
Error Correction Techniques for Handwriting, Speech, and
other ambiguous or error prone systems

Jennifer Manko� & Gregory D. Abowd GVU Center & College of Computing
Georgia Institute of Technology, Atlanta, GA, USA

+1 404 894 7512
jmanko�@cc.gatech.edu, abowd@cc.gatech.edu

http://www.cc.gatech.edu/fce/pendragon

ABSTRACT

Interfaces which support natural inputs such as hand-

writing and speech are becoming more prevalent and

this is a desirable trend. However, these recognition-

based interface techniques are error prone. Despite re-

search e�orts to improve recognition rates, a certain

amount of error will never be removed. Suitable re-

search e�orts should attend to the problem of correc-

tion techniques for these error prone techniques. Hu-

mans have developed countless ways to correct errors

in understanding or clarify ambiguous statements. It is

time for interface designers to focus on ways for comput-

ers to do the same. We present a survey of the design,

implementation, and study of interfaces for correcting

error prone input technologies. Previous work by others

and our own research into 
exible pen-based note-taking

environments grounds our research into interface tech-

niques for handling errors in recognition systems.

KEYWORDS: handwriting and speech recognition, in-

terface design, error handling

1 INTRODUCTION

1.1 Motivating the Problem

Computer interfaces which support more natural hu-

man forms of communication (e.g. handwriting, speech,

and gestures) are beginning to supplement or replace

elements of the GUI paradigm. These interfaces are

lauded for their low learning curves and their ability to

support tasks such as authoring and drawing without

drastically changing their structure. Additionally, they

can be used by people with disabilities that make the

traditional mouse and keyboard less accessible.

Unfortunately, these new interfaces come with a

new set of problems |they make mistakes. When errors

occur, the initial reaction of system designers is to try

to eliminate them, for example by improving recogni-

tion accuracy. This is often a di�cult task |Buskirk &

LaLomia (1995) found that an improvement of 5-10% is

necessary before the majority of people will even notice

GVU Tech Report GIT-GVU???

a di�erence in a speech recognition system.

Worse yet, eliminating errors may not be possible.

Even humans make mistakes when dealing with these

same forms of communication. As an example, con-

sider handwriting recognition. Even the most expert

handwriting recognizers (humans) can have a recogni-

tion accuracy as low as 54% when looking at word frag-

ments without the bene�t of their context (Schomaker,

1994). Human accuracy increases to 88% for cursive

handwriting (Schomaker, 1994), and 96.8% for printed

handwriting (Frankish et al., 1995), but it is never per-

fect. This evidence all points to the conclusion that

computer handwriting recognition will never be perfect.

Computer-based recognizers are even more error

prone than humans. The data they start with is of-

ten less �ne-grained than that which humans are able

to sense. They have less processing power. And vari-

ables such as vocal fatigue can cause usage data to di�er

signi�cantly from training data, causing reduced recog-

nition accuracy over time in speech recognition systems

(Frankish et al., 1992).

On the other hand, recognition accuracy is not the

only determinant for user satisfaction. Both the com-

plexity of error recovery dialogues (Zajicek & Hewitt,

1990), and the amount gained for the e�ort (Frank-

ish et al., 1995), a�ect user satisfaction. For example,

Frankish found that users were less frustrated by recog-

nition errors when the task was to enter a command in

a form than when they were writing journal entries. He

suggests that this is because the pay-back for entering

a single word in the case of a command is much larger

than in a paragraph of a journal entry when compared

with the e�ort of entering the word.

Error handling is not a new problem. In fact, it

is endemic to the design of computer systems which at-

tempt to mimic human abilities. Research in the area of

error handling for recognition technologies must assume

that errors will occur, and then answer questions about

the best ways to deal with them. The goal of this paper

is to present a survey of existing research in discovering

and correcting errors in recognition based interfaces.



1.2 De�ning The Area

Our survey has have identi�ed �ve key research areas

for error handling of recognition-based interfaces.

Error reduction Error reduction involves research into

improving recognition technology in order to eliminate

or reduce errors. It has been the focus of extensive re-

search, and could easily be the subject of a whole pa-

per on its own. Evidence suggests that its holy grail,

the elimination of errors, is probably not achievable.

And big improvements (5-10%) are required before

users even notice a di�erence (Buskirk & LaLomia,

1995). Because of these facts, we have chosen not to

address error reduction in this paper.

Error discovery Before either the system or the user

can take any action related to a given error, one of

them has to know that the error has occured. The

systemmay be told of an error through user input, and

can help the user to �nd errors through its output. In

addition, system designers have used three techniques

to automate error discovery |thresholding, rules, and

historical statistics.

Error correction techniques Just as the user inter-

face is the only way one party can inform the other

that an error has occured, it is also the only way that

the user can correct an error. We found that current

error handling techniques fall into three main cate-

gories |choosing a default, encouraging less ambigu-

ous input, and mimicking natural human correction

strategies.

Validation of techniques Validation goes hand in hand

with research into error correction techniques. Valida-

tion is the only way to determine the e�ectiveness of

di�erent designs. Our survey uncovered research into

theoretical issues such as how to compare techniques,

and practical results such as which techniques are ef-

fective.

Toolkit level support Toolkits provide reusable com-

ponents and are most useful when a class of common,

similar problems exists. Interfaces for error handling

would bene�t tremendously from a toolkit which could

be used and re-used every time an error prone situa-

tion arose. In addition to interface widgets, a toolkit

would need to support complete reversibility, and keep

track of multiple potential interpretations at once.

In addition to surveying existing work, we are build-

ing a platform to test strategies for dealing with seg-

mentation errors, handwriting recognition errors, and

gesture recognition errors (see Figure 1). Our system,

called PenPad, supports handwriting recognition in the

context of personal note-taking. Our motivation for this

application is to support note taking and document cre-

ation in situations when typing is not an option. This

Figure 1: PenPad’s user interface. The words: Pen-
pad; around; both the; all; potential; were all recog-
nized correctly. The darker the word, the surer the rec-
ognizer is of this. The word “interpretations” was rec-
ognized incorrectly. When the user moves the mouse
over this word, five alternatives are displayed, shown
in the blow-up. The words “ink, and” were originally
incorrect, but the user was able to select them from a
similar set of five potential choices.



includes mobile settings, and users with repetitive stress

injuries or other disabilities which make keyboard typ-

ing di�cult.

The rest of this paper describes the results of our

survey. We discuss research in each of the last four

sub-areas mentioned above |error discovery, error cor-

rection techniques, validation of techniques, and toolkit

level support.

2 ERROR DISCOVERY

Before the system can support error recovery in any way,

or the user can handle an error, one or the other needs

to know that an error has occurred. The user interface

is a conduit through which the system and user can

pass information. User input can notify the system of

an error (and correct it, described in more detail in the

next section). And it is through visual or oral feedback

that the system helps the user to identify errors.

The system can also try to determine when it has

made a mistake without the user's help, either through

thresholding (Baber & Hone, 1993; Poon et al., 1995;

Brennan & Hulteen, 1995), a rule base (Baber & Hone,

1993; Davis, 1979), or historical statistics (Marx &

Schmandt, 1994).

2.1 User input to help the system �nd

errors

In the most common approaches to noti�cation, the

user explicitly indicates the presence of an error by, for

example, clicking on a word, or saying a special key-

word. Many speech and handwriting recognition sys-

tems use this approach. Three well known examples

are the PalmPilottm, DragonDictatetm, and the Apple

MessagePadtm. For example, when the user clicks on a

word in the Apple MessagePadtm, a menu of alternative

interpretations appears.

In cases where there is no special interface for noti-

�cation or correction, user action may still help the sys-

tem to discover errors. For example, if the user deletes

a word and enters a new one, the system may infer that

an error has occurred by matching the deleted word to

the new one.

2.2 System output to help the user �nd

errors

There is a plethora of hidden information available to

the system designer which can help users to identify

errors. The likelihood that something is correct, the

history of values an item has had, other possible val-

ues it could have, and the user's original input are just

a few of the non application-speci�c ones. Our survey

shows that designer after designer has found it bene�-

cial to reveal some of this hidden information to the user

(Brennan & Hulteen, 1995; Davis, 1979; Goldberg &

Goodisman, 1991; Igarashi et al., 1997; Kurtenbach

et al., 1994; Rhodes & Starner, 1996) Two of the most

Figure 2: Pictures of two user interfaces, adapted from
a paper about drawing understanding (A, left) (Gold-
berg & Goodisman, 1991), and pen input (B, right)
(Igarashi et al, 1997)

common pieces of information to display are the proba-

bility of correctness (called certainty in this paper), and

multiple alternatives.

An example of a system which shows information

about certainty is the PenPad system. The probability

of correctness is displayed through color. For example,

the typewritten word PenPad is lighter (less certain)

than the corresponding words ink, and in Figure 1. Fig-

ure 2 shows two example systems which display multi-

ple alternatives. The �rst (Figure 2A) is a drawing un-

derstanding system designed by Igarashi et al. (1997).

The bold line represents the system's current top guess.

The dotted lines represent potential alternatives, and

the plain line is a past accepted guess. Figure 2B shows

a character recognition system designed by Goldberg &

Goodisman (1991). The larger character is the system's

top choice; the two smaller letters are the second and

third most likely possibilities. In both systems, the user

can click on an alternative to tell the system that its

default choice should be changed. In both systems, if

the user continues input as normal, they are implic-

itly accepting the default choice. Interestingly, although

Igarashi had success with this approach in his drawing-

understanding system, Goldberg and Goodisman found

that it required too great a cognitive overhead to be

e�ective in their character recognition system.

Both certainty and the display of multiple alter-

natives can also be achieved in an audio-only setting,

as demonstrated by Brennan & Hulteen (1995). They

base their approach on linguistic research showing that

humans reveal positive and negative evidence as they

converse. Positive evidence is output which con�rms

that the listener has heard the speaker correctly. For

example, the listener may spell back a name which has

just been dictated to them. Negative evidence is output

which somehow reveals that the listener (in this case,

the recognition system) is not sure they have under-

stood the speaker correctly. Examples are repeating the

speaker's sentence and replacing the questionable word



with a pause or simply saying \Huh?" Negative evidence

can also be used to display multiple alternatives, So, for

example, the system may say \call John or Jane?" in

response to a user's request. Brennan and Hulteen built

a sophisticated response system using both techniques.

They make use of positive and negative evidence, and

they limit the display of alternatives based on a contex-

tual analysis of the likelihood of correctness.

Another setting in which multiple alternatives are

commonlydisplayed is word prediction (Alm et al., 1992;

Greenberg et al., 1995). Word prediction is often used

to support communication and productivity for people

with disabilities which make typing, and in some cases

even using a mouse, very di�cult. As the user types

each letter, the system retrieves a list of words which

are the most likely completions of what has been typed

so far. Often there are a large number of potential com-

pletions, and many are displayed at some distance from

the actual input on screen.

2.3 Thresholding

Many error prone systems return some measure of the

probability that each result is correct when they return

the result. This probability represents the con�dence

of the interpretation. The resultant probabilities can

be compared to a threshold. When they fall below the

threshold, the system assumes an error has occurred.

When they fall above it, the assumption is that no error

has occurred. Most systems set this threshold to zero,

meaning they never assume that there has been a mis-

take. Some systems may set it to one, meaning they

always assume they are wrong (e.g., word prediction),

and other systems try to determine a reasonable thresh-

old based on statistics or other means (Poon et al., 1995;

Brennan & Hulteen, 1995; Baber & Hone, 1993).

2.4 Rules

Baber & Hone (1993) suggest using a rule base to deter-

mine when errors may have occurred.This can prove to

be more sophisticated than either statistics or thresh-

olding since it allows the use of context in determining

whether an error has occurred. An example rule might

be:

When the user has just written `for (', lower the probabil-

ity of correctness for any alternatives to the next word they

write which are not members of the set of variable names

currently in scope.

This goes beyond simple statistics because it uses knowl-

edge about the context in which a word has been written

to detect errors.

2.5 Historical Statistics

When error prone systems do not return a measure of

probability, or when the estimates of probability may

be wrong, new probabilities can be generated by doing

a statistical analysis of historical data about when and

where the system makes mistakes. This talk itself bene-

�ts from good error discovery. A historical analysis can

help to increase the accuracy of both thresholding and

rules. For example, Marx & Schmandt (1994) compiled

speech data about which letters were misrecognized as

\e", with what frequencies, and used them as a list of

potential alternatives whenever the speech recognizer re-

turned \e". They did the same for each letter of the

alphabet.

The example below shows pen data for \e" gen-

erated by the �rst author by repeating each letter of

the alphabet 25 times in a PalmPilottm. The �rst col-

umn represents the letter that was written; the other

columns show which letters the PalmPilottm Gra�titm

recognizer returned. Only letters which were mistaken

for \e" are shown.

original top guess other guesses

e e(100%)

k k(72%) l(16%), e(8%), s(4%)

l l(80%) c(17%), e(3%)

This sort of matrix is called a confusion matrix be-

cause it shows potential correct answers that the system

may have confused with its returned answer. In this way,

historical statistics may provide a default probability of

correctness for a given answer. More sophisticated anal-

yses can help in the creation of better rules or the choice

of when to apply certain rules.

Although error discovery is a necessary component

of error handling interfaces, it has a stigma associated

with it: The task of error discovery is itself error prone.

Rules, thresholding, and historical statistics may all be

wrong. Even when the user's explicit actions are ob-

served, the system may incorrectly infer that an error

has occurred. Only when the user's action is to explic-

itly notify the system of an error can we be sure that

an error really has occurred in the user's eyes. In other

words, all of the approaches mentioned may create a new

source of errors, leading to a cascade of error handling

issues.

3 ERRORCORRECTION TECHNIQUES

Once a mistake has been identi�ed, the system can take

action to correct it, or ask the user's help in correcting

it (through some sort of error handling interface). Al-

ternatively the system can support error handling in an

integrated fashion. For example, the interactive beauti-

�cation system shown in Figure 2A displays alternatives

after every stroke. The same interface also supports no-

ti�cation |if the user selects an alternative, the system

can infer that the original default was wrong and the

alternative is correct.

Most of the tasks being supported require the selec-

tion of a single correct interpretation of user input (one



exception to this is search engines, which may have mul-

tiple correct responses). One important choice facing

the designer of error handling techniques is how active

the system should be in selecting this interpretation. Es-

sentially, the designer must choose whether to accept the

most certain choice by default, or to wait for user con-

�rmation. The �rst part of this section discusses where

each choice has shown up in the literature, and why. The

remaining parts discuss two commonly used techniques

for error handling, encouraging less ambiguous input,

and mimicking natural human correction strategies.

3.1 Choosing a Default

The number of answers returned by an error prone sys-

tem is often larger than the number of answers expected

by the user. This leaves the interface designer with the

choice of selecting none of the answers, or selecting one

(or more) of the answers as \correct" by default. For

example, the drawing understanding system mentioned

above selects one line by default (shown bold in Fig-

ure 2A) (Igarashi et al., 1997). The interface designer

should use information about the probability of correct-

ness and the overhead for correcting a mistaken choice

of default to decide when it is appropriate to choose a

default. In the case of the drawing understanding sys-

tem, the interface is designed so that the user does no

more work when the system selects a default than when

it doesn't. And if the system selects the correct choice,

the user does less work (since they don't have to select

it themselves before they continue drawing).

An example of a system which does well to select

nothing by default is Rhodes & Starner's (1996) remem-

brance agent. The remembrance agent retrieves docu-

ments based on their relevance to the current text in an

editor. Rather than immediately displaying the most

relevant document, it has a small permanent window

where it shows a single line from each of three potentially

interesting documents. Actually selecting a document

and displaying it would be far more invasive, di�cult to

correct, and often not what the user wants. Even if the

system has found relevant documents, the user may not

want to be interrupted in order to read them.

Word prediction systems also demonstrate why the

designer may choose not to select a default. If, for ex-

ample, the system assumes its top prediction is correct,

it will insert it. But word prediction is a particularly dif-

�cult task in which the top choice is often wrong. And

it will most likely take more keystrokes for the user to

delete the mistake and continue typing than it would to

have simply typed the whole word out in the �rst place,

especially if similar mistakes happen automatically after

every character typed.

Even when it is appropriate to choose a default for

the user, this choice may be wrong, and because of this

the user interface needs to support error correction. One

way to support this is to display alternatives from which

the user can select a correct choice. Another approach

is to unobtrusively provide ways to change the default

without necessarily displaying alternatives. For exam-

ple, Goldberg & Goodisman (1991) suggest using a sim-

ple gesture (a tap) to select the next choice. As another

example, consider the Tivoli system in which some in-

puts are interpreted as gestures and others simply as ink

to be drawn on the screen (Moran et al., 1997). If a user

draws a gesture which could trigger an action, such as

\move", the system by default assumes that the action is

intended (and not simply drawing on the screen). How-

ever, if the user doesn't follow through (by selecting an

object to move in this case), Moran et al. automatically

undo it, replacing it instead with its alternate interpre-

tation as plain ink.

3.2 Encouraging Less Ambiguous Input

Certain modes of input are known to be less error prone

than others (compare typing to handwriting recogni-

tion), and there are times when it is appropriate to

make use of this fact. For example, Suhm found that

recognition accuracy actually decreases by 10{65% dur-

ing this sort of error repair in a speech recognition sys-

tem (Suhm, 1997)). One option is for the computer

to o�er a less ambiguous input method as an alterna-

tive. This technique has been used e�ectively in the

Apple MessagePadtm, as well as for speech input (Marx

& Schmandt, 1994), pen input (Goldberg & Goodisman,

1991), and a mixture of the two (Suhm et al., 1996b).

Alternatively, an interface designer may choose to

encourage a less error prone input from the outset. For

example, the designers of the PalmPilottm chose to use

a unistroke alphabet (Goldberg & Richardson, 1993). It

is easier to recognize unistrokes than to recognize hand-

writing because there is no possibility of segmentation

errors since each letter is exactly one stroke (pen up

to pen down). In another example, Goldberg & Good-

isman (1991) suggest using on-screen marks (boxes) to

reduce segmentation errors and discourage cursive hand-

writing.

Several researchers have made use of a human's ten-

dency to mimic the output of whatever they are commu-

nicating with. Zoltan-Ford (1991) found that people will

mimic sentence structures of the computer's responses,

something that helps to make natural language process-

ing easier. Kurtenbach et al. (1994) investigated the

use of crib sheets which display gestures for a user to

copy. The user can request an animation of a command

by clicking on its picture on the crib sheet. Crib sheets

have also been found to successfully improve recognition

in a character recognition system (Wolf, 1990).

3.3 Mimicking Natural Human Correc-

tion Strategies

Although computers are a major source of errors, hu-

mans also make mistakes. Both experience and research



have shown that humans already have ways of correct-

ing mistakes. They may cross out a letter or add an-

other letter or word to what they just wrote. When

they mis-speak, they may pause, or repeat the correct

word; with or without the addition of non-speech au-

dio cues to indicate an error. These are what we call

`natural' correction strategies.

These \corrections" are so natural that users may

do them even though most recognizers don't know how

to interpret the corrections. Huerst et al. (1998) have

experimented with a handwriting pre-processor which

looks for and applies these corrections before sending

handwriting to the recognizer.

Essentially what the user is doing in this strategy is

correcting their original input in its original form, per-

haps even in the midst of entering it. This is done with

handwriting, speech, and more novel types of input. For

example, we support this strategy in our unistroke key-

board (Manko� & Abowd, 1998).

Brennan & Hulteen's (1995) work in applying lin-

guistic research to interface design (described above in

the section on Error Discovery) also demonstrate the

usefulness of mimicking humans. One human strategy

which they don't mimic is the pause. However, the ques-

tions of when and how long to pause have been investi-

gated by several researchers (Aref et al., 1995; Kato &

Nakagawa, 1995; Lopresti & Tomkins, 1995; Kurten-

bach et al., 1994).

For example, Kurtenbach et al. (1994) use a pause

to allow a user to request guidance when drawing a ges-

ture. Each gesture is really a selection from a pie menu,

which is only displayed if the user pauses (these gesture

sets are called marking menus). A pause can also be

used to support delayed, or lazy recognition. Schomaker

(1994) suggests echoing the input in the case of \invisi-

ble" commands such as gestures. The system could then

provide a moment in which the user can act to undo a

command before it becomes permanent.

4 VALIDATION OF TECHNIQUES

Designers need some basis for choosing between the huge

number of possible techniques that can support error

handling. User studies, and other standard HCI meth-

ods for gathering qualitative and quantitative data about

user interfaces, can be a major source of guidance. A

variety of results which can guide us in the design of

error recovery interfaces are already present in the lit-

erature. Although many of these studies are small and

limited in their representation, this only demonstrates

how much we have to gain from investigating the area

more deeply.

One place to begin is by observing users in situa-

tions where error correction occurs |both in everyday

life (Baber & Hone, 1993; Zajicek & Hewitt, 1990),

and in interactions with error prone computer programs

(Nanja & Cook, 1987). For example, both Baber and

Hone, and Zajicek and Hewitt, studied the e�ective-

ness of human-like recovery strategies in the context of

speech recognition. Their work veri�es that linguistic

theories about human conversation patterns can be used

to guide error recovery techniques.

Although it is possible to ask the user direct ques-

tions about how they handle errors, this may miss the

point since the best error handling happens with as lit-

tle conscious attention as possible. An alternative is to

compare task completion speeds with and without er-

ror correction support, and to test for satisfaction and

frustration. Some innovative work in measuring frus-

tration quantitatively as well as qualitatively was done

by Riseberg et al. (1998) in their research of a�ect (the

measurable aspects of emotions).

In order to compare studies of di�erent interfaces

for error correction which can be used in the same ap-

plication, Suhm (1997) suggests normalizing the data

based on the number of errors which occur. For systems

which generate ASCII, he also devised a way to relate

accuracy to words per minute (Suhm et al., 1996a).

The simplest type of error correction possible is to

simply repeat the input which was mistaken. Our survey

uncovered several studies which compare some more so-

phisticated correction technique to repeat. Zajicek and

Hewitt found that users prefer to repeat their input at

least once before having to choose from a menu, a �nd-

ing con�rmed by Ainsworth & Pratt (1992). Also, in

the realm of pen input, Goldberg & Goodisman (1991)

found that even when alternative guesses are displayed,

it takes too much cognitive e�ort for the user to select

from them,a result that meshes with observations about

input speed made in the word prediction community

(Alm et al., 1992). Baber & Hone (1993) give a good

overview of the pros and cons of repetition vs choice.

Suhm (1997) added to this work when he found that

spoken repetition is faster than choosing from a list,

but something like partial word repair is better than

both. Partial word repair allows users to correct part of

a word when it is almost correct. This could be done

either with a pen or with spoken input.

User testing can help to identify the sources of er-

rors as well as with the design of error handling tech-

niques. For example, Frankish et al. (1995) found that

systems tend to misunderstand a subset of possible writ-

ten inputs much worse than the rest, a result con�rmed

byMarx & Schmandt (1994)in the realm of speech recog-

nition.

5 TOOLKIT LEVEL SUPPORT FOR ER-

ROR HANDLING

Toolkits support the creation and use of reusable com-

ponents. One of the most common application areas for

toolkits is building user interfaces by combining wid-



gets, especially graphical user interfaces. One bene�t of

using toolkits is that they make sophisticated interface

features available to every programmer. If we can iden-

tify reusable components in the domain of error han-

dling, perhaps we can provide toolkits which make it

more likely that interface designers will include support

for error handling in their interfaces.

The domain of interfaces for error handling has sig-

ni�cant overlap with toolkits for building user interfaces.

There are two key features that are needed to support

error handling |complete reversibility, and support for

keeping track of multiple potential interpretations at

once. Without the former, the system may not easily

be able to undo wrong choices which the user may have

had no part in (and thus may be unable to help to cor-

rect). Without the latter, the system has to commit to

a single interpretation at each stage, possibly throwing

away potentially useful data. Incorporating multiple po-

tential interpretations into the interface is also di�cult

without the support of the toolkit.

There is a lot of work on introducing undo/ re-

versibility into GUI toolkits, particularly in the object-

oriented toolkits. For example, the Amulet system sup-

ports both regular and selective undo (Myers & Kosbie,

1996). A more theoretical treatment of the subject can

be found in Thimbleby's (1990) book on User Interface

Design.

In addition, both reversibility and support for mul-

tiple potential interpretations were addressed in the work

of Hudson & Newell (1992) on probabilistic state ma-

chines for handling input. However, this work focused

on the event handling stage of an interface toolkit and

is most applicable to handling visual feedback. For ex-

ample, if there is uncertainty as to whether the user is

pointing at button A or button B, a probabilistic state

machine would simplify the task of highlighting both

buttons. However, it is not clear that the same sys-

tem could keep track of the multiple potential system

states that might result from potentially pressing both

buttons.

In experimenting with the best way to support cor-

rection in PenPad (see Figure 1), the need for a toolkit

became immediately obvious. Even attempts at a sim-

ple problem such as trying out di�erent approaches to

displaying di�ering numbers of alternatives around each

handwritten word are hindered by the lack of toolkit

level support. One of our �rst goals is to create a toolkit

which will help to solve these problems. This infrastruc-

ture will also simplify the task of comparing and testing

techniques.

6 CONCLUSION

We have surveyed error handling techniques for recog-

nition, prediction, search, and other ambiguous or error

prone systems. This surveys covers work in the areas

of error discovery, error handling techniques, validation,

and toolkit level support. Although we have uncovered

extensive work in many of these areas, signi�cant ques-

tions remain.

Error discovery How can we improve the accuracy of

error discovery? How should errors in error discov-

ery be handled? What is the best technique for error

discovery and how does this change depending on the

situation?

Error correction techniques Does error handling re-

quire new types of interfaces or widgets di�erent from

other interfaces? When should error handling occur?

How integrated should error handling interfaces be

with the normal work
ow/interface?

Validation of techniques How can we compare meth-

ods across applications? Is it possible to uncover gen-

eral rules for the design of error handling interfaces?

Toolkit level support Is it possible to separate out

and encapsulate interface techniques for error han-

dling? What techniques belong in such a toolkit? Is

complete reversibility possible, and if not what are the

alternatives? Are there e�cient ways of keeping track

of increasing numbers of probabilities?

In our own research, we are developing the Pen-

Pad system as a platform for answering some of these

questions. Our �rst task is to develop a toolkit which

supports the techniques uncovered in this survey. In

addition to encapsulating standard techniques, we plan

to continue to work on developing innovative new tech-

niques and investigating existing HCI techniques which

could be applied to error correction.

REFERENCES

Ainsworth, W. A. & Pratt, S. R. (1992), \Feedback Strate-
gies for Error Correction in Speech Recognition Sys-

tems", International Journal of Man-Machine Studies

36(6), 833{842.

Alm, N., Arnott, J. L. & Newell, A. F. (1992), \Predic-
tion and conversational momentum in an augmentative

communication system", Communications of the ACM

35(5), 46{57.

Aref, W. G., or Kamel, I. C. & Lopresti, D. P. (1995),

\On Handling Electronic Ink", ACM Computing Sur-

veys 27(4), 564{567.

Baber, C. & Hone, K. S. (1993), \Modelling Error Recovery
and Repair in Automatic Speech Recognition", Interna-

tional Journal of Man-Machine Studies 39(3), 495{515.

Brennan, S. E. & Hulteen, E. A. (1995), \Interaction and

Feedback in a spoken language system: A theoreti-
cal framework", Knowledge-Based Systems 8(2-3), 143{

151.



Buskirk, R. V. & LaLomia, M. (1995), The Just Noticeable

Di�erence of Speech Recognition Accuracy, in Proceed-
ings of ACM CHI'95 Conference on Human Factors in

Computing Systems, Vol. 2 of Interactive Posters, p.95.

Davis, R. (1979), \Interactive transfer of expertise: acqui-

sition of new inference rules", Arti�cial Intelligence
12, 121{157.

Frankish, C., Hull, R. & Morgan, P. (1995), Recognition Ac-
curacy and User Acceptance of Pen Interfaces, in Pro-

ceedings of ACM CHI'95 Conference on Human Factors

in Computing Systems, Vol. 1 of Papers: Pen Interfaces,
pp.503{510.

Frankish, C., Jones, D. & Hapeshi, K. (1992), \Decline in
Accuracy of Automatic Speech Recognition as Function

of Time on Task: Fatigue or Voice Drift?", International

Journal of Man-Machine Studies 36(6), 797{816.

Goldberg, D. & Goodisman, A. (1991), STYLUS User Inter-
faces for Manipulating Text, in Proceedings of the ACM

Symposium on User Interface Software and Technology

| UIST'91, ACM Press, pp.127{135.

Goldberg, D. & Richardson, C. (1993), Touch-Typing with a

Stylus, in Proceedings of ACM INTERCHI'93 Confer-
ence on Human Factors in Computing Systems, Formal

Video Programme: Novel Technologies, p.520.

Greenberg, S., Darragh, J. J., Maulsby, D. & Witten, I. H.

(1995), Extra-ordinary Human-Computer Interaction:
interfaces for users with disabilities, Cambridge series

on human-computer interaction, Cambridge University

Press, New York, chapter Predictive Interfaces: what
will they think of next?, pp.103{139.

Hudson, S. E. & Newell, G. L. (1992), Probabilistic State
Machines: Dialog Management for Inputs with Uncer-

tainty, in Proceedings of the ACM Symposium on User

Interface Software and Technology, Toolkits, pp.199{
208.

Huerst, W., Yang, J. & Waibel, A. (1998), Interactive Error
Repair for an Online Handwriting Interface, in Proceed-

ings of ACM CHI 98 Conference on Human Factors

in Computing Systems (Summary), Vol. 2 of Student

Posters: Interaction Techniques, pp.353{354.

Igarashi, T., Matsuoka, S., Kawachiya, S. & Tanaka, H.

(1997), Interactive Beauti�cation: A Technique for

Rapid Geometric Design, in Proceedings of the ACM

Symposium on User Interface Software and Technology,

Constraints, pp.105{114.

Kato, N. & Nakagawa, M. (1995), The Design of a Pen-

based Interface 'SHOSAI' for Creative Work, in Y. an-

zai, K. Ogawa & H. Mori (eds.), HCI International '95:
Symbiosis of Human and Artifact, Elsevier Science.

Kurtenbach, G., Moran, T. P. & Buxton, W. (1994), \Con-

textual Animation of Gestural Commands", Computer

Graphics Forum 13(5), 305{314.

Lopresti, D. & Tomkins, A. (1995), Computing in the Ink

Domain, in Y. anzai, K. Ogawa & H. Mori (eds.), HCI
International '95: Symbiosis of Human and Artifact,

Elsevier Science.

Manko�, J. & Abowd, G. D. (1998), Cirrin: A word-level

unistroke keyboard for pen input, in Proceedings of
UIST '98, pp.213{214.

Marx, M. & Schmandt, C. (1994), Putting People First:

Specifying proper names in speech interfaces, in Pro-

ceedings of the ACM Symposium on User Interface Soft-
ware and Technology | UIST'94, ACM Press, pp.30{

37.

Moran, T. P., Chiu, P. & van Melle, W. (1997), Pen-Based

Interaction Techniques for Organizing Material on an

Electronic Whiteboard, in Proceedings of the ACM
Symposium on User Interface Software and Technology,

Picking and Pointing, pp.45{54.

Myers, B. A. & Kosbie, D. S. (1996), Reusable Hierarchi-

cal Command Objects, in Proceedings of ACM CHI'90

Conference on Human Factors in Computing Systems,
SIGCHI, ACM Press.

Nanja, M. & Cook, C. R. (1987), An Analysis of the On-Line

Debugging Process, in Empirical Studies of Program-

mers: Second Workshop, pp.172{184.

Poon, A., Weber, K. & Cass, T. (1995), Scribbler: A Tool for

Searching Digital Ink, in Proceedings of ACM CHI'95
Conference on Human Factors in Computing Systems,

Vol. 2 of Short Papers: Pens and Touchpads, pp.252{

253.

Rhodes, B. J. & Starner, T. (1996), Remembrance Agent, in
The Proceedings of The First International Conference

on The Practical Application Of Intelligent Agents and

Multi Agent Technology (PAAM '96), pp.487{495.

Riseberg, J., Klein, J., Fernandez, R. & Picard, R. W.

(1998), Frustrating the user on purpose: using biosig-
nals in a pilot study to detect the user's emotional state,

in Proceedings of the CHI 98 summary conference on

CHI 98 summary: human factors in computing systems,
SIGCHI, pp.227{228.

Schomaker, L. R. B. (1994), User-interface Aspects in Rec-
ognizing Connected-Cursive Handwriting, in Proceed-

ings of the IEE Colloquium on handwriting and Pen-

based input, number 1994/065, The institution of Elec-
trical Engineers, The instetuteion of Electrical Engi-

neers, London.

Suhm, B. (1997), Empirical Evaluation of Interactive Multi-

modal Error Correction, in IEEE Workshop on Speech
recognition and understanding, IEEE, Santa Barbara

(USA).

Suhm, B., Myers, B. & Waibel, A. (1996a), Designing Inter-

active error Recovery Methods for Speech Interfaces, in

CHI 96 Workshop on Designing the User interface for
Speech Recognition applications, SIGCHI.

Suhm, B., Myers, B. & Waibel, A. (1996b), Interactive Re-

covery from Speech Recognition Errors in Speech User

Interfaces, in Proc. ICSLP '96, Vol. 2, Philadelphia,
PA, pp.865{868.

Thimbleby, H. (1990), User Interface Design, Addison-
Wesley Publishing Co. (ACM Press), Reading, MA.

ACM Order number 704907; QA76.9.U83T48 1990.



Wolf, C. G. (1990), Understanding Handwriting Recogni-

tion from the User's Perspective, in Proceedings of the
Human Factors Society 34th Annual Meeting, Vol. 1 of

Computer Systems: Modeling, pp.249{253.

Zajicek, M. & Hewitt, J. (1990), An Investigation into the

Use of Error Recovery Dialogues in a User Interface

Management System for Speech Recognition, in Pro-
ceedings of IFIP INTERACT'90: Human-Computer

Interaction, Interactive Technologies and Techniques:
Speech and Natural Language, pp.755{760.

Zoltan-Ford, E. (1991), \How to Get People to Say and
Type What Computers Can Understand", Interna-

tional Journal of Man-Machine Studies 34(4), 527{547.


