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ABSTRACT The error-correction code proof-of-work (ECCPoW) algorithm is based on a low-density 
parity-check (LDPC) code. ECCPoW can impede the advent of mining application-specific integrated cir-
cuits (ASICs) with its time-varying puzzle generation capability. Previous research studies on the ECCPoW 
algorithm have presented its theory and implementation on Bitcoin. In this study, we have not only de-
signed ECCPoW for Ethereum, called ETH-ECC, but have also implemented, simulated, and validated it. 
In the implementation, we have explained how the ECCPoW algorithm has been integrated into Ethereum 
1.0 as a new consensus algorithm. Furthermore, we have devised and implemented a new method for con-
trolling the difficulty level in ETH-ECC. In the simulation, we have tested the performance of ETH-ECC 
using a large number of node tests and demonstrated that the ECCPoW Ethereum works well with automat-
ic difficulty-level change capability in real-world experimental settings. In addition, we discuss how stable 
the block generation time (BGT) of ETH-ECC is. Specifically, one key issue we intend to investigate is the 
finiteness of the mean of ETH-ECC BGT. Owing to a time-varying cryptographic puzzle generation system 
in the ECCPoW algorithm, the BGT in the algorithm may lead to a long-tailed distribution. Thus, simula-
tion tests have been performed to determine whether the BGT distribution is heavy-tailed and has a finite 
mean. If the distribution is heavy-tailed, transaction confirmation cannot be guaranteed. In the validation, 
we have presented statistical analysis results based on the two-sample Anderson–Darling test and discussed 
how the BGT distribution satisfies the necessary to be considered an exponential distribution. Our imple-
mentation is available for download at https://github.com/cryptoecc/ETH-ECC. 

INDEX TERMS Anderson–Darling test, ASIC-resistant, Blockchain, Error-correction codes, Ethereum, 
Hypothesis test, LDPC, Proof-of-work, Simulation, Statistical analysis 

I. INTRODUCTION 

Blockchain is a peer-to-peer (P2P) network that consists of 
trustless nodes. In a reliable P2P network, no peers (nodes) 
would intentionally send wrong information to others. In 
contrast, in an unreliable P2P network (e.g., a group of 
trustless nodes), the possibility that some peers may send 
false information to others should be considered. For 
example, a node may spread wrong or fake information to 
others. To address these issues in an unreliable P2P network, 
Nakamoto proposed using blocks and chaining these blocks 
with a novel consensus algorithm [1].  

In a blockchain, a peer sends a new block containing 
transactions to other peers. These peers validate the received 
block and link it to the previous block when there is no prob-

lem in the received block, i.e., when the authenticity of the 
block has been verified. A consensus algorithm is used to 
accomplish this verification process. If a peer has sent false 
information to others, such information is detected by the 
consensus algorithm as there is no collusion among the peers. 
A generated block contains information about previous 
blocks, i.e., all blocks are chained; thus, if someone wants to 
change one block in a chain, all previous blocks of the block 
to be changed must also be changed. Therefore, unless the 
network is centralized within a particular group, sending fake 
information about previous blocks to new peers is impossible. 
Therefore, to prevent collusion, an unreliable network should 
avoid centralization. 
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Nakamoto proposed a proof-of-work (PoW) system for a 
consensus algorithm. In the PoW system, peers repeat a type 
of work to solve a cryptographic puzzle using a hash function 
(e.g., SHA256 [1] and Keccak [2]). When a peer successfully 
solves a cryptographic puzzle, the peer generates a block. In 
addition, the peer gets an incentive as a reward for the work 
done. In an ideal PoW system, new nodes can join to work 
and receive as much reward as they completed work. How-
ever, with an increase in the price of reward, attempts have 
been made to centralize the network to monopolize incen-
tives.  

Centralization is a phenomenon that occurs in PoW-based 
blockchain networks. In blockchains using PoW as a consen-
sus algorithm, an oligarchy of miners with a disproportionate 
share of computation resources can monopolize block gener-
ation. Such centralization negatively impacts the credibility 
of a blockchain. For example, in a centralized network, a 
group of dominant nodes can selectively filter out some 
transactions belonging to others for their benefit. New nodes 
will find it difficult to earn trust and join the network in the 
fear of possible unfair treatment [3], [4].  

The emergence of application-specific integrated circuits 
(ASICs) has accelerated the centralization of PoW. As more 
nodes use ASICs in generating blocks, the computation com-
plexity in block generation increases. Thus, it has become 
difficult to generate blocks using general-purpose units, such 
as a central processing unit (CPU) and a graphics processing 
unit (GPU). As a result, a few groups equipped with power-
ful ASICs have surfaced and centralized the blockchain net-
works. To avoid centralization, researchers have proposed 
the use of ASIC-resistant PoW (e.g., Ethash of [2], X11 of 
[12], and Random X of [24]) and alternative consensus algo-
rithms (e.g., proof-of-stake, delegated proof-of-stake, and 
Byzantium fault tolerance [25]). Networks using alternative 
algorithms have presented lesser decentralization effects than 
those have using ASIC-resistant PoW [25]. Specifically, in 
networks using alternative algorithms, only limited partici-
pants can generate blocks, but ASIC-resistant PoW has no 
limit on the number of participants. Thus, ASIC-resistant 
PoW presents a more decentralized network than do alterna-
tive algorithms. 

For an ASIC-resistant PoW, an error-correction code 
proof-of-work (ECCPoW) algorithm was proposed [6], [7]. 
In ECCPoW algorithms, a hash value of a previous block 
generates a varying parity-check matrix (PCM) for error 
correction. This varying PCM works as a cryptographic 
puzzle in ECCPoW. These time-varying cryptographic puz-
zles make ECCPoW ASIC resistant. It is possible to use an 
ASIC for a specific cryptographic puzzle. In ECCPoW, 
every newly created puzzle differs from all previously cre-
ated puzzles. As a result, if there is an ASIC for ECCPoW, 
such an ASIC must cover a wide range of cryptographic 
puzzle generation systems. Such a system, however, would 
incur huge chip space and cost [10], [11]. 

In [7], the authors have reported that the time-varying 
puzzle system may generate large block generation time 

(BGT), i.e., outliers, for ECCPoW implemented on Bitcoin. 
If outliers occur frequently, it is of interest in this study to 
see the distribution of BGT may be heavy-tailed with an 
infinite mean [15], [26]. As a result, the definition of [6] 
that BGT has a finite mean needs to be challenged. Previ-
ous works on ECCPoW [6], [7] did not include sufficient 
real-world experiments to conclude that BGT has a finite 
mean. If BGT does not have a finite mean, ECCPoW can-
not be used as an Ethereum consensus algorithm. Therefore, 
in this study, we study the distribution of BGT of ECCPoW 
implemented on Ethereum (ETH-ECC). Our experimental 
results show that the BGT distribution is not heavy-tailed 
and has a finite mean. 

The contributions of our work are as follows: • We show how ECCPoW is implemented on Ethereum. • We present a method for controlling the difficulty lev-
el in ETH-ECC and report the results of automatic dif-
ficulty level change with real-world experiments of 
ETH-ECC. • We present a goodness-of-fit result using the Ander-
son–Darling (AD) test for distribution validation and 

FIGURE 1. Flowchart of ECCPoW Ethereum. Every miner who gener-
ates blocks can construct a parity check matrix using a previous hash 
value. A generated nonce becomes an input of a hash function. A hash 
vector used for decoding can be generated using the output of a hash 
function. If decoding is successful, the block is generated; otherwise, a 
miner generates a new nonce to make a new hash vector for decoding. 
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discuss the necessary condition that the BGT distribu-
tion of ETH-ECC follows the exponential distribution. 

The remainder of this paper is organized as follows. Section 
II provides a background of the requirements of an ASIC-
resistant PoW. Section III demonstrates the implementation 
of ETH-ECC. Section IV discusses the formulation of the 
problem. Section V provides the experimental result of the 
implementation of ETH-ECC. Finally, Section VI summa-
rizes our work and concludes the paper. 

II. Background 

We introduce three approaches that can be used to avoid 
centralization problems in PoW. The first is an intentional 
bottleneck between an arithmetic logic unit (ALU) and 
memory, which is used by Ethash of Ethereum [2], [5]. It is 
also termed a memory-hard technique. The second is the 
high complexity of ASIC design used by Dash [12], Raven 
[13], and our method, ECCPoW. The third is hybrid meth-

ods of two methods; Random X of Monero uses hybrid 

methods [24]. 

A. INTENTIONAL BOTTLENECK 

The most known PoW of the intentional bottleneck is 
Ethash of Ethereum [2], [5]. This method uses the differ-
ence between the throughput of ALU and the bandwidth of 
the memory. If there is a bottleneck between the ALU and 
memory, it is impossible to use the entire throughput of 
ALU. Specifically, if a miner needs to obtain data from 
memory to generate a block, the number of block genera-
tion attempts is determined by memory bandwidth. Ethash 
uses a directed acyclic graph (DAG), which is a set of ran-
domly generated data for the bottleneck. The DAG is a 
huge dataset that cannot be stored in a cache memory; 
therefore, the DAG is stored in memory. To generate a 
block using Ethash, a miner must mix a part of the DAG 
that is stored in the memory. Owing to this procedure, the 
miner cannot avoid the bottleneck because of limited 
memory bandwidth. This method has been ASIC resistant 
for a long time; however, Bitmain released ASIC for Ethash 
in 2018. 

B. HIGH COMPLEXITY OF ASIC DESIGN 

Because of the high complexity of ASIC design, ASICs are 
less efficient. For example, if ASICs are less efficient than 
a general-purpose unit such as CPU or GPU, there is no 
reason to design ASIC. X11 of Dash [12] and X16R of Ra-
ven [13] use this method. Unlike PoW of Bitcoin, which 
uses only one hash function (SHA-256), X11 uses 11 hash 
functions consecutively: BLAKE, BMW, Grosetl, JH, 
Keccak, Skein, Luffa, Cubehash, SHAvite-3, SIMD, and 
ECHO. The BLAKE, which is the first hash function of 
X11, uses a block header with nonce as inputs; its output 
becomes the input of the next hash function. Similarly, the 
next hash function uses the output of the previous hash 
function. This procedure is repeated until a result is ob-
tained for the last hash function. Miners determine whether 

they have found a valid nonce using the output of the final 
hash function. 

Designing an ASIC for X11 was expensive; therefore, 
X11 was ASIC resistant. However, Bitmain released an 
ASIC for X11 in 2016. There are a few PoW algorithms 
that extend X11 (e.g., X13, X14, and X15); however, the 
ASICs for these have been released. X16R of Raven is an 
extended version of X11 of Dash. In X16R, unlike the pre-
vious extension of X11, the sequence of 16 hash functions 
is randomly changed. Therefore, it is costly to design an 
ASIC for X16R. However, T. Black, who designed X16R, 
mentioned that there is some evidence that ASICs for X16R 
exist [23]. Our ECCPoW employs a time-varying puzzle 

generation system to make ASCI design difficult. ECCPoW 
can make ASIC powerless as the puzzle generation system 
changes from block to block. We explain this further in 
Section III. 

C. HYBRID METHODS 

Random X of Monero combines the above two methods. 
Random X uses memory-hard techniques for the bottleneck 
with random code execution; Random X is optimized for 
CPU mining [24]. In [24], they mentioned that mining can 
be performed using a field-programmable gate array; how-
ever, it will be much less efficient than CPU mining. It im-
plies that efficient mining hardware can be developed when 
the cost of developing chipsets is low in comparison to the 
mining reward. With the proposed ECCPoW, attempts in 
developing efficient mining hardware can be made when 
the reward-to-cost ratio increases. However, such attempts 
can be easily evaded since the parameters of ECCPoW can 
be easily changed, such as increasing the length of code and 
the code rate. The next section illustrates further the ASCI-
resistance characteristic of ECCPoW. 

III. ECCPoW Implemented on Ethereum 

In this section, we briefly introduce ECCPoW and present 
how ECCPoW has been implemented on Ethereum using 
Fig. 1. Furthermore, we present how the difficulty level of 
ETH-ECC is automatically controlled. 

A. OVERVIEW OF ECCPoW 
In a blockchain employing the PoW consensus algorithm, a 
node solves cryptographic puzzles to publish a block. For a 
given puzzle, the node who solves the puzzle first obtains 
the authority to publish a block. For example, in the PoW of 
Bitcoin, the first node that finds a specific output of the 
secure hash algorithm (SHA) obtains the authority to pub-
lish a block. The PoW of Ethereum uses Keccak instead of 
SHA. The ECCPoW algorithm proposed in [6] is a PoW 
consensus algorithm that uses error-correction code, which 
comprises the low-density parity-check (LDPC) code [8], 
as a cryptographic puzzle. The ECCPoW algorithm consists 
of a pseudo-random puzzle generator (PRPG) and an ECC 
puzzle solver. Fig. 1 presents the flowchart of the ECCPoW 
algorithm. For every block, the PRPG generates a new 
pseudo-random LDPC matrix. A new LDPC matrix is dis-
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tinct from the other previously generated matrices. Such a 
pseudo-random LDPC matrix takes the role of issuing an 
independently announced cryptographic puzzle. The ECC 
puzzle solver uses the LDPC decoder to solve the given 
announced puzzle. Specifically, to publish a block, a node 
is required to run through an input header until the LDPC 
decoder hits a satisfying result; for instance, the output of 
the decoder is an LDPC codeword (with a certain Hamming 
weight). In the next subsection, we will discuss ECCPoW 
implementation on Ethereum with the flowchart presented 
in Fig. 1. 

B. Comparison of Ethash and ECCPoW 

Ethereum uses Ethash for ASIC resistance, and ETH-
ECC uses ECCPoW for ASIC resistance. In this subsection, 
we present how Ethash and ETH-ECC apply ASIC-
resistance property to PoW with pseudo-codes. 
Ethash uses a DAG for ASIC resistance. The DAG is a 

large size of data and is typically stored in a random access 
memory (RAM), not in cache memory. It implies that a 
miner must access the RAM to get the DAG data. Although 
the miner could be equipped with a high-throughput ALU, 
the bandwidth access from the RAM to the ALU is limited. 
That is, the bottleneck is the limited bandwidth of reading 
DAG information from the RAM; thus, any fast ALU, e.g., 
an ASIC implementation of keccak512, exceeding this 
bottleneck is of no use. This makes Ethash ASIC resistant.  

When a miner reads DAG data from the RAM, the loca-
tion where the data are read varies. The location of data 
reading is selected by the “mix”; the mix is a 128-byte hash 
value generated by the block header and a nonce. The mix 
is updated using the Fowler-Noll-Vo (FNV) hash function. 
The miner repeats this process 64 times. After updating the 
mix, the miner compresses the mix; for compression, the 
FNV hash is used again. The miner returns a hash value of 
the result of concatenating the compressed mix and the seed.  

If this hash value is less than the desired target, the nonce 
is validated, and a new block is linked to the previous block. 
Algorithm 1 denotes the pseudo-code of Ethash. 

Algorithm 1 Ethash 

Require: block header (BH), nonce, DAG 
1: Initialize seed: seed = keccak512(BH, nonce)   
2: Initialize 128 bytes mix: 

mix = concatenate(seed, seed) 
3: for i = 0, 1, 2, …, 63: 
4: Get data from DAG using mix: 
 data = DAG_lookup(DAG, mix, i) 
5: update mix: mix = FNV_hash(mix, data) 
6: end for 

7: for i = 0, 4, 8, …, length(mix): 
8:  Compress mix: cmix = compress_mix(mix, i) 
9: end for 

10: return keccak256(concatenate(seed, cmix)) 

Ethash uses the intentional bottleneck for ASIC re-
sistance, but ETH-ECC aims to use a time-varying puzzle 

generation system for ASIC resistance. In ETH-ECC, two 
factors make the design of ASICs very difficult. One is 
flexible code lengths and randomly generated PCMs. The 
ECC_puzzle_solver generates a hash vector of length-
n (subsection C) using a nonce; this n determines the code 
length. The development of an ASIC for a PCM with length 
n cannot be realized, as the ETH-ECC network changes n 
and the PCM from one block to another block. The PRPG 
creates a PCM H. A PCM uses a BH as a seed; thus, it is 
randomly generated. All miners that work to extend the 
same previous block use the same PCM to solve the EC-
CPoW puzzle. Thus, it is highly expensive, if not impossi-
ble, to implement an ASIC that can handle a time-varying 
PCM [10], [11]. After generating a hash vector and a PCM, 
a miner works out how to generate an output word. If this 
output word satisfies a specific condition, the miner is suc-
cessful at completing ECCPoW; e.g., the output word can 
be a codeword, and then, a new block is linked to the previ-
ous block. Algorithm 2 denotes the pseudo-code of ETH-
ECC. In our implementation, we have replaced Ethash 
and all its relevant peripheral systems with ECCPoW; thus, 
it has the same requirement as Ethash except for the DAG. 
We present more details about ETH-ECC in the following 
subsections. 

Algorithm 2 ETH-ECC 

Require: block header (BH), nonce 
 1: Generate hash vector: 
     hash_vector = ECC_puzzle_solver(nonce) 
 2: Generate parity check matrix: PCM = PRPG (header) 
 3: output_word = decoder(PCM, hash_vector) 
 4: return output_word 

C. ECCPoW ON ETHEREUM 
In this subsection, we present how the error-correction pro-
cess is applied to ETH-ECC using Fig. 1. 

 
1{ | { }: 0,1}n

C
 = =c Hc 0 c  (1) 

when a PCM H is given, a code c, satisfying (1), is referred 
to as an LDPC code. The goal of the ECCPoW algorithm is 
to find an LDPC code c using the PCM H, which is derived 
by PRPG, and a hash vector r, which is obtained using the 
ECC puzzle solver. For the PRPG, we employ the previous 
hash value; the previous hash value, known as the parent 
hash in the Ethereum block header, randomly generates a 
PCM. Specifically, we use Gallagher's method to create 
random PCM [9]; we use the previous hash value as a seed 
of randomness. Thus, PCMs are changed for every block; 
because every node has the same seed, they use the same 
PCM until a block is generated [6].  

1) 1) ECC puzzle solver on ECCPoW Ethereum 

Here, we introduce the ECC puzzle solver process in ETH-
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ECC. Our definitions are based on [6]. The equations below 
follow the right-hand side of Fig. 1. 

Definition 1. (ECC puzzle solver) Hash vector r in which 

the size of n can be obtained as follows: 

         
256

1 : ( ) {0,1}s Keccak nonce=           (2) 

where Keccak denotes the hash function used in Ethash of 
Ethereum [5]. We generate a nonce in the same way that 
Ethereum does. Furthermore, for a longer length of a hash 

vector, we use 
1

256
: ( ) {0,1}

u
Keccak ss =   with 

2,3, ... 1  ,u l= + . We slice or concatenate the result of 

Keccak to generate a flexible length hash vector r: 

1

1 1

[1: ] if 256
:

[    [1: ]] if 256
l l

s n n

s s s j n+


=  

r       (3) 

where / 256l n=     and 256j n l= −  . For example, 

when n is less than 256, r obtains the same length as n, 
whereas when n is not less than 256, r concatenates the 
results of Keccak. This flexible length hash vector is used 
for ASIC resistance. 

2) PoW of the LDPC decoder 

The goal of the LDPC decoder is to find a hash vector c   

that satisfies Hc = 0. The definition below explains the de-
coding presented in Fig. 1. 

Definition 2. (Decoder) Given a PCM H, which is the 
size of m × n, and hash vector r, which is the size of n, are 
given, the LDPC decoder uses H and r as inputs and obtains 
output c  using the message-passing algorithm [6], [14]. 

When c  satisfies (1), c  becomes an LDPC code, and a 
miner completes LDPC decoding. 

 1:{ , } {0,1}n

np
D

r H c  (4) 

A PCM H is randomly generated; however, all miners 
use the same previous hash value, which is derived from the 
previous block. Therefore, predicting the next PCM to mine 
a block in advance is impossible. In the PoW of Ethereum, 
miners change a nonce when they obtain a wrong output. 
We follow the same procedure as Ethereum to obtain a hash 
value from Keccak with a nonce, but ETH-ECC uses one 
more step (3) to generate a hash vector for decoding. When 
the code derived by (4) does not satisfy (1), the miner gen-
erates a new nonce and repeats all steps. 

Our method is based on the high complexity of ASIC de-

sign in Section II for an ASIC-resistant PoW. However, 
unlike the mentioned method in Section II, ECCPoW gen-
erates varying cryptographic puzzles of high complexity. 
Specifically, ECCPoW uses two factors to achieve high 

complexity: flexible length LDPC code c and randomly 
generated PCM H. ASICs can be released for the n length 
of code. However, extending the length of code (e.g., n + 1) 

makes ASICs powerless. Furthermore, in [10], [11], it has 
been proven that implementing an ASIC that can handle 
variable PCMs is expensive and occupies a lot of space. If 
developing an ASIC costs more than buying a CPU or GPU, 
there is no incentive to develop an ASIC. In other words, 
the ECCPoW algorithm is ASIC resistant as implementing 
an ASIC that can handle various lengths of changing codes 
and randomly generated PCMs is inefficient. 

D. DIFFICULTY-LEVEL CONTROL OF ETH-ECC 

In this subsection, we demonstrate the implementation of 
ETH-ECC’s difficulty-level control. Bitcoin [1] and 
Ethereum [2] have different difficulty-level control meth-
ods. Furthermore, we present one way to add fine difficulty 
control. 

In Bitcoin, the Bitcoin network changes the difficulty 
level every 2016 block; the desired BGT is 10 min for a 
block. If miners generate a block every 10 min, generating 
2016 blocks takes precisely 2 weeks. Thus, if generating 
2016 blocks takes more than 2 weeks, the difficulty level 
decreases; otherwise, the difficulty level increases. Unlike 
Bitcoin, the Ethereum network changes the difficulty level 
every block. Ethereum network allows for a block to be 
generated between 9 and 18 s. If a block is generated within 
9 s, then the difficulty level increases. If it exceeds 18 s, 
then the difficulty level decreases. Because of this differ-
ence between Bitcoin and Ethereum, ECCPoW-based 
Bitcoin (BIT-ECC) and ETH-ECC also have different diffi-
culty-level control methods. Thus, ETH-ECC cannot use 
BIT-ECC’s method. Because of the need for a new method, 
we demonstrate the implementation of ETH-ECC’s diffi-
culty level control with a difference from Ethereum’s 
method. 

Ethereum uses the number of attempts to generate a 
block per second, termed hash rate, and a probability of 
block generation. Similarly, ETH-ECC uses the hash rate 
but considers a probability of decoding success. In [5], the 
difficulty of Ethereum is defined by the probability of block 
generation. The difficulty is as follows: 

  
2562

Diff
n      (5) 

It indicates that 

  
2562

n
Diff    (6) 

where n denotes the result of PoW and Diff denotes the dif-
ficulty of Ethereum. Thus, (6) means that when the difficul-
ty level increases, the number of n that satisfies (6) decreas-
es. Furthermore, we can consider that the reciprocal of dif-
ficulty is a probability of block generation. Ethereum uses 
this probability and hash rate to control BGT. For example, 
without replacement, when the probability of block genera-
tion is 1/150 and hash rate is 10 hash per second, brute 
force takes 15 s. If the hash rate increases, such as 20 hash 
per second, Ethereum’s method adjusts the probability of 
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BGT to 1/300. Thus, brute force takes 15 s even though the 
hash rate increases. 

For ECCPoW, if we can calculate a probability of 
decoding success, it is possible to control the difficulty 
level similar to the process in Ethereum. Thus, it is 
important to know the probability of a successful LDPC 
decoding according to the LDPC parameter. We use the 
pseudo-probability of a successful LDCP decoding 
according to the parameters to test the difficulty level 
change using the BGT [7]. That is, ETH-ECC uses the 
probability of decoding success and hash rate to control the 
difficulty level. For example, without replacement, when 
the probability of decoding success is 1/150 and the hash 
rate is 10 hash per second, it takes 15 s, as in the above 
example of Ethereum’s method. However, unlike Ethereum, 
when the hash rate increase, ETH-ECC tunes parameters of 
LDPC to adjust the probability of decoding success. By 
tuning parameters, ECCPoW achieves both difficulty-level 
control and ASIC resistance. These parameters can be 
found at https://github.com/cryptoecc/ETH-
ECC/blob/master/consensus/eccpow/LDPCDifficulty_utils.
go#L65. In Fig. 2, the difficulty of ETH-ECC is 32.49 KH, 
indicating that the probability of block generation is 1 of 
32,490 hash. 

One Way to Add Fine Difficulty Control. ECCPoW con-
trols difficulty using integer and discrete variable n. Thus, it 
may look inappropriate to manage difficulty precisely. 
However, as the number of blocks increase, block genera-
tion time (BGT) converges to the ideal BGT time, which is 
suitable for a network. For example, when there exist two 
difficulties: n and n+1, we can define average BGT of each 
difficulty as 

n
t  and 1n

t + . Thus, we can define the average 

BGT: 

 1n n
t t

averageBGT
k

  ++
=  (8) 

Where  denotes the number of generated blocks with dif-

ficulty 
n

t ,  denotes the number of generated blocks with 

difficulty 1n
t + , and k denotes the total number of generated 

blocks (TNGB). Thus,  can be replaced as k = − . As 

a result, equation (8) is: 

 1( )
n n

k t t

k
averageBGT

  +− +
=  (9) 

When TNGB k  is kept constant, the average BGT is de-
termined by the number of generated blocks   in equation 

(9). Thus, the ideal average BGT, which is suitable for the 
number of nodes in a network, depends on  . In other 

words, when TNGB k is low, the average BGT cannot meet 
the ideal average BGT because there are not enough blocks 
of each difficulty. However, as TNGB k  increases, the 
number of blocks corresponding to the difficulty, such as 
 , getting closer to the proportion that fits the probability 

of block generation. As a result, average BGT converges to 
the ideal average BGT; this convergence confirms our 
proposition that the network can control difficulty precisely. 

IV. Problem Formulation 

In PoW, there is a case that nodes generate blocks at the 
same time. Bitcoin allows only one block to be generated at 
a time; Ethereum allows three blocks to generate at the 
same time. However, in Ethereum, only one block can be 
canonical; the other blocks cannot. Blocks that cannot be 
canonical are called uncle blocks. In Ethereum, nodes roll-
back transactions of uncle blocks [5]. Therefore, the trans-
action's participants must wait for block confirmation to 
prevent a rollback. That is, in the blockchain using PoW, 
the BGT must have a finite mean for the block confirmation 
time. For example, if the BGT has an infinite mean, the 
waiting time for the confirmation of transactions cannot be 
determined. Therefore, to apply the ECCPoW algorithm in 
a real network, the BGT must have a finite mean.  

FIGURE 2. This figure shows the simulation results of ECCPoW Ethereum on Amazon Web Services (AWS). Twelve nodes are used in the simulation. 
The two nodes are bootnodes that help connect the nodes, and the other 10 nodes are sealnodes that participate in block generation. We use the 
m5.xlarge of AWS EC2 for the simulation. In the charts, BLOCK TIME shows the block generation times for the last 40 blocks, and DIFFICULTY shows 
the difficulty levels of the last 40 blocks. BLOCK PROPAGATION shows the percentage of the block propagation time corresponding to time. 
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In [6], the authors presented the definition of the block 
generation of the ECCPoW algorithm using a hash rate with 
a geometric distribution. That is, they assumed that nodes 
generate a block with specific block generation attempts. 
However, if the BGT has an infinite mean, there is no guar-
antee that nodes generate a block with specific attempts. In 
[7], the authors presented a practical experiment using the 
ECCPoW algorithm. However, they only mentioned that 
the BGT of ECCPoW is “unstable.” That is, they mentioned 
that the BGT of ECCPoW has outliers; however, they did 
not present a discussion on the BGT. Thus, in this study, we 
present a discussion on the BGT. Specifically, our experi-
mental result presents evidence that the exponential distri-
bution describes the distribution of the BGT of ECCPoW. 

V. Experiment on ETH-ECC 

In this section, we conduct experiments using ETH-ECC. 

First, we simulate the difficulty level change using multi-
node networks. Second, we conduct a goodness-of-fit ex-

periment using the AD test [16], [17], [18] to discuss the 
distribution of the BGT with a fixed difficulty level.  

A. SIMULATION OF THE DIFFICULTY CHANGE 

We simulate the difficulty-level change employing Amazon 

Web Services (AWS) using 12 nodes. Two nodes are boot-

nodes that help connect the nodes, and the other 10 nodes 
are sealnodes that participate in block generation. In the 

charts presented in Fig. 2, BLOCK TIME presents the BGT 
of the last 40 blocks, and DIFFICULTY shows the difficul-

ty level of the last 40 generated blocks. BLOCK TIME and 
DIFFICULTY show that because of the large standard devi-
ation, a block is gradually generated despite the low diffi-

culty level, as mentioned in [7]; in the next subsection, we 
discuss the BGT. In the charts presented in Fig. 2, LAST 

BLOCK shows the BGT of the previous block, and AVG 

BLOCK TIME shows the average of the BGT. In addition, 
AVG NETWORK HASHRATE shows the average hash rate 

of all miners. BLOCK PROPAGATION shows the block 
propagation time from a miner who generated a block to 

other miners. We used two different regions: Seoul and US 
East for sealnodes. Specifically, 3 of the 10 sealnodes are 

in the US East region, whereas the rest are in the Seoul re-
gion. BLOCK PROPAGATION also shows the percentage 
of blocks that are propagated at corresponding times. 

BLOCK PROPAGATION indicates that the propagation of 
approximately all blocks between Seoul and US East re-

gions takes less than 2 s. The block propagation is the same 
method as that of Ethereum.  

B. STABILITY OF THE BLOCK GENERATION TIME 

Fig. 2 demonstrates the importance of determining whether 
varying puzzles may result in outliers. That is, in BLOCK 

TIME and DIFFICULTY of Fig. 2, slow block generations 
are observed despite the low difficulty level. In other words, 
the observation of BGT shows outliers. If the outliers are 

uncontrollable, the BGT distribution has an infinite mean 
similar to the heavy-tailed distribution. An infinite mean 
cannot guarantee transaction confirmation. Thus, to achieve 
a stable BGT that can guarantee transaction confirmation, 
the BGT must have a finite mean. 

We obtain the BGT of ECCPoW Ethereum with a fixed 
difficulty level to observe the type of distribution with a 
finite mean the BGT follows. Specifically, if BGT follows 
an exponential distribution, it has a finite mean. However, 
if the BGT follows a heavy-tailed distribution, it has an 
infinite mean [15]. Thus, through the goodness-of-fit exper-
iment, we aimed to discuss what type of distribution the 
BGT follows. For the goodness-of-fit experiment, we set a 

null hypothesis H0 and an alternative hypothesis AH :  

0 : BGT has the exponential distribution

: BGT does not have the exponential distributionA

H

H
 

For the goodness-of-fit experiment, we use the AD test 
[16], [17], [18]. Other available tests can be used in the 
goodness-of-fit experiment, such as the chi-square test [19], 

(b) n = 36 

FIGURE 3. We did experiments for 100, 200, 300, and 400 blocks to ob-
serve the distribution over the number of blocks. As the number of 
blocks increases, the standard error decrease. That is, when the number 
of blocks increases, sample distribution reflects an actual distribution of 
sample distribution. In these figures, experiment results show the ten-
dency; the distributions of observed frequency, known as sample distri-
bution, follow the distribution of expected frequency. 

(a) n = 32 
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Kolmogorov–Smirnov test [20], and AD test [16]. The chi-
square test has a restrictive assumption that all expected 
frequencies should be greater or equal to 5 [21]. However, 
there is no guarantee that our samples will achieve this as-
sumption. If we collect more samples, the chi-square test 
can be used. However, the p-values used to validate the 
hypotheses are affected by the number of samples. When 
the number of samples increased in the chi-square test, the 
p-values tend to decrease. Therefore, the assumption of the 
chi-square test is inappropriate for verifying our distribu-
tions. The Kolmogorov–Smirnov test is unaffected by sam-
ple sizes; however, it is more sensitive to the center of the 
distribution rather than the tail [22]. We must consider veri-
fying the tail of the distribution to cover all possibilities. 
Therefore, we have chosen to use the AD test [16], which 
gives more weight to the tail than does the Kolmogorov–
Smirnov test. 

C. AD Tests 

In this subsection, we discuss the AD test and verify its 
usage using test examples. The AD test is used to verify if a 
sample follows a specific distribution. We discuss one-
sample and two-sample AD tests. In our work, we use the 
two-sample AD test; however, to clearly present our contri-
bution, we briefly introduce the one-sample AD test first.  

1) One-sample AD test 

The one-sample AD test is suitable to verify a hypothesis 
that a sample set comes from a population. The one-sample 
AD test is as follows. When the cumulative distribution 

function (CDF) of the population distribution is ( )F x , and 

the CDF of the empirical distribution is ( )MF x , the one-

sample AD test [18] is used as follows: 

( )22 ( ) ( ) ( ) ( )M MA M F x F x w x dF x


−
= −     (10)  

and 

 
1( ) [ ( )(1 ( ))]w x F x F x
−= −  (11) 

where M  denotes the number of samples and 
2
M

A  denotes 

the results of the one-sample AD test. Intuitively, in (10), if 

( ) ( )MF x F x−  is 0 for all x, 
2
M

A  is 0. This means that 

when 
2
M

A  is small, the empirical distribution ( )MF x  is 

close to the population distribution ( )F x . As we have not-

ed, we focus on the tail of the distribution; it can be accom-

plished using (11). The one-sample AD test result 
2
M

A can 

be used to verify if a given sample comes from a population 
with a specific distribution.  

2) Two-sample AD test 

In our work, we want to verify that two-sample sets come 
from the same unknown population. The two-sample AD 
test is appropriate for such verification. The two-sample 
AD test [17], [18] is as follows. There are two-sample em-

pirical distributions ( )MF x  and ( )NG x . The ( )MF x  is an 

TABLE 1. Example of the Anderson–Darling test results 

The number 
of samples 

Standardized 2
MNA  p-value 

10 -0.59 p ≥ 0.25 

20 0.44 p = 0.21 

30 0.69 p = 0.17 

(a) ~ Exp(1) , ~ Normal(1,1)  

 

10 1.20 p = 0.11 

20 3.57 p = 0.02 

30 4.67 p = 0.01 

(b) ~ Exp(1) , ~ Exp(2)  

 

10 1.11 p = 0.12 

20 -0.41 p ≥ 0.25 

30 -0.08 p ≥ 0.25 

(c) ~ Exp(1) , ~ Exp(1)  

 
n–Darling test results.  

TABLE 2. The observed frequency is calculated using the histogram in 
Fig. 4, and the expected frequency is calculated using the CDF of the 
exponential distribution derived from the mean in Fig. 4 

Interval(%) Observed frequency Expected frequency 
[0, 10) 107 118.70 

[10, 20) 82 71.73 
[20, 30) 56 43.35 
[30, 40) 20 26.19 
[40, 50) 14 15.83 
[50, 60) 7 9.56 
[60, 70) 5 5.78 
[70, 80) 4 3.49 
[80, 90) 2 2.11 
[90, 100] 3 1.27 

 

FIGURE 4. This figure presents block generation time of 300 blocks 
when n is 32. The mean block generation time of 300 blocks is 10.75 s, 
and it is presented as a horizontal line. Such a result is converted to a 
histogram. The observed frequency of Table 2 denotes the histogram of 
Fig. 4. The legend at the top right shows the mean, variance, and stand-
ard deviation of the BGT.  
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empirical distribution derived from the set  with a cardi-

nality of the sample set M = . The ( )NG x  is also an 

empirical distribution derived from the set  with a cardi-

nality of the sample set N = . ( )MF x  and ( )NG x  are 

the respective sample sets independently obtained from two 
different testing locations. The two-sample AD test can be 
used to determine whether both sample distributions come 
from the same distribution. In [17], [18], the two-sample  
version is defined as follows: 

2
2 ( ( ) ( ))

( )
( )(1 ( ))

M N
MN K

K K

F x G xMN
A dH x

K H x H x



−

−
=

−  (12) 

where ( ) ( ( ) ( )) /
MK N

x MF x x KH NG= +  with K M N= + . 

2

MNA  is standardized to remove the dependencies derived 

by the number of samples. This standardized form is used 
to calculate the p-value [17], [18]. The p-value evidences 
the hypothesis test. 

The two-sample AD test is suitable to verify a hypothesis 
that two-sample sets come from the same population. As a 

null hypothesis 0H  for the two-sample AD test, we set 

( )MF x  to have the same population as ( )NG x . In addition, 

we set ( )NG x  as an exponential distribution. Thus, if 

( )MF x  and ( )NG x  comes from same the population, that 

is, 0H  is true, we may consider that ( )MF x  is the exponen-

tial distribution. If the p-value of the AD test is sufficiently 

large, it proves that 0H  is true.  

The p-value is the false positive probability under the as-
sumption that the null hypothesis is true. A low p-value 
indicates that a test result provides evidence against the null 
hypothesis; a large p-value does not. That is, a large p-value 
denotes the probability of a true negative is low. The p-
value is determined from the observation of the sample data. 
Thus, before observing the data, we first set the threshold 
significance level (TSL), [0,1]TSL . The TSL can be used 

to determine the critical value. Given a TSL and the number 
of samples that are used in the AD test, the TSL table in [18] 
is used to read off a value corresponding to the TSL and the 
number of samples. This read-off value is called the critical 

value. If the standardized 
2

MNA  is smaller than the critical 

value, this result indicates that the p-value is larger than the 
predefined TSL. In the TSL table of [18], the maximum TSL 

is 0.25. Thus, when standardized 
2

MNA  is less than the crit-

ical value corresponding to the 0.25 TSL, the p-value is 
capped at 0.25.  

3) Verification of the AD Test 

In this subsection, we verify the two-sample AD test 
method. Verification is performed under the assumption 
that the input distributions are a priori known. This will 

clearly illustrate how we will use the AD test and interpret 
its test results.  

In Table 1, we present three examples to give an insight 
into the p-value of the AD test; in this example, we use true 

distributions for ( )MF x  and ( )NG x . In Table 1, Exp( )  

indicates the exponential distribution with mean   and 

Normal( , )   indicates the normal distribution with mean 

  and standard deviation  . That is, ~ Exp( )  denotes 

the sample set  of ( )MF x ; samples are derived from the 

exponential distribution with mean  . In Table 1 (a), we 

use the exponential distribution for ( )MF x  and the normal 

distribution for ( )NG x ; these distributions have the same 

mean. This example shows that as the number of samples 
increases, the p-value tends to decrease if samples are 
drawn from different distributions. In Table 1 (b), we set 
both ( )MF x  and ( )NG x  as the exponential distribution, but 

each with different mean values. This example shows that 
as the number of samples increases even though samples 
are drawn from the same exponential distribution, the p-
value tends to decrease if the means of distributions are 
different. In Table 1 (c), we set both ( )MF x  and ( )NG x  to 

be exactly the same exponential distribution. That is, the 
two-sample sets ~ ( )MF x  and ~ ( )NG x  come from 

the same population. This example shows that, as the num-
ber of samples increases, the p-value tends to increase when 
two-sample sets are drawn from the same population. From 
these examples in Table 1, we note that the closer the two 
distributions ( )MF x  and ( )NG x  are to each other, the larg-

er p-value is obtained.  
We determine whether the AD test result of our experi-

ments indicates that ( )MF x  is sufficiently close to ( )NG x . 

That is, given there are two-sample sets, one of ( )MF x  and 

the other of the exponential ( )NG x , we want to determine 

whether we can make a quality statement about how close 
the two-sample sets are to each other according to the AD 
test. The AD test result presents a significant p-value, i.e., 

0.25p  ; it is a necessary condition but not a sufficient 

one for the case that the two distributions are the same. In 
other words, if a decision is made to reject the null hypoth-
esis, that is, the distribution ( )MF x  is not close to the ex-

ponential distribution ( )NG x , such a decision will result in 

an error with a probability greater than 0.25.  

D. Application of AD Test to BGT Distribution  

In this subsection, we use the AD test to determine the dis-
tribution of the BGT of ETH-ECC. For this experiment, 90 
threads were used to generate a block. We experimented 
using a fixed code length to observe the BGT without 
changing the difficulty level. In the test, two kinds of code 
length n  are used: 32 and 36. These are the two lowest 
types of code length n in our pseudo-difficulty table used in 
the simulation. We divided the BGT into 10 intervals be-
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tween the minimum BGT and maximum BGT for a histo-
gram. For example, when the minimum BGT is 10 and the 
maximum BGT is 20, there are 10 intervals, i.e., [10,11], 
[11,12], …, [19,20]. Using these intervals, we count the 
observed frequency of the BGT data. We set ( )MF x  using 

the observed frequency and set ( )NG x   using the mean of 

the BGT data. The mean in Fig. 4 is used for the expected 
frequency of ( )NG x   in Table 2. That is, the mean in Fig. 4 

is used as 1/λ for the CDF of the exponential distribution 
( )NG x : 

  ( ) 1N
x

G x e
−= −   (13) 

The expected frequency of Table 1 is calculated using the 
integral of ( )NG x   corresponding to the interval time. Be-

cause ( )NG x  is the exponential distribution, if ( )MF x  is 

close to ( )NG x  we may consider ( )MF x  is an exponential 

distribution.  

E. Discussion on AD Test Results  

Fig. 4 shows the example result of the BGT over different 
blocks. Each block denotes the trial to obtain the BGT. We 
converted the test results, such as those in Fig. 4, to a distri-
bution over time to analyze the BGT. These converted dis-
tributions are presented in Fig. 3. Fig. 3 presents the plots 
of the distribution of the observed and expected frequencies. 
These frequencies are calculated using the method de-
scribed in Section V-D.  

When we obtain a distribution using a sample set, there is 
a standard error; the standard error is high when the number 
of samples in the set is small. The standard error is ex-
pressed as 

N


 

where  denotes the standard deviation of a population and 
N denotes the cardinality of the sample set. The standard 
error decreases as the number of samples increases. Thus, 
the sample distribution becomes closer to the actual distri-
bution of the observed samples. If the sample distribution, 
which reflects the actual distribution, differs from the ex-
pected distribution, we can observe that the sample distribu-
tion differs from the expected distribution. To observe the 
tendency of distribution over some blocks, we experiment-
ed with 100, 200, 300, and 400 blocks. Fig. 3 shows that the 
distribution of the observed frequency tends to follow the 
distribution of the expected frequency. In addition, Table 3 
shows that the observed mean and standard deviation tend 
to converge as the number of blocks increases. 

Furthermore, for the quantitative analysis, we use the AD 
test. Table 3 presents the AD test results to discuss hypoth-

eses 0H  and AH . These results show a similar result in 

Table 1 (c). In Table 1 (c), we drew samples from the same 
true distribution; the results present the largest possible p-

value. All p-values in Table 3 are larger than or equal to 
0.25, regardless of the number of blocks. In other words, if 
the null hypothesis is rejected, this decision will cause an 
error with a probability greater than 0.25. That is, the deci-
sion that the BGT distribution ( )MF x  does not follow the 

exponential distribution could be made with a high decision 
error.  

VI. DISCUSSION 

The purpose of ECCPoW is not to replace the current PoW 
of Ethereum. We propose our algorithm to present as one of 
the options for the Ethereum network. Ethereum can be 
utilized, for example, not only in a large-scale network but 
also in local-scale networks. To support a local-scale net-
work, Ethereum provides PoW and PoA(Proof-of-Authority) 
as consensus algorithms. These algorithms have limitations 
for the local-scale network. For instance, PoW based local 
network has a risk of a double-spending attack by ASIC 
miners; PoA based network has a limitation of a participant 
because the time complexity of a PoA increases exponen-
tially when the number of participants increases. Our algo-
rithm, ECCPoW, can be utilized in such cases for the bene-
fit of offering a novel PoW that allows numerous partici-
pants with deterrence to ASIC-borne attacks. In addition, 
our novel ECCPoW may open up for an expected use and 
thus untraveled future to Ethereum. 

Extensive Simulation Set up at AWS. We have recruited 
twelve instances on Amazon Web Service (AWS) EC2; 
each instance of EC2 instances works as a node in a block-
chain network. The cost of using AWS EC2 increases rap-
idly because PoW utilizes all the resources of instances. We 
were able to confirm that this scale of the experiment was 

TABLE 3. Anderson-Darling test result. The test result presents a large p-

value. It means that if we reject the null hypothesis, the probability of a 

true negative is low.  

n 
# of 

blocks 
Observed 
mean(sec) std 

Standardized 
2
MNA  

p-value 

32 100 10.86 9.84 -1.12 p ≥ 0.25 

32 200 11.24 10.16 -1.20 p ≥ 0.25 

32 300 10.74 9.67 -1.18 p ≥ 0.25 

32 400 11.08 9.84 -1.09 p ≥ 0.25 

32 500 10.91 9.62 -1.11 p ≥ 0.25 

32 600 10.87 9.48 -0.80 p ≥ 0.25 

32 700 10.84 9.41 -0.36 p ≥ 0.25 

32 800 10.76 9.40 -0.36 p ≥ 0.25 
  

36 100 56.00 55.20 -1.11 p ≥ 0.25 

36 200 51.04 49.71 -1.19 p ≥ 0.25 

36 300 47.84 45.49 -1.12 p ≥ 0.25 

36 400 49.97 47.80 -1.19 p ≥ 0.25 

36 500 49.24 46.95 -1.11 p ≥ 0.25 

36 600 48.23 46.96 -1.18 p ≥ 0.25 

36 700 48.36 47.68 -1.18 p ≥ 0.25 

36 800 48.03 46.89 -1.18 p ≥ 0.25 
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good enough to achieve our main goal, which is aimed at 
verifying the stability of the block generation time of EC-
CPoW Ethereum. AWS simulation was done to obtain the 
trace data of block generation times. The twelve nodes em-
ployed in our simulation were divided into two different 
kinds of nodes. One kind is bootnodes which help the nodes 
connected. Nodes that want to join a network are connected 
to bootnodes first. After connection, bootnodes relay nodes 
to other nodes. In Ehtereum, bootnodes addresses are hard-
coded on source codes, but it is possible to set bootnodes 
addresses manually for private networks. We have chosen 
two bootnodes. The other kind of nodes are sealnodes that 
participate in block generation as a miner in the PoW net-
work. We have chosen the number of sealnodes to be 10. 
We use the m5.xlarge of AWS EC2, which has convention-
al node specification: four virtual CPUs and 16 GB memory 
for the real-world simulation. All nodes are deployed by 
Docker according to the guidance of Ethereum. Thus, all of 
our simulation results, which are shown in Fig. 2, are re-
producible. 

VII. CONCLUSION 

In this work, we present the implementation, simulation, 
and validation of ETH-ECC. In the implementation, we 
showed how Ethereum can be updated with ECCPoW as its 
new consensus algorithm. In the simulation, we conducted 
a multinode experiment using AWS EC2. The results 
showed that ETH-ECC with its adaptive difficulty-level 
controllability is successfully implemented in the real world. 
In the validation, we showed statistical results in which the 
necessary condition for a finite mean BGT is satisfied such 
that the distribution of the ECCPoW block generation time 
is exponential. 
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