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Abstract 

The adaptability and parallel computing capabilities of neural networks make them specially 
adequate for error correcting tasks. Feed forward neural networks for soft-decision decoding of 
block codes in channels with additive white gaussian noise are presented. When the noise is not 
white, we deduce the optimal set of weights for the connections of the network. These weights 
are also approximately obtain by an error back propagation algorithm. A practical realization 
for a BCH (7,4) code is presented, and exhaustive numerical simulations are performed on it. 

1. Introduction 

A very promising field of application of neural networks is the area of error correction 
in digital communications, where many parallel calculations have to be performed and 
high computational speeds are required [l]. At the same time, the flexibility and learning 
capabilities of neural networks allows them to efficiently operate in real complex situations, 
where some of the simplifying assumptions of standard decoding techniques are not h u e d .  

Neural network have already been used as decoders of block codes [2,3]. Their adapt- 
ability has been employed to correct an imperfect functioning of the syncronization mech- 
anism of the demodulator [4]. 

In the next section, we will review the main features of error correcting codes and 
standard decoding techniques. In the third section, we will describe how to construct a 
neural network for decoding in additive white gaussian channels and show its performance 
for the BCH (7,4) code. In the fourth section, we will explain how to modify the network to 
operate in a correlated gaussian channel and present its error bit probability as a function 
of the correlations. 
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2. Background on error correcting systems 

The aim of error-correcting digital systems is to reliably transmit information over a 
channel, which is always corrupted by noise. At the origin, an encoder introduces a certain 
amount of redundancy which makes possible to retrieve the original information up to a 
given degree of distortion of the message, that depends on the code used. 

In a binary (n ,  k) block code, n bits are sent for each k bits of information. There are 
2k possible messages per block, each of them corresponding to a specific combination of 
n bits, called a codeword. This correspondence depends on the particular code used, but 
not on previous messages. 

Neural networks can be applied to basically all types of codes. Here we will use them 
with the BCH (7,4) code [5]. With this code, an information message of 4 bits (al, a2, a3, a4) 
is sent as the following 7 bits sequence (al, a2, a1 @ a3, a1 @ a2 @ a4, a2 61 a3, a3 @ a4, u4), 
where @ indicates modulo-2 addition. There are 2k = 16 codewords. 

For the sake of simplicity, we assume a binary source that is sending a codified set of 
signals s!’) taking values +$ and -$ (corresponding to 0 and 1). The index j denotes 
which of the possible 2k codewords has been sent, and the index i refers to the position of 
the bit within a word. For the BCH (7,4) code, j will run from 1 to 16, and i from 1 to 7. 
We consider that the distortion in the channel can be adequately simulated by an additive 
gaussian noise n;,  with zero mean and variance a2. The demodulator, in the so-called 
soft-decision techniques, passes to the decoder the unquantized variables zi = sy) + ni. 

If the gaussian noise is white, the different ni are uncorrelated. Nonetheless, the 
different bits of each block are implicitly correlated through the codification process. One 
has to decide block by block which message is more likely to have been sent. 

The probability that the j-th codeword was emitted, given the received set of signals 
zi, is proportional to the product [5]: 

This is true provided that all the a priori probabilities that a codeword is sent are the 
same. 

Instead of maximizing the previous product, we can maximize the exponent. Taking 
into account that lsij)12 (= f )  and ln;I2 are independent of j ,  we conclude that the most 
likely j is the one that maximizes the function: 

The decoding technique based on this maximization procedure is called mazimum likelihood 
decoding (MLD). In the next section, we will see how to implement this procedure with 
neural networks. 
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3. Neural networks as decoders 

The parallel computing capabilities of neural networks makes them specially suitable 
for decoding. If the length of the message k is not too long, the neural network can directly 
perform the calculations involved in MLD, equation (2). 

In Sgure 1 we show a feed forward neural network that implements the MLD algorithm 
for the BCH (7,4) code. The seven (n, in general) zi  values of each word are fed into the 
seven input nodes of the network. There are 2k (24 = 16, in our case) intermediate neurons, 
each of them corresponding to a codeword. The final 4 neurons represent the k information 
bits of the block considered. 
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Figure 1: Error correcting neural network for the BCH (7,4) code 

The idea is that if there is no error in the received message, or if this is smalI enough 
to be corrected by the code, the intermediate neuron corresponding to the right j will be 
the only activated one in the intermediate layer. This neuron will in turn activates the 
right bits at the output. 

The weights of the connections between the initial and the intermediate layers have 
to be chosen in such a way that the input values of the neurons in the intermediate layer 
are proportional to the Li’s, given by equation (2). As the sy) are equal to either +# or -+ , we choose: 

wi,j = 2 s y  (3) 

Namely, the weight between the i input neuron and the j intermediate one is either +1 or 
-1, according to whether the i bit of the j codeword is 1 or 0. In figure 1 we represent the 
weights +1 with solid lines and the -1 with dashed lines. The 5th codeword, for example, 
is equal to 0101100. 

If the set of intermediates neurons plays a winner-takes-all strategy, the network is 
strictly equivalent to an MLD device. Thus, the network decodifies aa best as possible, 
for white gaussian noise. In figure 2 we show (solid line) the bit error probability, f i ,  as 



a function of the signal to noise level, E/N, measured in decibels. This level is equal to 
N = -1010g(8a2), for the signals used. 

We have also used 'ordinary' neurons, for the intermediate layer, with a sigmoidtal 
response function [7] 

(4) 
1 

h ( 4  = 1 + e--ar 

with exponent cy = 4. We adjust the values of the thresholds 8 with an error back 
propagation learning algorithm, obtaining 0 = 5.3. The performance of this network is 
quite remarkable. The results achieved are basically indistinguishable from MLD, in the 
scale of figure 2. For example, for a signal to noise level of 3 dB, we obtain a bit error 
probability of 0.00086 with MLD and of 0.00087 with this neural network. 
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Figure 2: Bit error probability as a function of the signal to noise level 

The topology of the network and the values of the weights are given by the structure 
of the code employed [8]. No learning is required for decoding under the same simplifying 
assumptions as standard error correcting techniques. Although for real channels, with other 
types of noise or intersymbol interference, for example, we can improve the performance 
of the network through learning. 

4. Gaussian noise with memory 

The use of neural networks for error correction is really advantageous in the case 
of complex situations, where some of the simplifying assumptions of standard decoding 
techniques are not fulfilled. In these situations, it is often difficult, or even unfeasible, to 
analyze and/or to implement the modifications needed to handle the mentioned complex- 
ities. However, neural networks can adjust by themselves to such situations due to their 
flexibility and learning capabilities. 

In order to show this, we have applied our previous neural network to a cannel with 
additive gaussian noise with a non-uniform power spectrum. In this case, the values of the 
noise in different time intervals, ni, are correlated random variables. Their joint probability 
distribution function is the jointly gaussian distribution. Assuming correlations between 
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nearest neighbor time intervals only, this is proportional to [6] 
2 2  n: - 2pnlnz + (1 + p2)ni - e - .  + (I + p )nN-l - 2PN-lnN + nk [- %2(1- p') 

where! N is the total number of bits sent, o2 is the variance of the ni, and p is the cov8si~sce 
between successive signals. 

We will neglect correlations between the noise corresponding to different blocks. Ex- 
pression (5) will refer then to each block separately and N will be substituted by n, the 
length of the block. We have to substitute ni = 2; - sy) in equation (5) and maximize 
with respect to j .  As in the previous section, we maximize the exponent d equation (5), 
instead of the whole expression, and t h u g h  away the terms independent of j .  The final 
quantity to be maximize is: 

n-1 n-1 

S: - 22191 + C(l+ P')(S; - 22isi) + ~f - 22nsn - 2p C ( s i S i + l  - ~ i ~ i + l  - zi+lsi) (6) 
i=2 i=l 

To implement the previous maximization procedure, we change the weights of the 
connections between the initial and the intermediate layers according to equation (6): the 
weight between input neuron i and intermediate neuron j is the factor multiplying zj in 
this equation, which is a function of j .  An extra initial neuron (with a fixed unitary input) 
is introduced to take into account the terms not containing any ai. 

We simulate a channel numerically, adding to the sequence of bits sent a correlated 
gaussian random variable. The correlation coacient p is varied between 0 and 0.7, keeping 
U' fixed. In figure 3 we plot the error bit probability versus p (for Q = 0.25) for both the 
original network, with no modifications to take into account correlations, (upper curve) 
and the new network with weights according to equation (6) (lower curve). The runs are 
over 1000000 information bits. 
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Figure 3: Bit error probability versus the noise correlation coefficient 

We can notice the drastic deterioration of the error correcting capabilities of standard 
decoding techniques (equivalent to our original network) in the presence of noise correla- 
tions and the huge improvements obtained with our modified network. The results of the 
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latter are even better than in the absence of correlations. This is not contradictory since 
we have some extra knowledge of the noise in the presence of correlations. 

We have also used an standard error back propagation learning algorithm to adjust 
the network to the presence of noise correlations. Starting from the original network, we 
change the weights of the connections between the input and intermediate layers. The 
network learns for 10000000 information bits and then its performance is evaluated with a 
new sequence of 1000000 bits. The results for the bit error probability are shown in figure 
3 (dashed line). 

In the learning process, the network steadily improves its performance up to the values 
shown in the dashed curve of the figure. They are reached after the system have learnt for 
about 5000000 bits. The performance oscillates with further learning and the ideal values 
of the error probability are never reached. Nevertheless, the difference between the ideal 
values and those obtained with the learning process is fairly small. 

5. Conclusions 

Neural networks are very suitable for the field of error correction in digital transmis- 
sion systems, due to their high computational speeds. Their basic topology and weights, 
for standard decoding, are given by the structure of the code employed. Their learning 
capability convert them in the natural choice for decoding in complex situations, such as 
incoherent demodulation, correlated noise, intersymbol interference, etc.. . 
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