statements,
then the observations may be incorrect or undecided. We assume that ϕ can be
verified with parameters αϕ, βϕ, and γϕ. This can be accomplished by treating
the path formula as a large disjunction of conjunctions, as described by Younes
and Simmons [18, p. 231] and Younes [16, p. 78].

It remains to show how to use the verification results for ϕ to verify a proba-
bilistic statement, Φ = P≥ θ[ϕ], so that (2), (3), and (14) are satisfied. This can
be accomplished by a single sampling plan with n, c0, and c1 chosen to satisfy
the following conditions (see Appendix B for proof):

F (c1; n, θ(1 − αϕ)) ≤ α (23)

1 − F (c1; n, (θ − δ) + (1 − (θ − δ))(1 − γϕ − βϕ)) ≤ γ (24)

1 − F (c0; n, θ + (1 − θ)βϕ) ≤ β (25)

F (c0; n, (θ + δ)(1 − γϕ − αϕ)) ≤ γ (26)

This assumes that Φ is accepted as true when more than c0 positive observations
are made, Φ is rejected as false when at most c1 observations are non-positive
(i.e., negative or undecided), and the result is undecided otherwise.

Compared to (15) through (18) for acceptance sampling without nested prob-
abilistic operators, the only difference is that the probability thresholds have
been modified. The indifference regions of the two acceptance sampling tests
have been made narrower to account for the possibility of erroneous or unde-
cided observations. We can use the same modification with the SPRT.

It should be noted that αϕ, βϕ and γϕ can be chosen independently of α, β,
and γ. The choice of parameters for the verification of ϕ is restricted only by
the following conditions:

(θ − δ) + (1 − (θ − δ))(1 − γϕ − βϕ) < θ(1 − αϕ) (27)

θ + (1 − θ)βϕ < (θ + δ)(1 − γϕ − αϕ) (28)

The choice of αϕ, βϕ, and γϕ can have a significant impact on performance
(cf. the discussion by Younes [16] regarding the impact of observation error on
performance for the standard statistical solution method).
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6 Complexity of Statistical Solution Methods

The time complexity of any statistical solution method for probabilistic model
checking can be understood in terms of two main factors: the sample size and
the length of sample trajectories. The sample size depends on the method used
for verifying probabilistic statements and the desired strength. The length of
trajectories depends on model characteristics and the property that is being
verified. An additional factor is simulation effort, which can be both model and
implementation dependent.

Consider the formula P⊲⊳ θ[Φ U [0,τ ] Ψ] without nested probabilistic operators.
Let q be the expected number of state transitions per time unit, let m be the
simulation effort per state transition, and let N be the sample size. The time
complexity of statistical probabilistic model checking for the given formula is
O(q · τ · m · N). The sample size, N , is the only factor that varies between
different statistical solution methods, regardless of implementation details.

If we use a single sampling plan with strength 〈α, β〉 and indifference region
of half-width δ, then N is roughly proportional to logα and log β and inversely
proportional to δ2 [16, p. 23]. We have shown in this paper that the approach
based on statistical estimation described by Hérault et al. [8] never uses a smaller
sample size than a single sampling plan, given the same parameters, and often
uses a much larger sample size. Using the SPRT instead of a single sampling
plan can reduce the expected sample size by orders of magnitude in most cases,
although the SPRT is not guaranteed always to be more efficient (this is well
known in the statistics literature; Younes [16] provides examples of this in the
context of model checking). The new statistical approach presented in this paper,
which can produce undecided results, has the same time complexity as the old
statistical solution method. Given the same α, β, and δ, the new method will
require a larger sample size because it is based on acceptance sampling with
indifference regions of half-width δ/2, instead of δ for the old method.

Results presented by Sen et al. [14] make it seem as if single sampling plans
consistently outperform the SPRT, but this is due to poorly designed experi-
ments. Sen et al. manually selected the sample sizes for their single sampling
plans, guided by a desire to achieve a low p-value (K. Sen, personal communi-
cation, May 20, 2004). The selected sample sizes are not sufficient, however, to
achieve the same strength as used to produce the results for the SPRT reported
by Younes et al. [17], on which they base their comparison. All their empirical
evaluation really proves is that a smaller sample size results in shorter verifica-
tion time—which should surprise no one—but the casual reader may be misled
into believing that Sen et al. have devised a novel statistical solution method.

7 Empirical Evaluation

The performance of our new statistical solution method is similar to that of the
previous statistical solution method, which has been studied by Younes et al. [17].
We limit the empirical evaluation in this paper to a brief study of the effect that
the parameter γ has on performance.



Error Control for Probabilistic Model Checking 13

Figure 2 plots the expected sample size, as a function of the (unknown) proba-
bility p that a path formula holds, for the SPRT and a sequential single sampling
plan (SSSP) with different parameter choices (θ = 0.5, δ = 0.1, α∆ = 0.004,
α∇ = 0.04, β∆ = 0.008, β∇ = 0.08, γ∆ = 0.01, and γ∇ = 0.1). The expected
sample size is low outside of the indifference region (gray area), especially for the
SPRT, and peaks in the indifference region. Note the drop in expected sample
size at the threshold θ where an undecided result is given with high probability.
The expected sample size, as a function of p, will be similar for other param-
eter values, with the SPRT almost always outperforming a (sequential) single
sampling plan by a wide margin.
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N
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200
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400

500

600

700

800 SSSP
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Fig. 2. Expected sample size

τ14 14.1 14. 2 14. 3 14. 4 14. 5

t (s )

0

5

10

15

20 γ = 10−2

γ = 0

Fig. 3. Verification time

Now, consider the model-checking problem for an n-station symmetric polling
system used by Younes et al. [17]. Each station has a single-message buffer and
the stations are attended by a single server in cyclic order. The server begins by
polling station 1. If there is a message in the buffer of station 1, the server starts
serving that station. Once station i has been served, or if there is no message at
station i when it is polled, the server starts polling station i+1 (or 1 if i = n). We
verify the property m1=1 → P≥ 0.5[⊤ U [0,τ ] poll1], which states that if station 1
is full, then it is polled within τ time units with probability at least 0.5. We do
so in the state where station 1 has just been polled and all buffers are full.

Figure 3 plots the verification time for the symmetric polling system problem
(n = 10), as a function of the formula time bound τ , averaged over 100 runs. The
plot shows the verification time for the new solution method with γ = 10−2 (solid
curve) and the old solution method without undecided results (dashed curve);
2δ = 10−2 and α = β = 10−2 in both cases. The verification time is lower
for the standard statistical solution method, but it produces more erroneous
results. Table 2 shows the number of times a certain result is produced for seven
different values of τ . The new statistical solution method does not produce an
erroneous result in any of the experiments, while the error probability is high for
the standard statistical solution method for values of τ close to 14.251 (where
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the value of the verified property goes from false to true). Higher reliability in
the results are obtained at the cost of efficiency.

Table 2. Result distribution with (bottom) and without (top) undecided results

result 14.10 14.15 14.20 14.25 14.30 14.35 14.40

accept 0 3 9 50 88 97 100
reject 100 97 91 50 12 3 0

accept 0 0 0 0 32 99 100
reject 100 99 42 1 0 0 0
undecided 0 1 58 99 68 1 0

8 Discussion

We have presented a framework for expressing correctness guarantees of model-
checking algorithms. Using this framework, we have shown how current solution
methods for probabilistic model checking are related. In particular, we have
shown that Younes and Simmons’ [18] statistical solution method based on hy-
pothesis testing has clear benefits over Hérault et al.’s [8] estimation-based ap-
proach, and that numerical and statistical solution methods can be interpreted
as solving the same relaxed model-checking problems. In addition, we have pre-
sented a new statistical solution method that bounds the probability of error
under all circumstances. This is accomplished by permitting undecided results,
and we have shown how to guarantee bounds for the probability of getting an
undecided result for any formula.
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A Proof: Conjunction

For a conjunction Φ∧Ψ, there are two ways to get an undecided result: (i) s ⊢⊥⊤ Φ
and s 6⊢⊥ Ψ; (ii) s ⊢⊤ Φ and s ⊢⊥⊤ Ψ. We can bound the probability of each case
occurring, given that s |≈δ

⊤
Φ ∧ Ψ, s |≈δ

⊥
Φ, or s |≈δ

⊥
Ψ holds:

Pr[(s ⊢⊥⊤ Φ) ∧ (s 6⊢⊥ Ψ) | (s |≈δ
⊤

Φ) ∧ (s |≈δ
⊤

Ψ)]

≤ min(Pr[s ⊢⊥⊤ Φ | s |≈δ
⊤

Φ], Pr[s 6⊢⊥ Ψ | s |≈δ
⊤

Ψ]) ≤ min(γΦ, 1) = γΦ (29)

Pr[(s ⊢⊤ Φ) ∧ (s ⊢⊥⊤ Ψ) | (s |≈δ
⊤

Φ) ∧ (s |≈δ
⊤

Ψ)]

≤ min(Pr[s ⊢⊤ Φ | s |≈δ
⊤

Φ], Pr[s ⊢⊥⊤ Ψ | s |≈δ
⊤

Ψ]) ≤ min(1, γΨ) = γΨ (30)

Pr[(s ⊢⊥⊤ Φ) ∧ (s 6⊢⊥ Ψ) | s |≈δ
⊥

Φ]

≤ min(Pr[s ⊢⊥⊤ Φ | s |≈δ
⊥

Φ], Pr[s 6⊢⊥ Ψ]) ≤ min(γΦ, 1) = γΦ (31)

Pr[(s ⊢⊤ Φ) ∧ (s ⊢⊥⊤ Ψ) | s |≈δ
⊥

Φ]

≤ min(Pr[s ⊢⊤ Φ | s |≈δ
⊥

Φ], Pr[s ⊢⊥⊤ Ψ]) ≤ min(βΦ, 1) = βΦ (32)

Pr[(s ⊢⊥⊤ Φ) ∧ (s 6⊢⊥ Ψ) | s |≈δ
⊥

Ψ]

≤ min(Pr[s ⊢⊥⊤ Φ], Pr[s 6⊢⊥ Ψ | s |≈δ
⊥

Ψ]) ≤ γΨ + βΨ (33)

Pr[(s ⊢⊤ Φ) ∧ (s ⊢⊥⊤ Ψ) | s |≈δ
⊥

Ψ]

≤ min(Pr[s ⊢⊤ Φ], Pr[s ⊢⊥⊤ Ψ | s |≈δ
⊥

Ψ]) ≤ γΨ (34)

Combining (29) and (30), (31) and (32), and (33) and (34) gives us:

Pr[s ⊢⊥⊤ Φ ∧ Ψ | (s |≈δ
⊤

Φ) ∧ (s |≈δ
⊤

Ψ)] ≤ γΦ + γΨ (35)

Pr[s ⊢⊥⊤ Φ ∧ Ψ | s |≈δ
⊥

Φ] ≤ γΦ + βΦ (36)

Pr[s ⊢⊥⊤ Φ ∧ Ψ | s |≈δ
⊥

Ψ] ≤ 2γΨ + βΨ (37)

By taking the maximum of (35) through (37) we get (19). ⊓⊔

B Proof: Nested Probabilistic Statements

Let Xi, Yi, Ẑi, and Ži be random variables such that, for any sample trajectory
σ, we have the following:

Xi = 1 ⇐⇒ σ, τ |= ϕ Yi = 1 ⇐⇒ σ, τ |≈δ
⊤

ϕ

Xi = 0 ⇐⇒ σ, τ |6= ϕ Yi = 0 ⇐⇒ σ, τ |≈δ
⊥

ϕ

Ẑi = 1 ⇐⇒ σ, τ 6⊢⊥ ϕ Ži = 1 ⇐⇒ σ, τ ⊢⊤ ϕ

Ẑi = 0 ⇐⇒ σ, τ ⊢⊥ ϕ Ži = 0 ⇐⇒ σ, τ 6⊢⊤ ϕ
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Note that all but Yi are Bernoulli variates. If we verify ϕ over σ with parameters
αϕ, βϕ, and γϕ, then the following conditions are guaranteed to hold:

Pr[Ẑi = 0 | Xi = 1] ≤ αϕ (38)

Pr[Ži = 1 | Xi = 0] ≤ βϕ (39)

Pr[Ẑi = 1 | Yi = 0] ≤ γϕ + βϕ (40)

Pr[Ži = 0 | Yi = 1] ≤ γϕ + αϕ (41)

Let Pr[Xi = 1] = p, Pr[Yi = 1] = p⊤, and Pr[Yi = 0] = p⊥. From (38) through
(41) and the formula of total probability we can derive the following bounds:

p(1 − αϕ) ≤ Pr[Ẑi] ≤ 1 − p⊥(1 − γϕ − βϕ) (42)

p⊤(1 − γϕ − αϕ) ≤ Pr[Ži] ≤ p + (1 − p)βϕ (43)

Let ži denote an observation of Ži and ẑi an observation of Ẑi. Given the sample
ž1, . . . , žn, ẑ1, . . . , ẑn, compute ď =

∑n
i=1 ži and d̂ =

∑n
i=1 ẑi. The probabilistic

formula Φ = P≥ θ[ϕ] is accepted as true in state s if ď > c0, Φ is rejected as false

in s if d̂ ≤ c1, and the result is undecided otherwise.
Let Pr[Ẑi = 1] = p̂ and Pr[Ži = 1] = p̌. The probability of rejection is

F (c1; n, p̂). Since F (c; n, p) is a non-increasing function of p in the interval [0, 1],
we have F (c1; n, p̂) ≤ F (c1; n, p(1− αϕ)). The probability of rejection should be
at most α when p ≥ θ, which gives us (23).

The probability of acceptance is 1−F (c0; n, p̌). This is at most 1−F (c0; n, p+
(1−p)βϕ). The probability of acceptance should be at most β when p < θ, which
gives us (25).

Next, we have 1−F (c1; n, p̂) ≤ 1−F (c1; n, 1−p⊥(1−γϕ −βϕ)). This should
be at most γ when p⊥ ≥ 1 − (θ − δ), which gives us (24).

Finally, we have F (c0; n, p̌) ≤ F (c0; n, p⊤(1 − γϕ − αϕ)). This should be at
most γ when p⊤ ≥ θ + δ, which gives us (26). ⊓⊔




