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ABSTRACT

Next-generation sequencing technologies can be

used to analyse genetically heterogeneous

samples at unprecedented detail. The high

coverage achievable with these methods enables

the detection of many low-frequency variants.

However, sequencing errors complicate the

analysis of mixed populations and result in inflated

estimates of genetic diversity. We developed a

probabilistic Bayesian approach to minimize the

effect of errors on the detection of minority

variants. We applied it to pyrosequencing data

obtained from a 1.5-kb-fragment of the HIV-1 gag/

pol gene in two control and two clinical samples.

The effect of PCR amplification was analysed.

Error correction resulted in a two- and five-fold

decrease of the pyrosequencing base substitution

rate, from 0.05% to 0.03% and from 0.25% to

0.05% in the non-PCR and PCR-amplified samples,

respectively. We were able to detect viral clones as

rare as 0.1% with perfect sequence reconstruction.

Probabilistic haplotype inference outperforms the

counting-based calling method in both precision

and recall. Genetic diversity observed within and

between two clinical samples resulted in various

patterns of phenotypic drug resistance and

suggests a close epidemiological link. We

conclude that pyrosequencing can be used to inves-

tigate genetically diverse samples with high

accuracy if technical errors are properly treated.

INTRODUCTION

Recent technological advances have drastically decreased
the time and the cost required to obtain DNA sequences
(1). Several next-generation sequencing (NGS), or deep
sequencing, platforms are available now that can read
millions of base pairs in a more cost-effective and faster

way than traditional Sanger sequencing (2). NGS is
applied in de novo genome sequencing projects (3), as
well as in targeted resequencing studies, for example, of
tumours (4), in epigenetic studies (5) and in transcriptome
analysis (6). In this article, we demonstrate how NGS can
be used to detect low-frequency variants in genetically
heterogeneous samples such as those obtained from
HIV-infected patients.

In general, the population structure of infectious patho-
gens is highly relevant because genetic pathogen diversity
is often associated with disease progression, poor progno-
sis and treatment failure. RNA viruses, such as HIV or
influenza, are prominent examples. The low fidelity of
their viral polymerases, which lack classic proofreading
mechanisms, is responsible for the continuous production
of mutated viral copies. Many mutations are maintained
on clones in proportion related to their fitness. This
mutant spectrum, referred to as a viral quasispecies (7),
allows the virus to rapidly adapt to fluctuating environ-
ments (8,9).

Without additional experimental effort, such as individ-
ual cloning, Sanger capillary sequencing can only deter-
mine the consensus sequence of a mixed sample, and
mutations can only be detected if their frequency
exceeds a threshold of �20%. If two or more loci
display variation, information on whether and how often
these variants occur on the same DNA molecule is lost.
NGS can overcome these limitations by directly
sequencing the mixed sample at high coverage. Every
read obtained in this manner represents a contiguous
fragment of DNA from a single molecule in the DNA
library of the sample. Therefore, the set of reads
provides a statistical sample of the DNA library and it
can be used to make inference about the genetic structure
of the population.

The potential for NGS to detect low-frequency variants
has been noted early on in the context of viral infections.
Pyrosequencing detected low-frequency mutations
conferring resistance to antiviral drugs in hepatitis B
virus (10,11) and in HIV (12–16), and found mixed infec-
tions with different influenza strains (17,18).
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Despite these early successful case studies, application
of NGS to resolve the population structure of pathogens
remains challenging, chiefly because of the sequencing
error rate. A consequence of the high error rate is the
risk of considering a technical error as a low-frequency
variant. For example, with a uniform error rate of
0.25% per base pair and an average read length of
350 bp, �58% of the reads obtained in an experiment
are expected to be contaminated with at least one
sequencing error. Thus, the genetic diversity of the
sample would be vastly overestimated based on the raw
data alone. To avoid these huge numbers of false posi-
tives, some ad hoc strategies have been proposed to
discard reads that are much shorter than average,
contain ambiguous characters, or induce frameshifts in
the translation (19,20).

Statistically, measurement noise can be distinguished
from real variation in a deep sequencing experiment, if
variants that are sequenced more than once can be
identified as groups (clusters) of reads that are more
similar to each other than to reads in other groups
(Supplementary Figure S1). Here, we use a Bayesian stat-
istical modelling approach to read error correction that
can be regarded as a probabilistic clustering method
(21). The main advantages of our approach are: (i) that
an independent estimate of the error rate is not necessary;
(ii) that the number of haplotypes does not need to be
specified in advance; and (iii) that we generate a full prob-
abilistic clustering solution which contains all information
about the uncertainty associated with it, including the
estimated error rate, the estimated number of haplotypes,
their DNA sequence composition and the assignment of
reads to haplotypes. This algorithm, together with other
tools, is implemented in the open source software package
ShoRAH (www.cbg.ethz.ch/software/shorah).

We present a comprehensive analysis of this method
and assess its performance in error correction, haplotype
reconstruction and haplotype frequency estimation. We
applied the ShoRAH algorithm to read data from four
HIV samples obtained with the 454/Roche GS FLX
Titanium platform (Table 1). Two samples define
control experiments and consist of 10 different clonal
isolates of the HIV pol gene, mixed in different propor-
tions. To assess the effect of PCR amplification, another
confounding factor, one of the control samples was
PCR-amplified from an aliquot of the other before
pyrosequencing. The remaining two samples were

derived from HIV patients suspected to be part of the
same infection chain.
The control experiments allow for a hard assessment of

the performance of the computational haplotype inference
method, because the reads can be mapped directly to the
original clones, which are the only true haplotypes in the
mixtures. We demonstrate that haplotypes at frequencies
as low as 0.1% can be detected reliably and that their
estimated frequencies show high agreement with the
expected frequencies. Haplotype reconstruction based on
probabilistic clustering is shown to outperform, in both
precision and recall, ad hoc methods based on a minimal
number of required observations.
In the clinical samples obtained from two infected

patients, we found several low-frequency mutations,
which were invisible to Sanger sequencing. The pattern
of observed mutations was used to analyse the level of
resistance of individual variants to several protease inhibi-
tors (PIs). Both viral populations display intra-host
genetic heterogeneity that resulted in predicted phenotypic
diversity of drug resistance. In particular, we found
minority drug resistant variants that, as it has been repeat-
edly observed, can affect treatment outcome (11,14–16,22).
It seems obvious that high-coverage NGS can detect

low-frequency variants in the pathogen populations. In
practice, however, the feasibility of this approach
depends critically on correcting sequencing errors.
Probabilistic read clustering as implemented in ShoRAH
provides a robust error correction method and it can be
used to estimate the structure of pathogen populations in
short genomic regions.

MATERIALS AND METHODS

Experiments

Sample preparation. For the generation of a defined clone
mixture, amplicons of the partial gag/pol-gene were
produced in the context of routine genotypic HIV drug
resistance testing. Briefly, viral RNA was isolated from
plasma of HIV infected patients using QIAamp viral
RNA mini kit (Qiagen, Hilden, Germany) according to
the manufacturers protocol. Reverse transcription and
polymerase chain reaction were carried out using
OneStep RT–PCR kit (Qiagen, Hilden, Germany) and
primers
1RES, 50-GAAGAAATGATGACAGCATGTCAGG

G-30 (nt 1819–1844 numbered according to HXB2 refer-
ence genome) and
2RES, 50-TAATTTATCTACTTGTTCATTTCCTCC

AAT-30 (nt 4173–4202).
Nested PCR was carried out with HotStarTaq (Qiagen,

Hilden, Germany) and the following inner primer pair:
RES3, 50-AGACAGGCTAATTTTTTAGGGA-30 (nt

2074–2095) and
RES4, 50-ATGGYTCTTGATAAATTTGATATGTC

C-30 (nt 3559–3585).
The 1.5-kb PCR product was purified by using the

QIAquick spin PCR purification kit (Qiagen, Hilden,
Germany). Standard Sanger sequencing of the HIV-1 pol
region was done by using ABI Prism 3730 capillary

Table 1. Next-generation sequencing experiments

Experiment Sample Coverage Indels
(%)

Mismatches
(%)

" (%) nt
hap

Control Non-PCR 2110 1.0 0.05 0.35–0.60 10
Control PCR 6030 1.0 0.25 0.40–0.45 10
Clinical Patient 1 2100 0.44 – 1.1 13
Clinical Patient 2 6240 0.42 – 0.8 15

Type of experiment, coverage, error rates, estimates for the parameter E

and number of haplotypes (nt hap) are reported for all experiments. E

represents the probability that a position in one of the reads in the
multiple sequence alignment is wrong. The number of haplotypes in the
clinical samples is the number of distinct haplotypes that were detected.
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sequencer (Applied Biosystems, Foster City, CA, USA).
PCR-products from 10 different subtype-B clinical isolates
were cloned into pCRII-TOPO (Invitrogen, Carlsbad,
CA, USA). After control sequencing and propagation,
the inserts were excised from the vector and restriction
enzymes SpeI and NotI. To analyse the impact of the
PCR on the error rate an aliquot containing 100 000
copies of the fragment was used as the template in a
single round PCR reaction using primers RES3 and
RES4 (PCR-amplified sample). Samples from Patients 1
and 2 were generated by PCR from clinical specimen as
described above. All PCR product were purified using
QIAamp PCR purification kit (Qiagen, Hilden,
Germany) until further processing.

Massively parallel sequencing. For the library preparation
all four samples were nebulized according to 454 shotgun
protocol (Roche/454-Life sciences, Branford, CT, USA).
Fragmented DNA was purified using AMPure SPRI
beads (Agencourt) to remove fragments <400 bp. The
purified fragmented DNA was further processed accord-
ing to the 454 FLX Titanium Library construction kit and
protocol (Roche/454-Life Sciences, Branford, CT, USA)
to ligate multiple identifier (MID) adaptors specific to the
Titanium sequencing chemistry. The resulting
single-stranded DNA library was assessed for size distri-
bution using the RNA 6000 Pico chip on the 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA) and quantified using the Ribogreen RNA
Quantitation Kit (Invitrogen) on a Fluorometer
(FLUO-star Omega, BMG Labtech Offenburg,
Germany). Emulsion PCR (emPCR) and titration by en-
richment at 0.5, 1, 2 and 4 copies per bead (cpb) was
carried out according to the 454 Titanium emPCR
protocol to determine the optimal ratio of the library
DNA fragments to emPCR beads. Large volume emul-
sions were set up at the optimal ratio of 2 DNA cpb.
The sequencing run was carried out on a 2/4 picotiter
plate using the Roche/454 Genome Sequencer FLX with
the 454 Titanium update.

Data analysis

Sample selection. In the first experiment, we mixed 10 dif-
ferent 1.5-kbp HIV-1 clonal fragments of the gag/pol gene
at different proportions between 0.3% and 30%. In the
analysis, we focused on a 1245-bp long region including
the complete viral protease and part of the reverse tran-
scriptase from position 2253 to 3497. The clones were
chosen such that their mutual distance be in a narrow
range (6:8� 0:5%). Nevertheless, some regions are more
conserved than others, so when the haplotypes are
compared on localized windows, the diversity varies
between 2% and 12%, see Supplementary Figures 4
and 5. The original and the PCR-amplified mixtures
were ligated with MID barcodes and sequenced. Among
the 63 019 reads obtained, the MIDs assigned 16 540 reads
to Sample 1 (non-PCR-amplified) and 45 973 to Sample 2
(PCR-amplified). We decided not to assign the remaining
reads because they presented two or more mismatches in
the barcode, and we regarded this as an indication of a

low-quality read, although we cannot exclude that the
mismatches were due to mistakes in the production of
MIDs. In the second experiment, plasma samples from
two HIV infected patients were analysed. The same
genomic region as in the control experiment was
isolated, ligated to barcodes and sequenced. In this experi-
ment, 48 285 reads were obtained, 12 626 assigned to
Patient 1 and 35 088 to Patient 2.

Preprocessing. For all four samples, we removed
low-quality reads defined as having a phred score below
10 at one or more sequence positions. This filtering step
selected 10 907 and 26 814 reads for the non-PCR and
PCR control samples, and 7985 and 23 284 reads for
Patients 1 and 2, respectively. The average read length
was 340 bp for the control samples and 380 bp for the
clinical samples (Table 1). After the filtering step, we
built a multiple sequence alignment (MSA) of the reads
by padding the gaps obtained in pairwise alignments of
the reads to the reference genome, because off-the-shelf
MSA software is impractical in this setting (23). The
MSA was subsequently split into regions of width ap-
proximately equal to the read length, and the correction
algorithm was applied to each region.

Haplotype reconstruction and error correction. Every time
a variation is observed in the reads, the possibility that this
is a technical error rather than a true biological variation
must be considered. Due to the high coverage of NGS, we
exploited the power gained from multiple independent ob-
servations. We used clustering to group reads by their
similarity and interpreted an optimal clustering as
follows. Each cluster consists of exactly those reads that
originate from the same haplotype. The cluster centre cor-
responds to the haplotype sequence and the cluster size is
proportional to its frequency. With this interpretation,
sequencing errors can be corrected by removing any vari-
ation within read clusters and haplotypes can be recon-
structed as cluster centres.

The most difficult task in clustering is usually to find the
number of clusters that best explain the data (24). In our
context, given a set of reads, this number depends on the
error rate, that should be measured in a different experi-
ment (25). To circumvent this difficulty, we developed a
probabilistic generative model for the sequencing of
error-prone reads from a mixed sample. In our
approach, the number of haplotypes and the technical
error rate are not fixed a priori, rather they are parameters
to be estimated together with the biological diversity. The
statistical model used to explore different numbers of
clusters employs a non-parametric prior distribution
called Dirichlet process mixture (26). In a Bayesian
fashion, we compute the posterior distribution of the as-
signment of reads to haplotypes, the identity of these
haplotypes, and the parameters controlling the error rate
and the biological diversity, given the observed reads. Due
to the complicated form of this probability distribution,
these estimates cannot be derived analytically. We used
Gibbs sampling, a Markov chain Monte Carlo (MCMC)
algorithm, to sample from the posterior distribution of
these quantities.
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This model, together with other tools, is implemented in
the software ShoRAH (21). A detailed mathematical de-
scription of the method and an assessment of its perform-
ance on simulated data has been presented elsewhere (26).

Confidence levels. The probabilistic nature of the cluster-
ing algorithm allows for estimating the reliability of pre-
dictions. The sampling method we devised explores
different configurations of the model parameters,
including the haplotype sequences. The fraction of iter-
ations a haplotype is reported estimates the posterior
probability of the existence of that haplotype. This pos-
terior provides a confidence level for the haplotype, and in
general, we report only those haplotypes with confidence
value (posterior probability) greater than 0.9.

Control experiments. For the control experiments, we
aligned the reads to all original sequences and assigned
them to the best matched if there was no ambiguity in
the assignment (the difference between the identities with
the best match and the second best match had to be
>1:25%). We could then estimate the frequencies of the
haplotypes, as the fraction of reads assigned to each one,
and the sequencing errors from the number of discrepant
bases between each read and their closest haplotype. The
haplotype frequencies of the two control samples with and
without PCR amplification are reported in Supplementary
Figure 2. Some deviations are observed, especially for low
frequencies, which indicate a selective amplification bias
during PCR. Thus, PCR amplification is critical to
estimating haplotype frequencies in mixed samples.
Haplotype frequencies are also affected by stochastic
sampling effects, if the coverage is non-uniform and
frequencies are estimated at a local level. Therefore, we
locally re-estimated the expected frequencies by
re-aligning the read segments in every window of the
MSA to the original clone segments of the respective
genomic region. These estimates were considered the
ground truth and compared to the output of the
ShoRAH algorithm.

In the precision–recall analysis, we compared the per-
formance of the cut-off method (in which a minimum
number of reads must support a haplotype to call it
true) with the probabilistic clustering results. In the
cut-off method, the minimum threshold is varied
between one and the maximum number of reads in
order to draw the precision–recall graph. Similarly, a
threshold on the confidence value defines the positive
and negative haplotypes reconstructed by the clustering
algorithm. The inferred haplotypes were aligned to all se-
quences, and they were considered correctly inferred if
they matched one of the sequences with at most one
mismatch. Precision was defined as the ratio of the
number of matched sequences (out of the 10 present)
over the total number of reconstructed haplotypes.
Recall was the ratio of the number of matched sequences
over the total number of real sequences (10).

Clinical samples. Phenotypic drug resistance for the re-
constructed haplotypes has been predicted with a
support vector machine model with linear kernel trained

on the data in the Stanford HIV Drug Resistance
Database (27) as described in (28) and (29). The coordin-
ates of the points on the plot representing the inferred
haplotypes have been determined with a multi-
dimensional-scaling technique such that their distance
reflects the distance between amino acid sequences.

Software and computational details. Sequence manipula-
tion was performed using Biopython (30) and EMBOSS
(31). Prediction of the phenotypic drug resistance and
multi-dimensional scaling for the clinical samples were
computed using the statistical language R (32).

RESULTS

We used deep sequencing to infer low-frequency variants
in a mixed population with high precision, despite the
error rate that is typically associated with this technology.
To achieve this result, we used ShoRAH, a Bayesian prob-
abilistic clustering method to identify biological variation
and to filter out technical errors. The output of the algo-
rithm is a list of haplotypes with a confidence value and an
estimate of its frequency (Supplementary Figure S1). In
Figure 1, one example of the distribution of these poster-
iors is shown for a region of the control sample with
10 haplotypes. We observe that about 10 haplotypes
have a high posterior probability, while for the 5 add-
itional haplotypes the confidence values quickly drop to
negligible levels. For the haplotypes reported we also
estimated the frequencies. In particular, low-frequency
variants can have high confidence levels, emphasising the
benefit of a full probabilistic model over cut-off-based
haplotype calling.

PCR errors

Error rate of pyrosequencing. We estimated the error rate
of the NGS procedure from the number of discrepant
bases in the alignment of each read with its best match
among the original clones (see ‘Materials and Methods’
section). Excluding indels, the base substitution error rate
for the non-PCR sample was 0.05%, while for the
PCR-amplified sample it was 0.25%. The PCR-associated
increase of the error rate was highly significant (P<10�6,
Wilcoxon rank-sum test).

Recombination. PCR can not only introduce base substi-
tution errors, but when used to amplify a mixture of het-
erogeneous templates, it may also produce cross-overs
among templates (33). To estimate the amount of this
artificial recombination, we analysed the read data from
the two control samples with the software Recco (34). For
each read, we determined whether it is better explained as
resulting from mutations and indels in a single haplotype,
or from recombination between two haplotypes and fewer
mutations and indels.
The amount of mutations that can be saved by invoking

recombination to explain the observed read is a measure
of the likelihood of a recombination event. The result of
this analysis is reported in Supplementary Figure S3.
While for the non-PCR-amplified sample, the number of
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mutations that could be saved is always lower than five, in
the PCR-amplified sample, up to 16 possible savings are
observed. In 1.9% of reads from the PCR-amplified
sample, we observed more than five savings, indicating
PCR-associated cross-overs.

Error correction and haplotype reconstruction

Detection of haplotypes. The high coverage of NGS
promises increased sensitivity to detect haplotypes in a
mixture, but PCR and sequencing errors can induce
large false positive rates without careful analysis of the
read data. Using the clonal mixture samples, we
compared the ability to detect the 10 real haplotypes
between our probabilistic clustering method and the
baseline cut-off method. A low cut-off results in the de-
tection of many haplotypes at the cost of many false posi-
tives, while a large cut-off avoids false alarms at the cost of
missing true variants. For example, requiring only at least
two observations of each haplotype (i.e. cut-off 2), we
found between 7 and 37 haplotypes in the non-PCR
sample and between 80 and 235 haplotypes in the
PCR-amplified sample. For a cut-off of 20 observations,
between 0 and 7 and between 5 and 16 haplotypes were
called for the non-PCR and PCR sample, respectively.
Some manufacturers recommend a cut-off of 50 observa-
tions (35). For this cut-off, between 0 and 5 haplotypes
were found in the non-PCR-amplified sample and between
3 and 10 were found in the PCR-amplified one.

The choice of an optimal cut-off does not only depend
on the trade-off between precision and recall, but also on
specific parameters such as coverage, error rate and
genetic diversity of the sample, some of which are
unknown in any real application. The Bayesian clustering
approach avoids this problem and instead estimates these
parameters directly from the data and reports the confi-
dence level for each reported haplotype.

We assessed haplotype reconstruction performance in a
precision–recall analysis over the entire range of possible
cut-offs and posterior probabilities. Precision is the
fraction of true haplotypes among all called haplotypes
and recall is the fraction of called haplotypes among all
true haplotypes. Figure 2 shows the aggregate result of
this analysis for all windows of the MSA. The cut-off
method performs poorly for all choices of the cut-off
value and can achieve high recall (�80%) only at the
expense of very low precision (�20%) and vice versa.
For example, a cut-off of 50 observations, results in
80% precision, but only <40% recall (Figure 2, red
arrows). The probabilistic clustering method outperforms
the cut-off method for any choice of the haplotype

Figure 2. Precision–recall analysis. We considered the haplotypes
inferred in all windows by the clustering algorithm and by the cut-off
method based on the minimum number of reads supporting the variant.
Red circles represent precision and recall for a set of threshold values
chosen in the cut-off method (values from 1 to the number of reads in
the most-supported haplotype), red arrows annotate points for a cut-off
equal to 50. We performed a similar analysis on the output of the
clustering algorithm, considering haplotypes whose confidence value
(posterior probability) was greater or equal than a given threshold.
Blue squares represent threshold values from 0.01 to 1, with blue
arrows annotating the values obtained when the threshold is 0.9.
Dashed lines and arrows are used for points obtained in the
non-PCR-ampified sample, solid lines and arrows for points in the
PCR-amplified one. In the non-PCR-amplified sample, we have a
perfect precision (no false positives), and very good results for the
recall. In the PCR-amplified sample, some false positives are found.
In both cases, the performance of the clustering method is superior
to the cut-off method. Results for individual windows can be found
in Supplementary Data.

Figure 1. Posterior probability of reconstructed haplotypes. The algo-
rithm computes posterior probabilities for the inferred haplotypes and
their frequency given the observed reads. The figure shows (for window
3 in the PCR-amplified control experiment) the posterior of the haplo-
type frequencies in a box-plot (red box-plots) and the posterior of the
reconstructed haplotype sequences (blue circles). In most cases, the
box-plot height (lower-upper quartile) is invisible on this scale,
because the clustering assignment is stable and the number of reads
assigned to the cluster in the sampling does not change. The posterior
distribution for the frequency is then very peaked. The figure reports
estimates for the haplotypes reported by the algorithm without further
processing. With additional analysis one finds that haplotypes 12 and
13 differ by one gap only in a homopolymeric region, and that their
posterior probabilities sum up to one. Moreover, haplotype 1 consists
of four reads and is the result of a recombination event between two of
the original haplotypes.
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confidence level. Overall, the performance is less sensitive
to this value and many choices result in haplotype recon-
struction with both precision and recall �80%. In general,
this method is conservative in the sense that for all confi-
dence thresholds a called haplotype is likely to be a true
haplotype, especially for thresholds of 0.9 and higher. For
both methods, performance is slightly better on the
non-PCR sample than on the PCR sample.

These results are confirmed in each individual window
of the MSA (Supplementary Figures 7 and 8). The local
analysis also highlights the fact that for the cut-off
method, there is no single optimal cut-off value. In
contrast, the posterior haplotype probability is interpret-
able across experiments and the default choice of 0.9,
which we fixed for all further analyses, results in good
performance throughout (Figure 2, blue arrows).

Error correction. The non-PCR-amplified sample showed
a per-base error rate of 0.05%, while the amplified sample
had a higher error rate of 0.25%. As a consequence,
�11% of the reads in the non-PCR sample and 43% in
the PCR sample have one or more sequencing errors.
After the error correction procedure, the error rate
drops to 0.03% and 0.05% for the non-PCR and PCR
sample, respectively, which results in �92% of the reads
being error free in both samples.

Frequency estimation. We assessed the ability of the
ShoRAH algorithm to estimate the frequency of individual
clones in the population. For the non-PCR-amplified
sample, almost all haplotypes were reconstructed correctly
and their frequency estimates were highly correlated with
the ground truth (Pearson’s correlation coefficient
r ¼ 0:88 for all haplotypes and r ¼ 0:96 if outliers, i.e.
haplotypes with �1 mismatches, are excluded;
Figure 3a). Both haplotype reconstruction and frequency
estimation are more difficult for the PCR-amplified
sample, as shown by an increased number of imperfect
haplotype matches and more discrepant frequency esti-
mates (r ¼ 0:78 for all and r ¼ 0:95 for all perfect
matching haplotypes; Figure 3b).

Perfect reconstruction and frequency estimation was
possible for many haplotypes with frequencies as low as
1% for the non-PCR sample and 0.1% for the PCR
sample. This difference in resolution can be explained by
the different average coverage of �2100 and
6000 base pairs per sequence position for the non-PCR
and PCR sample, respectively. In each window, the sum
of the frequencies of all true haplotypes that we were able
to detect was always >96.5% for the non-PCR sample and
>99.0% for the PCR sample.

Clinical samples

We applied error correction, haplotype reconstruction and
frequency estimation to NGS data obtained from two
clinical samples derived from two HIV-infected patients
suspected to be in the same infection chain. The
ShoRAH algorithm was run on the aligned reads and
the output was used to make inference about the genetic
diversity of the two viral quasispecies and about the dis-
tribution of drug resistance among individual clones of the
populations. We focused on the 99 codons of the HIV-1
protease and considered all reads that covered this 297 bp
region completely: 891 reads for Patient 1 and 3272 reads
for Patient 2.
In Figure 4, the allele frequency spectrum is shown after

translation into amino acids. The consensus sequences for
Patients 1 and 2 share the following mutations relative to
the HXB2 reference strain: V3I, T12S, L19I, S37N, I54V,
D60E, L63P, V77I and I93L, some of which are associated
with resistance to PIs (16). They differ only at Position 10,
where for Patient 1 an isoleucine is observed and a valine
for Patient 2. However, we identified several additional
mutations at low frequencies and the pattern of this vari-
ation was very different between the two patients. Sanger
sequencing would not be able to detect this variation,
because the frequency of most mutations is far below it
detection limit of �20% (Figure 4).
The allele frequency spectrum provides only a summary

of the underlying population structure that ignores covari-
ation, or phasing, of mutations at different sites of the
genome. The real strength of NGS is to locally resolve

Figure 3. Frequency estimation with the clustering method. In each window true frequency of the haplotypes was estimated by aligning the raw
reads to the original sequences (direct mapping) for non-PCR-amplified sample (a) and PCR-amplified sample (b). Then, haplotypes were recon-
structed and it was checked whether they matched the originals in identity and frequency. Circles represent perfect matches with one of the original
haplotypes, triangles indicate imperfect match. Except for a few spurious cases at low frequencies, there is good agreement both in identity and
frequency between inferred and actual haplotypes.
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the population structure. On the DNA level, we identified
a total of 13 different haplotypes for Patient 1, and 15
different haplotypes for Patient 2, all with posterior
probabilities close to one, which gave rise to five and six
different protein sequences for Patients 1 and 2, respect-
ively, (Supplementary Table S1). Using the cut-off method
and a threshold of 50 observations to support a variant,
we would call only 2 haplotypes for Patient 1 and 12 for
Patient 2.
To compare the diversity of the two protease

quasispecies, we employed two statistical tests on the
estimated virus populations, i.e. on the inferred haplotype
sequences and frequencies. A general non-parametric pro-
cedure for comparing vectors with categorical components
was used to detect differences between the two haplotype
distributions (36). The permutation test indicated that the
observed difference between the quasispecies could not be
explained by the sampling variance alone (P < 5� 10�4)
and hence is more likely to be the result of evolutionary
change. We also quantified the amount of genetic diversity
found in either population using the Simpson’s index (37).
The Simpson’s, index is defined as D ¼

Pn
i¼1 p

2
i , where pi

is the frequency of the i-th haplotype. It is the probability
that two sequences that are randomly drawn from the
population are identical. Thus, a low Simpson’s, index
indicates a high level of diversity. We found significantly
higher viral genetic diversity in Patient 1
(D ¼ 0:115� 0:005) than in Patient 2 (D ¼ 0:138� 0:004).
The reconstructed virus populations show a diverse

pattern of drug resistance mutations. PI resistance can
be caused by many different protease mutations and
usually it is mediated by combinations of these (27). To
account for the effect of mutational patterns, we

predicted, for each inferred haplotype, the level of pheno-
typic drug resistance to the PIs atazanavir, lopinavir,
amprenavir, saquinavir and tipranavir (see ‘Materials
and Methods’ section). The results are reported in
Supplementary Table S1 and visualized for lopinavir in
Figure 5 and for all five drugs in Supplementary
Figure S9. Haplotype sequences are shown as discs in
the plane in such a way that their pairwise distances

Figure 4. HIV protease amino acid allele frequency spectra of two patient samples. We analysed the frequency of amino acid substitution in the
protease for two patients suspected to be in the same infection chain. They both present the drug resistance mutation I54V. Their consensus
sequences differ at Position 10, Patient 1 showing an isoleucine and Patient 2 a valine. The horizontal line shows the 20% threshold typical of
Sanger sequencing.

Figure 5. Structure of the viral quasispecies and predicted resistance to
lopinavir. Circles represent detected haplotypes translated into amino
acid sequences. The size reflects the frequency of the amino acid se-
quences, while the fill colour indicates the predicted resistance to the PI
lopinavir. Green indicates higher and red lower levels of predicted drug
susceptibility. The circles are positioned in the plot such that their
distance approximately preserves the Hamming distance of the amino
acid sequences. The number and the letter next to each circle denote,
respectively, the patient and the protease sequence reported in the
Supplementary Data.
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reflect the Hamming distances in sequence space. The size
of the discs is proportional to the haplotype frequency and
the colour indicates the level of resistance. This analysis
revealed variation in the predicted levels of PI resistance
not only between the two patient samples, but also within
individual quasispecies. For example, the viral
quasispecies of Patient 1 displays differential levels of re-
sistance to four of the five PIs, and the virus population of
Patient 2 contains a low-frequency clone with reduced
susceptibility to lopinavir and tipranavir. The latter haplo-
type would almost certainly go undetected with Sanger
sequencing.

DISCUSSION

We have shown how NGS can detect low-frequency
variants in a mixed sample, provided that the technical
sequencing errors are properly treated. Without this
step, technical artefacts can easily be mistaken for real
variants, and the amount of variation detected would ne-
cessarily overestimate the real one. In the case of HIV
infection, low-frequency drug resistance mutations have
been correlated with treatment failure (14,15). Thus,
reliable estimates of these minority variants are crucial
in effectively tailoring anti-viral therapy.

Different error sources can affect the reliability of these
estimates. Reverse transcription and PCR amplification
can introduce mismatches in the DNA sequences.
Recombination between different templates in PCR can
introduce haplotypes not existing in the original sample,
and haplotypes can be amplified with different efficiency
in the PCR reaction, altering the frequency spectrum of
the original mixture. Finally, the sequencing process is far
from being error-free.

We designed control experiments in order to investigate
several error sources in a quantitative manner. In particu-
lar, we assessed two types of errors introduced by PCR
amplification: recombination and amplification bias. We
found that a fraction of <2% of the reads most likely
originated from cross-over events during PCR amplifica-
tion. Selective amplification (a change in the spectrum of
frequencies after PCR) was also observed (see Control
experiments in ‘Materials and Methods’ section). We
conclude that PCR reactions must be designed and per-
formed with great care in order to avoid artificial recom-
binants and to decrease the amount of bias in the
investigated sample (33).

However, in our analysis we could separate these error
sources from those due to pyrosequencing, and we could
assess the performance of the ShoRAH algorithm used to
correct sequencing errors. We obtained up to a five-fold
decrease in the error rate, from 0.25% to 0.05% per base.

The cut-off method often used to detect minority
variants requires previous knowledge of the sequencing
error rate in order to set an optimal threshold for the
minimum number of reads to call a variant. In contrast,
the Bayesian method employed here does not require the
error rate as input, but estimates it from the data. Using
data from the control experiments we showed that, in fact,
any choice of such a cut-off value results in poor

haplotype reconstructions suffering from either low preci-
sion or low recall, and often both.
We stress that, unlike conventional Sanger sequencing,

deep sequencing can detect the co-occurrence of mutations
at least at a distance of the read length. Full HIV protease
haplotypes were reconstructed from samples obtained
from infected patients and showed how in a single host
a diverse pattern of drug resistance can be observed. In
HIV as well as in other viral infections, it will be of interest
to investigate whether therapeutic interventions will
benefit from the higher level of detail at which the viral
population can be studied.
The data present in drug resistance databases, such as

those used for the predictions shown in Figure 5, report
phenotypic resistance to antiviral drugs of the entire popu-
lation, but the matched DNA sequences are obtained by
traditional Sanger sequencing. These data cannot inform
about the contribution of individual clones to the level of
resistance of the whole population. Therefore, the predic-
tions shown in Figure 5 should be interpreted as the level
of phenotypic drug resistance that can be expected in case
the respective clone becomes dominant in the population.
From a therapeutic point of view, the structure of the
whole population is likely to have prognostic value,
because pre-existing resistant minority clones will be
selected rapidly as soon as the corresponding selective
drug pressure is applied. In the future, models for predict-
ing phenotypic drug resistance might include information
on the viral population structure rather than the consen-
sus sequence alone, eventually leading to a better under-
standing of resistance mechanisms.
Reliable reconstruction of the virus population is a

prerequisite for making inference about the population
structure, and it can serve as a starting point for epidemio-
logical and clinical investigations. For example, the
pattern of diversity observed in Figure 5 shows that the
intra-patient diversity is larger than the inter-patient di-
versity, suggesting a close epidemiological link. Although
it is in general difficult to establish the occurrence and the
direction of transmission events with certainty, reliable
high-resolution estimates of the population structure can
be used in phylogenetic analyses to support or reject trans-
mission hypotheses (38).
The knowledge of the population structure at the local

level (on the order of the read length) can be used to re-
construct the haplotypes at a global level. Combinatorial
approaches that assemble the reads after error correction
into longer haplotypes have been proposed (25). Together
with information obtained from paired-end reads, local
structure estimates impose constraints on the global struc-
ture of haplotypes. We envisage extending our model of
read generation from diverse haplotypes to the reconstruc-
tion of larger regions, and even the entire viral genome in
the future.
An important step will be extending the ShoRAH algo-

rithm to read data obtained from other NGS technologies,
including the Illumina and SOLiD platforms, and high-
lighting the advantages and disadvantages of each in this
specific application. Moreover, we foresee a better usage
of base-specific quality scores, which we used here only to
discard low-quality reads. The simple error model used in
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our approach does not distinguish between different sub-
stitutions as it considers the probability of a technical
error independent of both the real and the erroneous
base. It has been observed, for example for the Illumina
platform (39), that some substitutions occur more fre-
quently than others, and a model with additional param-
eters might take this into account. Such a model might be
more accurate, but would not be efficient in correcting
technical insertions and deletions. For this reason, we
believe that another important contribution might be to
perform alignment and error correction within the same
probabilistic framework. A promising effort in this direc-
tion, though directed to metagenomics, has been recently
presented (40).
Genetic diversity is important not only in retrovirus in-

fections, but also in cancer and bacterial communities
(41). We imagine the application of error correction to
NGS data to all cases where sequencing is targeted
towards a genetically heterogeneous sample and the goal
is to estimate the structure of the population.
Understanding the relation between phenotypic features
of a pathogen population and its genetic structure will
help in understanding the pathogenicity of parasite popu-
lations and possibly lead to the discovery of novel thera-
peutic options.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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