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ERROR CORRECTION VIA A POST-PROCESSOR 
FOR CONTINUOUS SPEECH RECOGNITION * 

Eric K .  Ringger James F.  Allen 
Department of Computer Science; University of Rochester; Rochester, New York 14627-,0226 

{ringger, james}Bcs.rochester.edu 

ABSTRACT 
This paper presents a new technique for overcoming sev- 

eral types of speech recognition errors by post-processing 
the output of a continuous speech recognizer. The 
post-processor output contains fewer errors, thereby mak- 
ing interpretation by higher-level modules, such as a parser, 
in a speech understanding system more reliable. The pri- 
mary advantage to the post-processing approach over exist- 
ing approaches for overcoming SR errors lies in its ability 
to introduce options that are not available in the SR mod- 
ule’s output. This work provides evidence for the claim 
that a modern continuous speech recognizer can be used 
successfully in “black-box” fashion for robustly interpret- 
ing spontaneous utterances in a dialogue with a human. 

1. INTRODUCTION 
Existing methods for continuous speech recognition do not 
perform as well on spontaneous speech as we would hope. 
Even state of the art recognizers such as Sphinx-I1 [7] and 
a recognizer built using HTK [14] achieve less than 60% 
word accuracy on fluent speech collected from conversations 
about a specific problem with the TRAINS-% system [l]. 

Here are a few examples of the kinds of errors that occur 
when recognizing spontaneous utterances. They are drawn 
from problem-solving dialogues that we have collected from 
users interacting with the TRAINS-% system. Some errors 
are simple one-for-one replacements, such as this one: 
REF: RIGHT SEND THE TRAIN FROM MONTREAL TO CHARLESTON 
HYP: RATE SEND THAT TRAIN FROM MONTREAL TO CHARLESTON 
Here is an utterance with a replacement of a single word by 
multiple smaller words: 
REF: GO FROM CHICAGO TO TOLEDO 
HYP: GO FROM CHICAGO TO TO LEAVE AT 
The following utterance contains a more complex example 
in which adjacent words are misrecognized and in which 
the hypothesized words overlap the boundary between the 
reference words: 

*THIS WORK WAS SUPPORTED BY THE UNIVERSITY 
OF ROCHESTER CS DEPARTMENT AND ONR/ARPA RE- 

lFor this experiment involving Sphinx-11, the acoustic model 
and the class-based language model were trained on ATIS data. 
Hence, some of the error is attributable to the moderate occur- 
rence of out-of-vocabulary (OOV) words. 

2For this experiment involving the HTK-based recognizer, the 
acoustic model and the word-based language model were trained 
on the Trains Dialogue Corpus [SI (collected prior to the creation 
of the TRAINS-% system). 

31n the examples, the HYP tag indicates the SR system’s hy- 
pothesis, and the REF tag indicates the reference transcription. 

SEARCH GRANT NUMBER N00014-92-5-1512. 

REF : GREAT OKAY NOW WE COULD GO FROM SAY - 
HYP: I’M GREAT OKAY NOW WEEK IT GO FROM CITY - - MONTREAL TO WASHINGTON 

- MONTREAL TO WASHINGTON 
In addition, speech recognizers are increasingly being 

used as “black-boxes,” having a clearlly specified function 
and well-defined inputs and outputs but otherwise provid- 
ing no hooks for altering or tuning internal operations, with 
the notable exception of the ability to add words to the 
recognizer’s vocabulary. As an example of speech recogni- 
tion as a black-box, several research labs have announced 
plans to make speech recognition available to the research 
community by running publicly accessilble speech servers on 
the Internet. Such servers would likely employ a general- 
purpose language model and acoustic model. In order to 
employ them for a task involving words, not available to the 
server’s language model, a remote user would need some 
way to correct the errors committed by the black-box SR 
server. 

This paper presents a new technique for overcoming sev- 
eral types of speech recognition error:; by post-processing 
the output of a continuous speech recognizer. The post- 
processor output contains fewer errors, thereby making in- 
terpretation by higher-level modules, such as a parser, in a 
speech understanding system more reliable. The goal of this 
work is to contribute to successful understanding of spon- 
taneous spoken utterances in human-computer dialogue by 
a conversational planning assistant called the TRAINS-% 
system. 

Our objective is to reduce speech recognition errors by 
refining or even modifying the effective vocabulary of a 
speech recognizer. To achieve this, we regard the chan- 
nel from the speaker to the output of the SR module as 
a noisy channel, and we adopt statistical techniques (some 
of them borrowed from statistical machine translation) for 
modeling that channel in order to correct some of the errors 
introduced there. 

Why reduce recognition errors by post-processing the SR 
output? Why not simply better tune the SR’s language 
model for the task? First, if the SR is a general-purpose 
black-box (running either locally or on the other side of 
a network on someone else’s machine), modifying the de- 
coding algorithm to incorporate the post-processor’s model 
might not be an option. Using a general-purpose SR en- 
gine makes sense because it allows a system to deal with 
diverse utterances. If needed, the post-processor can tune 
the general-purpose hypothesis in a domain-specific or user- 
specific way (there is also room for adapting to domains 
and users on-line if the engine was not designed to do so). 
Porting an entire system to new domains only requires tun- 
ing the post-processor, and the general-purpose component 
with its models can be reused with litt,le or no change. Be- 
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cause the post-processor is light-weight by comparison, the 
savings may be significant. 

Second, even if the SR engine’s language model can be 
updated with new domain-specific data, the post-processor 
trained on the same new data can provide additional im- 
provements in accuracy. 

Third, several human speech phenomena are poorly mod- 
eled by current continuous SR technology, and recognition 
is accordingly impaired. This suggests that the SR mod- 
ule does indeed belong as a component of the noisy chan- 
nel. One poorly modeled phenomenon is assimilation of 
phonetic features. Most SR engines model phonemes in 
a context-dependent fashion (e.g., see [lo]), and some at- 
tempt to model cross-word co-articulation effects (c.f. [lo] 
also). However, as speaking speeds vary, the SR’s models 
may not be well suited to the affected speech signal. Such 
errors can be corrected by the post-processing techniques 
discussed here. 

Finally, the primary advantage to the post-processing ap- 
proach over existing approaches for overcoming SR errors 
lies in its ability to introduce options that are not avail- 
able in the SR module’s output. Existing rescoring tactics 
cannot do so (c.f. [4, 121). 

2. THE MODELS A N D  ALGORITHM 

A statistical model for automatically translating individual 
sentences between two human languages was proposed by 
Brown et al. [3]. While this approach to translation has its 
critics, we can adapt the same idea to the process of tran- 
scribing a spoken utterance. We simply posit the existence 
of a string of English words (gl,n = (IQ, w2,. . . , wn))  in the 
mind of the speaker. Those words are uttered and trans- 
mitted to the listening system’s microphone. The sounds 
are then transcribed as a string of English words (si:,,,) by 
the SR component of the system. The channel beginning at 
the speaker and ending at the output of the SR module is a 
noisy channel, in which errors are frequently introduced in 
all segments of the channel, including the SR module, essen- 
tially at the word-level. We adapt the statistical M T  tech- 
niques to  recover the original string of words and thereby 
correct some of the errors introduced in the channel. Fig- 
ure 1 illustrates the relationship of the speaker, the channel, 
and the error-correcting post-processor. 

Brown et al. delineate their approach into three parts: 
a translation (or channel) model, a language model, and 
a search among possible source word sequences. We will 
describe each component for our approach to SR post- 
processing. 

We adopt a channel model that describes some of the 
effects on utterances that pass through the noisy channel 
ending with the speech recognizer. Specifically, it accounts 
for frequent errors such as simple word/word confusions 
and short phrasal and segmentation problems (e.g., one-to- 
many word substitutions and many-to-one word concatena- 
tions). In addition to  the channel model, we present a suit- 
able search algorithm that uses the model (together with 
a source language model) to find the most likely correction 
for a given word sequence from the SR module. We have 
built a post-processor that employs these models and have 
wedged it into the interpretation pipeline of the TRAINS-% 
system just behind the SR module. This implementation 
of the post-processor can receive input from the SR module 
incrementally as the SR decoder improves its primary hy- 
pothesis. The post-processor also communicates with the 
TRAINS-% parser in an incremental fashion, backing up oc- 

casionally where partial solutions change on the fly. 
The post-processor repairs utterances according to the 

probability estimates acquired from training data. If the 
training set consists of words from a task-specific vocabu- 
lary, then the post-processor will map the general-purpose 
vocabulary of the SR module to task-specific vocabulary. 
If the training set consists of words from another domain, 
then the post-processor will map the SR vocabulary to the 
vocabulary of the other domain. If the recognizer suggests 
a word that was not observed as a misrecognition in the 
post-processor’s training set, then the post-processor will 
simply forward the unknown word to subsequent compo- 
nents. If, however, that word is known to be frequently 
misrecognized, then the post-processor will correct it to the 
appropriate in-domain word. 

By applying Bayed rule, we derive a simple expression for 
the most likely pre-channel sequence &,. The derivation 
is similar to the derivation of the statistical approach to SR 
(as explained in [2, 81): 

The first factor, P[gl ,J ,  models the formation of English 
utterances by the speaker. It is the listener’s model of the 
speaker’s language. The second factor, P&+, I s ~ , ~ ] ,  mod- 
els the behavior of the channel. 

2.1. First Approximation 
For a sizable vocabulary, adequately estimating the proba- 
bility distributions that model the channel and the speaker’s 
language requires mammoth amounts of data; therefore, it 
is necessary to approximate through independence assump- 
tions. Several assumptions are possible, and we will begin 
with a basic set of assumptions before suggesting others. 

For a first approximation language model, we use a word- 
bigram model. 

n-I 

i = O  

As a first approximation channel model, we assume that 
each word in $,,, is simply a transmitted version of the 
word with the corresponding position in g1+. Thus, 

n 

(3) 
- 1  
p[cl,nl I = npr.): I 4 . 

i=l 

We say that a word is aligned with the word it produces. 
We also require a method for searching among possible 

source utterances gl,n for the most likely correction of the 
given word sequence, i.e., the one that yields the greatest 
value of P[gl,+] . PE;:,+, I s1,J. We use a Viterbi beam- 
search for this purpose (c.J [5, 111). 

2.2. Enhancements to the Models 
To improve the language model, we use higher-order n- 
grams, thereby assuming that each word in sl,n is depen- 
dent on its n - 1 predecessors. We also use back-off n-gram 
models for combating the problem of sparse training data 

For the channel model, we relax the constraint that re- 
placement errors be aligned on a word by word basis, since 
not all recognition errors consist of simple replacement of 

[91. 
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3 
Figure 1. Recovering Word-Seque 

one word by another. Some errors appear as the break-up 
of one word into shorter words. Other errors involve the 
erroneous concatenation of two or more words to make a 
longer word. We will use the following utterance from the 
TRAINS-% dialogues as an example. 
REF: GO FROM CHICAGO TO TOLEDO 
HYP: GO FROM CHICAGO TO TO LEAVE AT 

Following Brown et al., we refer to a picture such as 
Figure 2 as an alignment. We use an alignment to indi- 

REF: GO FROM CHICAGO TO TOLEDO 

Figure 2. Alignment of a Hypothesis and the Reference 
Transcription. 

cate the source words in the REF sequence for each of the 
words in the HYP sequence. For alignments, we use the fol- 
lowing notation: we write the post-channel transcription 
(si,+, ) followed by the pre-channel transcription (el,,) sep- 
arated by a vertical bar and enclosed in parentheses. We 
also refer to the number of post-channel words produced 
by a pre-channel word in a particular alignment as the fer- 
tility of that pre-channel word. Following each of the pre- 
channel words, we provide its fertility in the current align- 
ment in parentheses. Alignments are easily computed using 
a dynamic programming algorithm for word sequence align- 
ment. Returning to our example, we have the alignment: 

(CO FROM CHICAGO TO TO LEAVE AT 
I GO(1) FROM(1) CHICAGO(1) TO(1) TOLEDO(3)) 

To augment our channel model, we require a fertility 
model P[k I w] that indicates how likely each word w in 
the pre-channel vocabulary will have a particular fertility 
k .  When a word’s fertility k is an integer value between two 
and five, it indicates that the pre-channel word resulted in 
multiple post-channel words. When a word’s fertility is one, 
then the word accounts for exactly one post-channel word. 
When a word’s fertility is a fraction 1 (for 2 5 n 5 5), 
then the word and n - 1 neighboring words have grouped 
together to result in a single post-channel word. We call 
this situation fractional fertility. For example, a word with 
k = 1. indicates the situation in which this word and two 
neightoring source words contribute to one word in the hy- 
pothesis; i.e., each word accounts for one-third of the post- 
channel word. When a word’s fertility is a fraction : (for 
2 5 m # n 5 5), then the word and n - 1 neighboring 
pre-channel words have grouped together to result in m 
post-channel words. The latter case can be used to handle 
arbitrary segmentation errors. For example, a word with 

4Values higher than five are ignored, since they are very rare. 

nces Corrupted in a Noisy Channel. 

k = indicates that this word and a neighboring source 
word contribute to three words in the hypothesis; thus, we 
can imagine each word accounting for three-halves of the 
post-channel words. A concrete example of this alignment 
is (TO LEAVE DOING I TOLED0(3/2) 1Nf(1/2)). 

To understand how fertility models are used, we need to 
extend the basic search algorithm. As b’efore, the algorithm 
searches for an optimal source utterance cl,+, modulo the 
beam pruning. This extended search builds possible se- 
quences one word at a time using g!+, for guidance as 
before. Each word in si,+, is exploded (or collapsed with 
neighbors) using all possible combinations. The hypotheses 
are scored according to 1. the LM and 2. the channel model 
for one-for-one replacements or the fertility model for other 
kinds of replacements. As before, dyniamic programming 
on partial source sentences and beam pruning will make 
the search efficient. 

Observe that the fertility model scores only the number of 
words used to replace a particular word. It actually relies on 
the language model to score the contents of the replacement. 
This is motivated by the related approach of Brown et al., 
who appear to have taken this direction in order to avoid 
the problems of gathering statistics froim hopelessly sparse 
data. 

3. EXPERIMENTAL RESULTS 

The post-processor has been implemented to use the sim- 
ple one-for-one channel model and a back-off bigram lan- 
guage model. The channel model incorporating fertility is 
work in progress. The language model was trained on hand- 
transcribed utterances from the TRAIN:;-% dialogues. The 
channel model was constructed by automatically aligning 
the output of Sphinx-I1 (having fixed language and acous- 
tic models) with the hand transcriptions and by tabulating 
substitutions. 

To test the post-processor, an independent set of utter- 
ances was held out for evaluation. The cross-validated per- 
formance of Sphinx-I1 alone and in tandem with the Post- 
processor are depicted in Figure 3. Sphinx-11’s class-based 
language model was trained only on data from the ATIS 
spoken language corpora. Also illustrated are the amounts 
of training data required by the post-processor to make a 
particular contribution to word recognition accuracy. This 
validates the claim that the post-procerrsor can make a sig- 
nificant impact in tuning the SR if the SR cannot be modi- 
fied as we have discussed. Also, equivalent amounts of train- 
ing data can be used with comparable impact in the post- 
processor as in the language model of the SR. Furthermore, 
preliminary results indicate that if the language model of 
the SR can indeed be modified, then the post-processor can 
still significantly improve word recognitiion accuracy. Hence 
the post-processor is in neither case redundant. 
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Figure 3. Influence of the post-processor with additional training data. 

4. FUTURE DIRECTIONS 
We have presented models and methods for overcoming 
speech recognition errors. We have also provided evidence 
for the claim that modern speech recognition engines can 
be used successfully as black-boxes for robustly interpreting 
utterances in a dialogue with a human. 

Open issues include whether word-lattices will provide 
better opportunities over simple word sequences for post- 
processor correction. For the word-lattice configuration, the 
post-processor must be modified to process the alternatives 
in the lattice. One point to consider here is the width of 
the lattice (i.e.,  the number of alternatives at a given point 
in the utterance). This factor can implicitly reflect the con- 
fidence of the SR in its hypotheses and may be useful as a 
parameter in the correction process. 

In addition to the purely statistical mechanisms for re- 
covering pre-channel word sequences outlined above, other 
cues may augment the search. For example, syllables and 
vowel nuclei may be usable for aligning pre-channel and 
post-channel words and phrases. Such alignments may be 
useful for further constraining the search algorithms and 
yielding better corrections. 
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