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ABSTRACT

The errors due to a faulty high speed multiplier are shown to be
iterative in nature. These errors are analyzed in various aspects. The
arithmetic coding technique is suggested for the improvement of high speed
multiplier reliability. Through a number theoretic investigation, a large
class of arithmetic codes for single iterative error correction are
developed. The codes are shown to have near-optimal rates and to render
a simple decoding method. The implementation of these codes seems highly

practical.



I, INTRODUCTION

General Background

A great deal of research has been done on the improvement of speed
and reliability of computers., The fast arithmetic units, especially high
speed multiplier and divider schemes, contribute significantly to the overall
performance of digital computers. Fof reliability, the employment of signal
redundancy via error detecting or correcting codes seems to be a promising
approach (Avizienis, 1965) although other techniques, such as hardware
redundancy, are also helpful.

Recent developments in carry-save adders and iterative adders

- speed up addition and subtraction. Recoding techniques, employing minimal-

non-zero representation of operands, have been well adopted for speeding up
the multiplication and division, Practical schemes for high speed multi-
plication such as the one proposed by MacSorley (1961) have been implemented
in many computers.

In a high speed arithmetic unit, the multiplier is divided into
blocks of two (or more) bits each and each block is multiplied to the multi-
plicant to form partial sums. The partial sums are appropriately shifted
and added in a multi-input parallel adder with minimum carry provisions.

The longer the blocks, the faster the multiplication, but the complexity of
hardware increases sharply with the size of blocks. The speed of such a

multiplier has been analyzed by Freeman (1967).

Arithmetic Codes

The objective of this study is to find an arithmetic coding scheme
to improve the reliability of the high speed multiplier. Arithmetic codes

are designed to detect or correct errors in digital computations. One such
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error may change many output digits by propagations. Single error correcting
codes are summarized in Peterson (1965), and multiple independent error
correcting codes have been studied by Barrows (1966), Mandelbaum (1967),
Chang and Tsao-Wu (1968) and Chien, Hong, and Preparata (1968, 1969). Burst
error correcting arithmetic codes have been investigated by Stein (1962),
Chien (1964), and Mandelbaum (1965).

Arithmetic codes are of the form AN, where A is a fixed integer
called the generator. N is an integer in the interval (0, B=l), and B is
the number of code words. If the code length is n, B is the smallest integer
such that AB>2". In the binary case, A is obviously an odd number. The error
correcting capability of ordinary AN codes depends on the minimum distance
of the code, which in turn depends on the generator A. A corrupted signal
(correct signal plus error) modulo A is called the syndrome of the error which
iz the same as the error modulo A, Syndrome of an error, usually denoted as
S, then leads to the correct decision of the error through the decoding
algorithms.

The error pattern expected in high speed multiplier is quite different
from either the multiple independent errors or the burst errors. The iterative
errors we expect from the high speed multiplier scheme are multiple equally
spaced errors. A number theoretic investigation will be used in analyzing
these errors, synthesizing codes for such errors, and demonstrating an

easy implementation and high efficiency of such codes.

Definition of Iterative Error

If a faulty circuit occurs in the high speed multiplier, the re-
sulting error pattern in the output will be of the following special form.
First, since partial products are shifted by multiples of block length,

the erroneous digit in each block will occupy the same relative positien.
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Hence, it is called the Iterative Error. Second, since a faulty circuit
(stuck on 0 or 1) contributes to either carry or borrow type mistakes but not
both, the entire erroneous digits will be of the same polarity. Now let
m = the length of a block in bits, r = the number of blocks, and let E be
a single interative error.

K r-1

Definition 1 E =+ 2 eiZmi, where 0 < k < m and e, = 0 or 1 for all i.
i=0

Of course, if e, = 0 for all i, there exists no error. It is also

i
feasible to extend the definition to cover multiple such error patterns
occuring at the same time; for instance, a double iterative error would be

k1 r-1 < k, r-1 i

E=+2 et 3 4 Z .fiZm , where 0 < k, < k, < m, e; =0or 1 and

i
i=0 i=0
fi = 0 or 1 for all i. Obviously any code that corrects all single iterative

errors will detect all double iterative errors and vice versa. The following

code for the detection of single iterative errors is well known.

Theorem 1 The code with generator A, a divisor of 2™-1 and A>r detects all
single iteration errors in r blocks of length m.

Proof It must be shown that E # 0 mod A for any error. Note that 7P wid

r-1
mod A for all i. Now, suppose E = + Zk z eiZmi = 0 mod A. Since 2 and A
r-1 i=0 r~-1
are relatively prime, we have I e, = 0 mod A. But 0< T e < r <A and
i=0 i=0
hence a contradiction. Q.E.D.

Example Let m = 6. The generators of single iterative error detecting codes

are: A
A

21 43 LTeredy
63 if 21<r<63

3 g r<3 J
7. if | IEp<y

>




II. PRELIMINARY DISCUSSIONS

It follows from the definition that, to correct any single iterative
error, one must correctly determine the polarity of the error, the position of
the error, k, and the set of eis called the distribution of the error. For

convenience, we introduce three notations, EO,E1 and E2, respectively defined

as
A e
B #E =42 % 0.2 (1)
0 = ; i
=0
r-1 :
By w2t 0 62 (2)
i=0
and mi
and E, = & e,2 (3)
2 § i
i=0
One can easily verify the relation, E0 = t'El = ZkEz, representing

the error in the order of decreasing complexity. The three different aspects
of error analyzed in this chapter will serve as a basis for the forthcoming

derivation of error correcting codes.

Polarity of Error, +

First, let us consider the case for integers m = 2n + 1 and
r S_Z(Zn-l) for some n > 1. We will find a simple method with which the

polarity can be uniquely determined. The same method will be used for the

general case later.

Lemma 1 Let m = 2n+l and r§2(2n-1) for some n>1, then S = EO mod 2"-1 has less

than or equal to nl's if and only if the polarity of error is positive.

r-1 .

Proof Let S’ E2 =z eiZml mod 2™-1. Since eis are either 0 or 1, we have
i=0

0<s 52(2n-1)<2m-1. The maximum number of 1's S can have is therefore n.

]
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Now S’/ = E1 = ZkE2 mod 2™-1 is merely a cyclic shift of S’ modulo 2m-1, which
does not affect the number of 1's in S°. Thus, if E0 = El’ S has less than
or equal ton 1l's. But if E0 = -El, -5’ =2™-1-8’ which can not have less
than 2n+l-n = n+l 1's. Q.E.D.

With the above discussion in mind, consider now a general case where
there is no obvious relationship between m and r. Let £ be an integer less

than r, then r = s{ + t where s > 1 and 0 < t < 4. Clearly,

r-1 L4-1 &
E.= T e2™ w3 £,2™" mod 2™ 1 (4)

20 qupg ot 1=0

where 0 < £, s+ 1forall0<i<tand 0<f <s for all t< i<,

i
The Hamming weight of an integer I is defined as the number of 1l's

in the binary expression of I. Let w(x) be the maximum Hamming weight of I

for all 0 < I < x. Notice that w(x) is a non-decreasing function of x.
i
Lemma 2 w(x) = [logz(x+1)],

Proof Clearly w(x) = n if 280 < x < 2n+1-1 for some n> 1. Thus
n < logz(x+l) < ntl and n = [logz(x+1)] = w(x). Q.E.D.
Define M(x) as the Hamming weight of x mod Zmz-l. M(x) = M(ka)

for any k, because 2k amounts to a cyclic shift of 1's and 0's modulo Zmz-l.

Rewriting Eq. (4), we get 0 < M(El) = M(Ez) < w(stl)t + w(s) (L~-t) and hence

M(El)max = w(s)L + {w(s+l) - w(s)l}t (5)

*
[aldenotes. the integer part of a




Theorem 2 Given m and r, if 4 < r satisfies the condition, M(El)max < i m

3

then M(EO) < % m{ if and only if the polarity of error is positive.

Proof 1If E0 = El’ the theorem follows from the hypothesis. If E0 - -El,

then M(-E;) = mf - M(E,) > mf - M(E >k me. Q.E.D.

l)max

The condition M(El)max < % m{ is not as involved as it might seem.
In fact, lemma 1 is a special case of this theorem. We know that s = [f] and
t =rmod £. Also by lemma 2, w(s+l) - w(s) = 1 if and only if s = 2"-2 for
some n > 1. It is equal to zero otherwise. Given these facts, the table of
maximum r's (rmax) for which 4 satisfies the condition; is not difficult.
Note that M(El) is a non-decreasing function of r and hence £ and r are
max max
mutually non-decreasing functions of each other. From Table 1, one finds the
smallest 4 that satisfies the condition M(El) < ¥ m{ via the first r >y
max max —

in the row of given m. The reason for the smallest { is to maximize the rate

of the code (see the section III).

Position of Error, k

We begin with the assumption that the number of error digits,
d = fil e, is given as well as E1 mod 2"-1. Let S = E1 = de mod 2™-1. We
now Q;Sive a condition on r such that given d (d < r, necessarily) k can be
uniquely decided from S.

Define T to be the smallest integer such that 2% = T mod 2™-1 for

any integer x in the range 0 < x < m. Then, there must exist a least positive

integer, y, such that x=y satisfies the above relation for T.




Table 1. Eone for m and ¢

m 4 1 2 3 4 5 6 7

3 2 4 i 9 12 14 17
4 2 5 8 11 14 17 20
5 6 12 19 25 32 38 45
6 6 13 20 27 34 41 48
7 14 28 43 57 72 86 101
8 14 29 L4 59 74 89 104
9 30 60 91 121 152 182 213
10 30 61 92 123 154 185 216
11 62 124 187 249 312 374 437
12 62 125 188 251 314 377 440
13 126 252 379 505 632 758 885
14 126 253 380 507 634 761 888
15 254 508 763 1017 1272 1526 1781
16 254 509 764 1019 1274 1529 1784

10
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m %0
Lemma 3 y is the largest divisor, Xgs of m (x0 <m) and T = (2 -1)/(2 "-1).

Proof By the division algorithm, m = ay+b where 0 < a and 0 < b < y. Now,
2" = 2ay+bT = ZbT =T mod 2™-1. This implies that b = 0 and m = ay, for y
is the least positive integer for the above relation to hold. Therefore,
2Y7-1 divides 2"-1 and

m
T 0 n0d et

2.1

X
Clearly T = (2m-1)/(2 0-1) is the minimum when Xq is the largest divisor of

X
m (x0 < m). We must now show that y = X for this T. First, (2 0—l)T =0
mod 2"-1. Suppose y < Xg» then
m m
L= 2x61 = 0 mod et
2 V-1 27-1

X
which is a contradiction because y < x, implies that (Zm-l)/(Z 0-1) <

0
2 -1 /E7-1). Q.E.D.

Theorem 3 Given d and S = 2°d = El mod Zm-l, k can be uniquely decided if

and only if r < T.

XO 2XO

Proof If r 2 T, there i1s an error with d = T, for which 2 T =2 T &

3x
2 0T,.. mod 2m-1, which results in a multiple solution for k. However, if
’

’
r &, and 2°0 = 2° d mod 2P=1, then (25°F 1) % 0 med 2%-L and 0.< K-k’ < u,
Since d < r < T, k-k’ = 0 by the definition of T. Furthermore, 2kd =0 mod 271

only when d = 0, i.e., when there is no error. Q.E.D,
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Table 2. T for given m
2 m T m T
A 8 241 =17 - 13 213,17 = 8101
2241 = 5 9 %% =73 14 2741 = 129
27-1 %31 -10 2%;1'='33 ‘15 21015541 = 1057
3 im0 Al 21l = 2047 16 2841 = 257
271 =127 12 2%1 = 65
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Distribution and the Number of Error Digits, d

In the previous section we have assumed that d was known. Now,
we derive a condition on r such that d and the set of ei's, namely the

distribution, can be uniquely decided. We begin with a lemma which can be

proved easily.

Lemma 4 - If (m,r) = 1, the mapping from the set, [zmilo <i< r-1}, to the

set, {ZJ‘O < j < -1}, defined by 2™ = 23 pog 27-1 is one to one and onto.

Theorem 4 Let (m,r) = 1, E1 # 0 and § = E1 mod 2°-1. S = 0 if and only if

e, = 1 for all i, and when S # 0, S has d 1's. Furthermore, E1 can be
uniquely decided given k and S.
Proof By lemma 4, each term ghil maps to e ae%x in one to one correspond-

ence, and 2k amounts to a ecyclic shift which does not alter the number of 1's

in S. Now given k and S # 0, Z_kS mod 2°-1 can be uniquely mapped back to

EZ’ digit by digit, from which we obtain E, = ZkE
r-1 ;

3R

i=0

1E 'S = 0 E. =

1 1

2°

ITI. CORRECTION OF SINGLE ITERATIVE ERROR

Now we are ready to synthesize codes for single iterative error
correction. First, the Al—code is shown with its error correcting ability
demonstrated by a simple decoding algorithm. We then present some variations

of this code. The rate (efficiency) considerations and a comparison of these

codes are given with examples.



14

A.-Code

As it was mentioned earlier, a successful correction of error
depends on the correct decoding of the polarity, position, and distribution
of error. Al—Code is designed to do all these in the above order. Thus,
from the syndrome we decipher Ej + E, =+ 2kE2.

Generator of the Al-code is defined as A1 = ICP[(ZmZ-l),(Zr-l)],
where r < T given in lemma 3, (r,m) = 1 and £ is the smallest integer satisfy-
ing the condition given by theorem 2. When m is given, r < T (one may use
Table 2) and (r,m) = 1, one finds £ from Table 1. The number of codewords

mr mr

is B = [-Z—A—] + 1NZA_' for large mr.

Theorem 5 The A,-codes correct all single iterative errors.

1

Proof (Decoding Algorithm) Let a corrupted output be K = AN + E_ and let

0
h(x) denote the Hamming weight of the integer x. A = A1 in this case.
Step 1) Let the initial syndrome be S0 & K = AN + Eo mod A. If h(S0 mod

2m£-1) < ¥ m{, the polarity is positive and otherwise negative.

(By theorem 2.) If S0 = 0, there is no error. (By theorem 3)

Step 2) Let S1 = So if the polarity is positive and let Sl = A - S0 if the
polarity is negative. 1In either case S1 = El mod A.
= = &
Step 3) Let 82 S1 E1 mod 2 -1,
h(SZ) =d or, if 82 =0, d = r (By theorem 4)

Step 4) Let S, = 8. mod 2™-1. Since 2™-1 divides ZmZ—l for any £ > 1,

3 1
S3 = S1 = E1 = de mod 2"-1. Starting with d from the previous step,
+

form 2°d mod 2™-1 (cyclic shift of d). When 2 d =S, k = i’

3’
(By theorem 3)
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Step 5) Now E, = z'ks2 mod 2°-1 (cyclic shift left).
r-1 .
o4 = mi
1fs,=0,E, = 2.
i=0
If s, # 0, let
r-1
2'ks2 mod 25-1 =2 a,2* (a, '=0,1)
1 s
i=0
1
r-1 (5 i mod r)m
E2 = 3 a2 . (By theorem 4) Q.E.D.
=0 *

One of the many interesting aspects of this code is that the decoding
is very simple, which is quite unusual for ordinary arithmetic codes. 1In fact,
the decoding requires essentially three shift registers of length m,r and mr
each, plus some basic combinatorial threshold elements and a few constant-

divisor divider circuits.

A,-Code

Suppose a faulty multiplier has its kth position stuck either on O
or 1. Assuming all inputs occur with equal frequency, the probability that
this fault will actually contribute to an error digit in any particular block

is very close to one half. Therefore, the probability that the entire blocks

r-1 .
will contain the error digits, i.e., E, = + Zk 2 2m1$ is (1/2)r. Define

0
this type of error as a solid error, then the p;;gability of the occurrence
of a solid error is less than 17 if r > 7, or less than 0.1% as r > 10. It
is apparently desirable to have a code that corrects all but solid iterative
errors if a higher rate is achieved.

A modified code for given m and r is defined by the generator

A, = [2mk-1), (2-1)], where A is the same as the 4 for the A -code with m
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and r-1. Obviously Al = A2 whenever £ = A , i.e., for given m, no roax in

6 and r = 20, A = 4 = 3; but if

Table 1 equals r-1. For example, if m
m=6and r =21, £ =4 and r = 4-1 = 3 (from Table 1). Hence, from now on,
we assume that r-1 = P for given m in Table 1 and A = {4-1, when the A2-

code is used.

Theorem 6 The A2-codes correct all but solid single iterative errors and

detect solid error.

Proof Since for non-solid errors, d=r-1 is the maximum number of digits in
error, given A satisfies the condition for theorem 2. Thus S0 # 0 and 82 =0
is the only case when the polarity is undecidable, but the solid error is

detected. The rest of the cases follow the same decoding steps as the

Al-code. Q.E.D.
The Az-codes are especially effective when the block length, m, is
2n
even. Notice that if m = 2n (for some n > 2), T = Zn -1 2™1. But (r,m) =1
2°-1

forces r to be odd < T, and so r = 2%-1 13 8 likely candidate for the number
of blocks. We mention here that r = 2"-1 and m = 2n are relatively prime for

most cases except when n = 6, 12, 18, 20 or 21, etc. The first column of

Table 1 shows, and it is easy to prove that, for m = 2n and 4 = 1, L & 2n—2,
which makes r = oA +1=2" -1 be indeed suitable for Az-codes°
A3-Code

Even though the discussion in this section can be applied to any m,

we limit the scope to the even m cases. The objective is to remodify the
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modified codes so that the resultant code will correct all the single itera-
tive errors including the solid error. Define the generator of remodified
code as A3 = A2 o A', where A’ is called the remodifier factor. Of course,

it is desirable to have a smaller A’ for a higher rate. We redefine A’ as
£ Lot
an integer such that the solid error E = ¥ 2 =~ =

= 2*(-E) mod A’,
=0 sl

for any x.
Theorem 7 The A3-codes correct all single iterative errors.

Proof When a solid error is detected by the syndrome modulo A, , the syndrome

29
modulo A’ uniquely reveals the polarity. Hence, all the decoding steps are

applicable. Q.E.D,

The reason behind employing remodified A3-code instead of the
original Al-code is to gain a higher rate if possible. This requires that
log A*<m . Because, for givenmand r =r + 1, A, ~ 2"A, for most cases

2 max 1 2
(see example 2). Finding such A’ for arbitrary m may be very difficult.
However, possible candidates are 7, 23...etc., i.e., those numbers x for
which y # -ZJy mod x for any j and y # 0. A simple test shows that 7 fails

to be an A’; for a solid error of m = 2n and r Zn-l, becomes 0 mod 7.

Lemma 5 A’ = 23 is a remodifier for m = 2n (n

3,4,5,7,8,9).

3

Proof First, log22 < 5< m given. Second, for any y # O mod 23, y # ny

mod 23 for any x, because {ZX mod 23 = prime} forms two mutually complementary
r-1 2

cosets. We now have to prove that I 2™ # 0 mod 23 for all the given m's.
i=0
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n
20(2%-1) )y 520

Since r = Zn-l, this sum becomes (Zmr-l)/(Zm-l) = (2
Since 23 is a factor of 211-1, it is sufficient to show that 1l and 2n(2n-1)
are relatively prime for the given n's. But the smallest 2"-1 divisible by

11 is when n = 10 which is larger than all the given n values. Q.E.D.

Lemma 6 Let p be a prime. If -2 (but not 2) is primitive modulo p,
(Zrm-l)/(zm-l) # 0 mod p and 1ogzp<m; then A’ = p is a remodifier for any

m and r.

mn

Proof Let (Zrm-l)/(zm-l) X # 0 mod p. It is well known that if e is the

least positive integer to satisfy 2%-1 = 0 mod p, e divides p-1, but since

2 is not a primitive root of p, e is a proper divisor of p-1l. Suppose

x = -2”x mod p for some y. Let y = aetb with &> 0, 0<b<e. If b = 0, then

29 = 1 mod p and we arrive at a contradiction that x = -x mod p. If b # 0,

then x = -be mod p or Zb £ -1 mod p. Thus 22b =1 = (-2)2b mod p, but e
divides 2b and so e = 2b < p-1. This is a contradiction on the hypothesis

that -2 is a primitive root of p. Q.E.D.

Rate Comparison and Examples

Rate or efficiency of a code is defined as

number of code words in bits

B code length (6

We will first derive a sphere packing upper bound on the rate of single
iterative error correcting codes. To correct all the errors, the syndrome
of each distinct error pattern must also be distinct. This sets a lower

bound on A, the generator. The total number of distinct single iterative
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errors is

2.me(25-1) + 1 €))

For large m and r, this rapidly approaches m2r+1. Hence A > m2r+l’ or the

Tl

number of codewords is less than or equal to 2™ /m2""*, From Eq. (6)

10g2(2mr/m2r+1)

R < i L
= mr

1+10g2m

g |~
1

(8)

my

This is a strict upper bound on the rate for large m and r. This shows that
the upper bound approaches 1 - é for large r or 1 for large m and r.

Now consider the rate of Al-code, for A2 and A3 codes are already

improved versions of the former. At the worst case [(Zmz-l), (Zr-l)] =
(2m2-1)°(2r-1)° Hence, the rate is lower bounded as

R>m1Mﬂ2=1_

myr

g =
1

H =

(9)

which is an encouraging result. Although £ is related to m and r, it clearly
shows the tendency that the lower bound for fundamental code approaches 1 - =
for large r and also approaches 1 for large m and r, which is exactly how the
upper bound behaves. To be precise, let us estimate £/r. Recall theorem 2
and Eq. (5). For large m we have 2w(s) ~ m. But w(s) = log2 [%] P log2 ?z-

/2

~ % and so 4 =~ Oy ks Thus, for large m, Eq. (9) becomes

R>-—1-2-m/2N :
m

1 - = (10)

This demonstrates that indeed the Al-code is nearly perfect. We formally

state this as a theorem.
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Theorem 8 The rate of the Al-code assymtotically approaches the upper
bound for large m.

Further comparison of the codes will be presented in the following
two sets of examples. Some typical values for m and r are chosen. In
Examples 1, we show Al-codes with odd m's. Examples 2 compares the
generators Al’ A2’ and A3. In both cases, the approximate rate and the

upper limit is presented for a verification of theorem 8, in Table 3.

Examples 1 Al-Codes for m = odd

(m,x) )
a)  (3,2) 1 A = [@-1),@%D] = @-1 %)
b (5,18) 3 A = L@, @Pnl-eP-n ey ey
c) L d25138) 1 A, = [(27-1), [213-1)1 = (27-1)(213-1)
d)  (9,58) 2 A = [@2-1), %8 1y1=218 1) (2%8-1y/3
e)  (11,62) 1 Ap = [, %1 = @ty @®1y

Examples 2 Comparison of different codes for m = even. All the examples
here have £ = 2, A = 1, m = 2n, r = 2"-1.

A = [@Pne-0) = @Pne’y

6,7) s, =[e%ne’-nl - @®ne’-n
£) A, = 2®-1y27-1) .23
A= @yt
(8,15) Ay = 28-1y2P-1y
g) A = 28-1y21-1y .23
A, = a0 o1
(10,31) a, = 2°%-12t1)
h) ay = @%@t
1) (14,127) A, = ¥ 1et-1).23
) (16,255) Ay = 201 2*%-1) 23
k)  (18,511) Ay = @Bty
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Table 3.
Comparison of actual rates with the upper boundl
Al-Codes, odd m A3-Codes, even m

Upper Upper
(m r) Rate Bound (m r) Rate foand
a 3 2 0.333 0.333 2 6 il 0.60 0.748
b 5 18 0.65 0.763 8 15 0.78 0.842
c 7 13 0.78 0.815 10 31 0.85 0.886
d 958 0.86 0.879 14 127 0.918 0.926
e I 502 0.89 0.903 Loe" 255 0.931 0.936
18 511 0.943 0.945

mr

1Calculated by Eq. (8) except for (m,r) = (3,2)
2For small m and r Eq. (7) is used for the bound R <

r2
Log, ((=-1+1)

mr
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IV. CONCLUSION

The likely errors due to a faulty high speed multiplier are shown
to be iterative in nature. These errors are analyzed in various aspects.,
An arithmetic coding technique to correct these iterative errors have been
suggested for the improvement of reliability.

It was shown that this class of codes are nearly optimal in rates.
The Al-codes form the basic scheme from which the modified Az-codes and
the remodified A3-codes are derived. It is shown that the A2-codes generally
achieve higher rates than the Al-codes, at the small expense of not being
able to correct a specific solid error. The A3-codes, on the other hand,

correct all the single iterative errors with usually higher rates than the

Al-codes° The latter two codes are especially useful for even block length.
The decoding is shown to be very simple. The encoding consists

of premultipling either the multiplicand or the multiplier by the fixed

generator A. Also, possibly losing a few bits, we may drop the LCM in the

generator so that A = (2uw-1)(2r-1) which is very easy to multiply. One

can also multiply (Zmﬂ-l) to the multiplicand and (2r-1) to the multiplier

to achieve a faster encoding time. The implementation of these codes seem

to be very promising.
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