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This paper derives and analyzes the estimate error-covariance associated for both the

non-stationary and stationary noise process cases with uncorrelated element-wise com-

ponents for the total least squares problem. The non-stationary case is derived directly

from the associated unconstrained total least squares loss function. The stationary case

is derived by using a linear expansion of the total least squares estimate equation, which

involves a first order expansion of the associated singular value decomposition matrices.

The actual solution for the error-covariance is evaluated at the true variables, which are

unknown in practice. Two common approaches to overcome this difficulty are used; the

first involves using the measurements directly and the second involves using the estimates

which are more accurate than the measurements. This paper shows that using the latter

greatly simplifies the error-covariance solution for the stationary case. Simulation results

are shown to quantify the theoretical derivations.

I. Introduction

Total least squares1 (TLS) expands upon standard least squares by incorporating noise not only in the
measurements but also in the basis functions themselves. Several applications of TLS exist in the real world.
A common one is identification of linear and nonlinear systems. For example, consider the following scalar
discrete-time system with constant sampling interval: yk+1 = Φyk +Γuk, where Φ and Γ are constant scalar
variables, and yk and uk are the output and input, respectively at time tk. It is desired to estimate Φ
and Γ from measurements of yk. A one-time step approach can be used to estimate these variances using
a simple linear least square approach.2 The basis function matrix is a function of both the measurements
and inputs using this approach. The measurements are processed using sensor data, which always have
noise associated with them; the input may also have noise because a closed-loop control system may be
involved and the input may be a function of the measurements too. A more realistic example involves
the Eigensystem Realization Algorithm (ERA),3 which provides a balanced realization of the discrete-time
multi-input-multi-output discrete-time system matrices. In the ERA solution measurements are also used
in the Hankel matrix, which is akin to the basis function matrix. Other applications involve fuzzy system
identification of an industrial gas engine power plant,4 blind deconvolution problems as encountered in image
deblurring when both the image and the blurring function have uncertainty,5 and applications to astronomy
and geodesy.6

Since noise exists in the basis functions then the standard least squares solution is not optimal from both
a minimum variance and maximum likelihood point of view. Thus a different loss function must be used
other than the standard least squares loss function. The “errors-in-variables” estimator shown in Ref. 7
coincides with the TLS solution. This indicates that the TLS estimate is a strongly consistent estimate for
large samples, which leads to an asymptotic unbiasedness property. Ordinary least squares with errors in the
basis functions produces biased estimates as the sample size increases. However, the error-covariance of TLS
is larger than the ordinary least squares error-covariance, but by increasing the noise in the measurements
the bias of ordinary least squares becomes more important and even the dominating term.8 Also, it is has
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been shown that weighted least squares and TLS yield asymptotically equivalent results as the perturbation
level goes to zero.9

The covariance of the estimate errors in the standard linear least squares problem is straightforward
to derive. Standard least squares can easily be shown to produce an efficient estimate, i.e. its state error-
covariance achieves the Cramér-Rao lower bound.2 The equivalence of the TLS to maximum likelihood
estimation is shown in Refs. 10 and 11. A Cramér-Rao lower bound is derived in Ref. 11, however isotropic
errors are assumed for the errors in both the basis functions and measurements, i.e. the overall covariance
matrix is given by a scalar times identity. In this paper more generalized and realistic noise models are
assumed. In particular, the errors in both the measurements and basis functions are not assumed to be
isotropic in nature and can obey either a non-stationary or stationary process. The only assumption here
is that the errors are element-wise uncorrelated, which is true for many systems. The Cramér-Rao lower
bound is first derived, which is valid for both the non-stationary and stationary noise process cases. Then, a
perturbation approach of the TLS loss function is employed to prove that the associated covariance matrix
achieves the Cramér-Rao lower bound to within first-order terms. The TLS estimate for the stationary
noise case involves performing a singular value decomposition (SVD) of an augmented matrix involving the
basis functions and measurements. The derivation of the error-covariance follows directly from the SVD
matrix solution. Unlike the non-stationary noise case, a matrix inverse is not required to compute the
error-covariance for the stationary noise case.

The organization of this paper proceeds as follows. First, a review of maximum likelihood estimation is
given with a particular emphasis on the linear least squares problem. The Cramér-Rao lower inequality is also
shown. Then, the relationship of TLS to maximum likelihood estimation is shown. Next, error-covariance
expressions for both the non-stationary and stationary cases are derived. Finally, simulation results are
shown to validate the derived error-covariance expressions.

II. Maximum Likelihood Estimation

The maximum likelihood (ML) approach yields estimates for the unknown quantities which maximize
the probability of obtaining the observed set of data. In this section a review of ML estimation for the
standard linear least squares solution is given, which includes a review of the Cramér-Rao inequality. Then
the ML formulation for the TLS problem is formally shown. The Cramér-Rao inequality is then derived
for the non-stationary noise process case, assuming no correlations exist between element-wise errors of the
measurements and basis functions.

A. Linear Least Squares Review

Consider the following model linear model:

ỹ = H x+∆y (1)

where H is an m × n matrix which contains no errors and ∆y is an m × 1 vector which is a zero-mean
Gaussian white-noise process with covariance R. The goal of the least squares problem is to determine an
estimate for the n× 1 vector x, with n ≤ m.

The mean of the m× 1 measurement ỹ, denoted by µ, is computed by taking the expectation of Eq. (1),
which gives µ = H x. Then the covariance of ỹ is given by

cov{ỹ} , E
{

(ỹ − µ) (ỹ − µ)
T
}

(2)

where E { } denotes expectation. Carrying out the computation in Eq. (2) gives cov {ỹ} = R. Hence the
conditional density function of ỹ given x is

p(ỹ|x) =
1

(2π)
m/2

[det (R)]
1/2

exp

{

−
1

2
(ỹ −Hx)

T
R−1 (ỹ −Hx)

}

(3)

In the ML approach an estimate of x, denoted by x̂, is sought that maximizes Eq. (3). Due to the monotonic
aspect of the function, the ML solution can be accomplished by also taking the natural logarithm of Eq. (3),
which yields

ln [p(ỹ|x)] = −
1

2
(ỹ −Hx)

T
R−1 (ỹ −Hx)−

m

2
ln (2π)−

1

2
ln [det (R)] (4)
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The last two terms of the right-hand side of Eq. (4) can be ignored since they are independent of x. Min-
imizing the negative of Eq. (4) is equivalent to maximizing it. Therefore, ignoring terms independent of x
leads to the following loss function which is minimized to determine the estimate:

J(x̂) =
1

2
(ỹ −Hx̂)

T
R−1 (ỹ −Hx̂) (5)

The solution for this minimization problem leads directly to the classical least squares solution for the
estimate:

x̂(ỹ) ≡ x̂ = (HTR−1H)−1HTR−1ỹ (6)

The mean of x̂ is given by x, which means the estimator is unbiased. The error-covariance of x̂ is given by

cov {x̂} = (HTR−1H)−1 (7)

which can be used to develop 3σ bounds on the expected estimate errors.
The Cramér-Rao inequality12 can be used to provide a lower bound on the expected errors between the

estimated quantities and the true values from the known statistical properties of the measurement errors.
The theory was proved independently by Cramér and Rao, although it was found earlier by Fisher13 for the
special case of a Gaussian distribution. The Cramér-Rao inequality for an unbiased estimate x̂ is given by

P , E
{

(x̂− x) (x̂− x)
T
}

≥ F−1 (8)

where the Fisher information matrix (FIM), F , is given by

F = E

{

(

∂

∂x
ln[p(ỹ|x)]

)(

∂

∂x
ln[p(ỹ|x)]

)T
}

(9)

The partial derivatives are assumed to exist and to be absolutely integrable. A formal proof of the Cramér-
Rao inequality requires using the “conditions of regularity” (see Ref. 14 for details). It is clear that the
estimate in Eq. (6) achieves the Cramér-Rao lower bound and is thus an efficient estimator.

Maximum likelihood has many desirable properties. A few of the useful ones are now discussed. First,
a ML estimator is a consistent estimator, which means x̂(ỹ) converges in a probabilistic sense to the truth,
x, for large samples. This states that the estimate is unbiased for large samples. Second, a ML estimator is
asymptotically efficient, which means that x̂(ỹ) achieves the Cramér-Rao lower bound for large samples.

Oftentimes, as is seen many times throughout this paper, the estimate equation is nonlinear in both its
functional parameters and random errors. To determine the error-covariance matrix, P , in Eq. (8) a classical
first-order expansion of the nonlinear functions can be used.2 This is best illustrated by example. Suppose
that a random function is given ẑ = f(p̂), with p̂ = p+ δp, where δp is a zero-mean Gaussian noise process
with covariance denoted by Ppp. To within first order the covariance of ẑ, denoted by Pzz , is computed using
the Jacobian of f , and is given by

Pzz =

[

∂f

∂p̂

∣

∣

∣

∣

truth

]

Ppp

[

∂f

∂p̂

∣

∣

∣

∣

truth

]T

(10)

This Jacobian is evaluated at the true values, which are replaced with measured or estimated values in
practice. It is important to note that Eq. (10) is valid only for an unbiased estimate.

B. Total Least Squares

For the general problem, the TLS model is given by

ỹ = y +∆y (11a)

H̃ = H +∆H (11b)

where ỹ is an m× 1 measurement vector, y is its respective true value, ∆y is the measurement noise, H̃ is
an m × n matrix of basis functions with random errors, H is its respective true value, and ∆H represents
the errors to the model H . Define the following m× (n+ 1) matrix:

D̃ ,

[

H̃ ỹ

]

(12)
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The TLS problem seeks an optimal estimate of the n × 1 vector x, denoted by x̂ with ŷ = Ĥx̂, where ŷ is
the estimate of y and Ĥ is the estimate of H , which maximizes

p(D̃|D) =
1

(2π)m/2 [det (R)]1/2
exp

{

−
1

2
vecT (D̃T −DT )R−1vec(D̃T −DT )

}

(13)

where D , [H y], which satisfies D z = 0 with z , [xT − 1]T , and vec denotes a vector formed by stacking
the consecutive columns of the associated matrix, and R is the covariance matrix. Unfortunately because H
now contains errors the constraint ŷ = Ĥ x̂ must also be added to the maximization problem. The negative
log-likelihood now leads to the following loss function:

J(D̂) =
1

2
vecT (D̃T − D̂T )R−1vec(D̃T − D̂T ), s.t. D̂ ẑ = 0 (14)

where ẑ , [x̂T − 1]T and D̂ , [Ĥ ŷ] denotes the estimate of D. For a unique solution it is required that
the rank of D̂ be n, which means ẑ spans the null space of D̂.

III. Error-Covariance Derivation

In this section the estimate error-covariance is derived for two cases in the TLS problem. The first assumes
that the errors are element-wise, i.e. the rows of the matrix D̃, uncorrelated but allows the covariance to
vary in time, i.e. non-stationary errors. The case covers a wide variety of problems, which is also used to
develop a sequential least squares solution for the linear least squares problem.2 The second case assumes
that the errors are element-wise uncorrelated with stationary errors.

A. Element-Wise Uncorrelated and Non-Stationary Case

For this case the covariance matrix is given by the following block diagonal matrix:

R = blkdiag
[

R1 · · · Rm

]

(15)

where each Ri is an (n+ 1)× (n+ 1) matrix given by

Ri =

[

Rhhi
Rhy

i

R
T
hy

i

Ryy
i

]

(16)

where Rhhi
is an n× n matrix, Rhy

i
is n× 1 vector and Ryy

i
is a scalar. Partition the matrix ∆H and the

vector ∆y by their rows:

∆H =













δhT
1

δhT
2
...

δhT
m













, ∆y =













δy1

δy2
...

δym













(17)

where each δhi has dimension n× 1 and each δyi is a scalar. The partitions in Eq. (16) are then given by

Rhhi
= E

{

δhiδh
T
i

}

(18a)

Rhy
i
= E {δyiδhi} (18b)

Ryy
i
= E

{

δy2i
}

(18c)

Note that each Ri is allowed to be a fully populated matrix so that correlations between the errors in the
individual ith row of ∆H and the ith element of ∆y can exist. When Rhy

i
is zero then no correlations exist.

Partition the matrices D̃, D̂ and H̃ , and the vector ỹ by their rows:

D̃ =













d̃T
1

d̃T
2
...

d̃T
m













, D̂ =













d̂T
1

d̂T
2
...

d̂T
m













, H̃ =













h̃T
1

h̃T
2
...

h̃T
m













, ỹ =













ỹ1

ỹ2
...

ỹm













(19)
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where each d̃i and d̂i has dimension (n+1)× 1, each h̃i has dimension n× 1 and each ỹi is a scalar. For the
element-wise uncorrelated and non-stationary case, the constrained loss function in Eq. (14) can be converted
to an equivalent unconstrained one.15, 16 Here, a simplified version of this is shown. For the element-wise
uncorrelated and non-stationary case, the loss function in Eq. (14) reduces down to

J(x̂) =
1

2

m
∑

i=1

(d̃i − d̂i)
T
R

−1
i (d̃i − d̂i), s.t. d̂T

j ẑ = 0, j = 1, 2, . . . , m (20)

The loss function is rewritten into an unconstrained one by determining a solution for d̂i and substituting its
result back into Eq. (20). To accomplish this task the loss function is appended using Lagrange multipliers,
which gives the following loss function:

J ′(d̂i) = λ1d̂
T
1 ẑ+ λ2d̂

T
2 ẑ+ · · ·+ λmd̂T

mẑ+
1

2

m
∑

i=1

(d̃i − d̂i)
T
R

−1
i (d̃i − d̂i) (21)

where each λi is a Lagrange multiplier. Taking the partial of Eq. (21) with respect to each d̂i leads to the
following m necessary conditions:

R
−1
i d̂i − R

−1
i d̃i + λiẑ = 0, i = 1, 2, . . . , m (22)

Left multiplying Eq. (22) by ẑTRi and using the constraint d̂T
i ẑ = 0 leads to

λi =
ẑT d̃i

ẑTRi ẑ
(23)

Substituting Eq. (23) into Eq. (22) leads to

d̂i =

[

I(n+1)×(n+1) −
Riẑ ẑ

T

ẑTRi ẑ

]

d̃i (24)

where I(n+1)×(n+1) is an (n + 1) × (n + 1) identity matrix. If desired the specific estimates for hi and yi,

denoted by ĥi and ŷi, respectively, are given by

ĥi = h̃i −
(Rhhi

x̂− Rhy
i
)ei

ẑTRi ẑ
(25a)

ŷi = ỹi −
(RT

hy
i

x̂− Ryy
i
)ei

ẑTRi ẑ
(25b)

where ei , h̃T
i x̂− ỹi. Substituting Eq. (24) into Eq. (20) yields the following unconstrained loss function:

J(x̂) =
1

2

m
∑

i=1

(d̃T
i ẑ)

2

ẑTRi ẑ
(26)

Note that Eq. (26) represents a non-convex optimization problem. The necessary condition for optimality
gives

∂J(x̂)

∂x̂
=

m
∑

i=1

ei h̃i

x̂TRhhi
x̂− 2RT

hy
i

x̂+ Ryy
i

−
e2i (Rhhi

x̂− Rhy
i
)

(x̂TRhhi
x̂− 2RT

hy
i

x̂+ Ryy
i
)2

= 0 (27)

A closed-form solution is not possible for x̂. An iteration procedure is provided using:10

x̂(j+1) =

[

m
∑

i=1

h̃ih̃
T
i

γi(x̂(j))
−

e2i (x̂
(j))Rhhi

γ2
i (x̂

(j))

]−1 [ m
∑

i=1

ỹih̃i

γi(x̂(j))
−

e2i (x̂
(j))Rhy

i

γ2
i (x̂

(j))

]

(28a)

γi(x̂
(j)) , x̂(j)T

Rhhi
x̂(j) − 2RT

hy
i
x̂(j) + Ryy

i
(28b)

ei(x̂
(j)) , h̃T

i x̂
(j) − ỹi (28c)

where x̂(j) denotes the estimate at the jth iteration. Typically the initial estimate is obtained by employing
the closed-form solution algorithm for the element-wise uncorrelated and non-stationary case (shown later),
using the average of all the covariances in that algorithm.
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1. Derivation Based on Fisher Information Matrix

Because the ML estimator is asymptotically efficient, the covariance matrix can be approximated by the
inverse of the FIM. If the estimate is unbiased and maximizes the likelihood then its associated covariance
is identical to the inverse of the FIM.2 To derive the FIM for the TLS estimate x̂, it is possible to determine
the FIM for the TLS estimate D̂ from the likelihood function given by Eq. (13) and then retrieve the FIM
for x̂ from it. It is difficult, however, to derive the FIM for D̂ because of the constraint D z = 0 with
z , [xT − 1]T , which explicitly involves x. The FIM for the joint TLS estimate of {x, H} will be derived
instead.

The likelihood function in Eq. (13) is now treated as a function of {x, H}:

p(D̃|x, H) =
1

(2π)
m/2

[det (R)]
1/2

exp

{

−
1

2
vecT

(

D̃T −DT (x, H)
)

R−1vec
(

D̃T −DT (x, H)
)

}

(29)

with D(x, H) , [H Hx]. In the element-wise uncorrelated and non-stationary case, because d̃i and d̃j ,
i 6= j, are independent of each other, the likelihood function reduces to

p(D̃|x, H) =
1

∏m
i=1 [det (2πRi)]

1/2
exp

{

−
1

2

m
∑

i=1

(

d̃i − di(xi, hi)
)T

R
−1
i

(

d̃i − di(xi, hi)
)

}

=
m
∏

i=1

p
(

d̃i|x,hi

)

(30)

with di(xi, hi) , [hT
i hT

i x]
T and

p(d̃i|x,hi) ,
1

[det (2πRi)]
1/2

exp

{

−
1

2

(

d̃i − di(xi, hi)
)T

R
−1
i

(

d̃i − di(xi, hi)
)

}

(31)

Now, the FIM of the likelihood function p(d̃i|x,hi) is derived. Define

ai ,

[

x

hi

]

, p(d̃i|ai) , p(d̃i|x,hi), di(ai) , di(x,hi) (32)

The FIM, F a
i , for ai is

F a
i = E

{

(

∂

∂ai
ln[p(d̃i|ai)]

)(

∂

∂ai
ln[p(d̃i|ai)]

)T
}

(33)

The natural logarithm of p(d̃i|ai) is

ln[p(d̃i|ai)] = −
1

2

(

d̃i − di(ai)
)T

R
−1
i

(

d̃i − di(ai)
)

−
1

2
ln det(2πRi) (34)

Taking partials of the natural logarithm of p(d̃i|ai) leads to

∂

∂ai
ln[p(d̃i|ai)] =

[

0n×n hi

In×n x

]

R
−1
i

(

d̃i − di(ai)
)

(35)

where 0n×n and In×n denote the n-dimensional null matrix and identify matrix, respectively. Because

E
{

d̃i − di(ai)
}

= 0, then

E

{

∂

∂ai
ln[p(d̃i|ai)]

}

=

[

0n×n hi

In×n x

]

R
−1
i E

{(

d̃i − di(ai)
)}

= 0 (36)

This means the regularity condition

E

{

∂

∂ai
ln[p(d̃i|ai)]

}

,

∫

∂

∂ai
ln[p(d̃i|ai)] p(d̃i|ai) dd̃i =

∫

[

∂p(d̃i|ai)

∂ai

]

dd̃i = 0 (37)
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is satisfied, which is prerequisite for the derivation of the Cramér-Rao lower bound. Post-multiplying
∂ ln[p(d̃i|ai)]/∂ai by its transpose leads to

(

∂

∂ai
ln[p(d̃i|ai)]

)(

∂

∂ai
ln[p(d̃i|ai)]

)T

=

[

0n×n hi

In×n x

]

R
−1
i

(

d̃i − di(ai)
)(

d̃i − di(ai)
)T

R
−1
i

[

0n×n hi

In×n x

]T

(38)
Taking the expectation and using

E

{

(

d̃i − di(ai)
)(

d̃i − di(ai)
)T
}

= Ri (39)

leads to

F a
i = E

{

(

∂

∂ai
ln[p(d̃i|ai)]

)(

∂

∂ai
ln[p(d̃i|ai)]

)T
}

=

[

0n×n hi

In×n x

]

R
−1
i

[

0n×n hi

In×n x

]T

(40)

Since the regularity condition is met, the FIM F a
i can be derived using an alternative form, given by

F a
i = −E

{

∂2

∂ai∂aTi
ln
[

p(d̃i|ai)
]

}

(41)

Taking the partial of both sides of Eq. (35) leads to

∂2

∂ai∂aTi
ln
[

p(d̃i|ai)
]

= −

[

0n×n hi

In×n x

]

R
−1
i

[

0n×n hi

In×n x

]T

+
∂

∂aTi

{[

0n×n hi

In×n x

]

R
−1
i

(

d̃i − di(ai)
)

}

(42)

Because the expectation of the second term vanishes, then

F a
i = −E

{

∂2

∂ai∂aTi
ln
[

p(d̃i|ai)
]

}

=

[

0n×n hi

In×n x

]

R
−1
i

[

0n×n hi

In×n x

]T

(43)

Equation (43) is identical to Eq. (40).
The next step is to derive the FIM for x̂. The total Fisher information for x̂ will be denoted by F and

the Fisher information corresponding to a single measurement d̃i will be denoted by Fi. Because d̃i and d̃j

are independent of each other and hi and hj are different for i 6= j, then F =
∑m

i=1 Fi. To see this, consider
the partition of F a

i :

F a
i ,

[

Fxxi
Fxhi

FT
xhi

Fhhi

]

=













[

0n×n hi

]

R
−1
i

[

0n×n

hT
i

]

[

0n×n hi

]

R
−1
i

[

In×n

xT

]

[

In×n x

]

R
−1
i

[

0n×n

hT
i

]

[

In×n x

]

R
−1
i

[

In×n

xT
i

]













(44)

and the augmented FIM for [x̂T , ĥT
1 , . . . , ĥ

T
m]T :

F ,

[

Fxx Fxh

FT
xh Fhh

]

=













∑m
i=1 Fxxi

Fxh1
· · · Fxhm

FT
xh1

Fhh1
· · · 0

...
...

. . .
...

FT
xh1

0 · · · Fhhm













(45)

Note that Fxxi
are rank-one matrices, Fhhi

are nonsingular, and for m ≥ n, F is nonsingular. Applying the
matrix inversion lemma to F leads to

F−1 = Fxx =









m
∑

i=1

Fxxi
−
[

Fxh1
· · · Fxhm

]









Fhh1
· · · 0

...
. . .

...

0 · · · Fhhm









−1 







FT
xh1

...

FT
xhm

















−1

=

(

m
∑

i=1

(

Fxxi
− Fxhi

F−1
hhi

FT
xhi

)

)−1

(46)
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or equivalently F =
∑m

i=1 Fi, where
Fi = Fxxi

− Fxhi
F−1
hhi

FT
xhi

(47)

Note that Fi are rank-one.
For the F a

i in Eq. (43), Fi satisfies

(F a
i )

†
=

[

F †
i ∗

∗ ∗

]

(48)

where ∗ denote matrices of appropriate dimensions and † denotes the Penrose-Moore pseudoinverse. Taking
the pseudoinverse of Eq. (43) leads to

(F a
i )

† =





[

0n×n hi

In×n x

]†




T

Ri

[

0n×n hi

In×n x

]†

(49)

It can be shown that
[

0n×n hi

In×n x

]†

=









−
xhT

i

h2
i

In×n

hT
i

h2
i

0n×n









(50)

with h2
i = hT

i h. So,

(F a
i )

† =





−
hxT

i

h2
i

hT
i

h2
i

In×n 0n×n



Ri









−
xhT

i

h2
i

In×n

hT
i

h2
i

0n×n









=









(zTRiz)

h4
i

hih
T
i

1

h2
i

hi(x
TRhhi

−RT
hy

i
)

1

h2
i

(Rhhi
x−Rhy

i
)hT

i Rhhi









(51)

Since (Fi)
† is the upper-left block of (F a

i )
†, then

(Fi)
† =

(zTRiz)

h4
i

hih
T
i =

(zTRiz)

h2
i

hi

hi

hT
i

hi
(52)

and

Fi =
h2
i

(zTRiz)

(

hi

hi

hT
i

hi

)†

=
h2
i

(zTRiz)

(

hi

hi

hT
i

hi

)

=
hih

T
i

zTRiz
(53)

Therefore,

F =

m
∑

i=1

hih
T
i

zTRi z
(54)

Finally, the error covariance matrix of x̂ is given by P ≈ F−1. If Rhhi
and Rhy

i
are both zero, meaning no

errors exist in the measured basis functions, then the FIM reduces down to

F =

m
∑

i=1

R
−1
yy

i
hih

T
i (55)

which is equivalent to the FIM for the standard least squares problem.

2. Derivation Based on First-Order Linearization

The error-covariance is now derived using the approach shown by Eq. (10). First it must be shown that the
estimate is unbiased. Let the estimate be given by its true value plus a perturbation: x̂ = x + δx. The
individual numerator parts of Eq. (26) are then given by

(d̃T
i ẑ)

2 = (h̃T
i x̂− ỹi)

2

= ē2i + 2ēi(h̃
T
i δx) + (h̃T

i δx)
2

(56)
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The individual denominator parts of Eq. (26) are given by

ẑTRi ẑ = zTRi z+ δxT
Rhhi

δx + 2bT
i δx (57)

Using the binomial series for a second-order expansion of (ẑTRi ẑ)
−1 leads to the approximation

(ẑTRi ẑ)
−1 ≈ (zTRi z)

−1 − (δxT
Rhhi

δx + 2bT
i δx)(z

T
Ri z)

−2 + (δxT
Rhhi

δx + 2bT
i δx)

2(zTRi z)
−3 (58)

Substituting Eqs. (56) and (58) into Eq. (26), and retaining terms dependent only up to second order in δx

yields

J(δx) =

m
∑

i=1

2ēi(h̃
T
i δx) + (h̃T

i δx)
2

zTRi z
−

ē2i δx
T
Rhhi

δx + 2ē2ib
T
i δx+ 4ēiδx

Tbih̃
T
i δx

(zTRi z)2
+

4ē2i δx
Tbib

T
i δx

(zTRi z)3
(59)

Taking the partial with respect to δx and setting to resultant to zero for the necessary condition for optimality
gives

∂J(δx)

∂δx
=







m
∑

i=1

h̃ih̃
T
i

zTRi z
−

ēi

[

ēiRhhi
+ 2(bih̃

T
i + h̃ib

T
i )
]

(zTRi z)2
+

4ē2ibib
T
i

(zTRi z)3







δx +
m
∑

i=1

ēih̃i

zTRi z
−

ē2ibi

(zTRi z)2
= 0

(60)
This equation can be used to develop a nonlinear least squares iteration to determine the estimate, with the
correction given by

δx =







m
∑

i=1

h̃ih̃
T
i

zTRi z
−

ēi

[

ēiRhhi
+ 2(bih̃

T
i + h̃ib

T
i )
]

(zTRi z)2
+

4ē2ibib
T
i

(zTRi z)3







−1
(

m
∑

i=1

ē2ibi

(zTRi z)2
−

ēih̃i

zTRi z

)

(61)

The expected value of the matrix on the left-hand side of Eq. (60) is given by

E







m
∑

i=1

h̃ih̃
T
i

zTRi z
−

ēi

[

ēiRhhi
+ 2(bih̃

T
i + h̃ib

T
i )
]

(zTRi z)2
+

4ē2ibib
T
i

(zTRi z)3







=

m
∑

i=1

hih
T
i

zTRi z
(62)

where E{ē2i } = zTRi z, and E{ēih̃i} = bi and E{ēih̃
T
i } = bT

i have been used. They are true because

E{ē2i } = E
{

(h̃T
i x− ỹi)

2
}

= E
{

[(hi + δhi)
Tx− hT

i x− δyi]
2
}

= E
{

(xT δhi − δyi)
2
}

= xT
Rhhi

x− 2xT
Rhy

i
+ Ryy

i

= zTRi z

(63)

E
{

ēih̃i

}

= E
{

[(hi + δhi)
Tx− (yi + δyi)](hi + δhi)

}

= (hT
i x− yi)hi + Rhhi

x− Rhy
i

= bi

(64)

Also note

E

{

m
∑

i=1

ēih̃i

zTRi z
−

ē2ibi

(zTRi z)2

}

=

m
∑

i=1

bi

zTRi z
−

bi

zTRi z
= 0 (65)

Equations (60), (62) and (65) indicate that
[

m
∑

i=1

hih
T
i

zTRi z

]

E {δx} = 0 (66)

As stated previously linearly independent basis function should be employed in practice. For this case the
matrix in Eq. (66) is never singular and E{δx} = 0 must be true. Thus the TLS estimator produces an
unbiased estimate to within first-order terms.
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The error-covariance is now derived using Eq. (10), where the estimate follows from Eq. (27). Three
error sources are present: the first is δx which is the error on x̂, the second is δhi which is the error on h̃i,
and the third is δyi which is the error on ỹi. Define the expression in Eq. (27) by g , ∂J(x̂)/∂x̂ = 0. The
partial of g with respect to x̂ is given by

−
∂2 ln[p(d̃|x)]

∂x ∂xT
=

m
∑

i=1

h̃ih̃
T
i

zTRi z
−

2ēi[h̃i (Rhhi
x− Rhy

i
)T + (Rhhi

x− Rhy
i
) h̃T

i ]

(zTRi z)2

−
Rhhi

ē2i
(zTRi z)2

+
4ē2i (Rhhi

x− Rhy
i
)(Rhhi

x− Rhy
i
)T

(zTRi z)3

+
Rhhi

zTRi z
−

2(Rhhi
x− Rhy

i
)(Rhhi

x− Rhy
i
)T

(zTRi z)2

(67)

According to Eq. (10) this partial is evaluated at the true values. Since yi = hT
i x then

∂g

∂x̂

∣

∣

∣

∣

truth

=
m
∑

i=1

hih
T
i

zTRi z
(68)

The partial of g with respect to h̃i evaluated at the true values is given

∂g

∂h̃i

∣

∣

∣

∣

truth

=

m
∑

i=1

hix
T

zTRi z
(69)

The partial of g with respect to ỹi evaluated at the true values is given

∂g

∂ỹi

∣

∣

∣

∣

truth

= −
m
∑

i=1

hi

zTRi z
(70)

Then to within first order the following equation is given:

−

(

m
∑

i=1

hih
T
i

zTRi z

)

δx =

m
∑

i=1

hix
T δhi

zTRi z
−

hiδyi
zTRi z

(71)

The error-covariance, P , E
{

δx δxT
}

, is derived from

P = F−1E







[

m
∑

i=1

hi(x
T δhi − δyi)

zTRi z

] [

m
∑

i=1

hi(x
T δhi − δyi)

zTRi z

]T






F−1 (72)

where F is given by Eq. (54). Since element-wise uncorrelated terms are assumed, then the expectation in
Eq. (72) reduces down to

E







[

m
∑

i=1

hi(x
T δhi − δyi)

zTRi z

][

m
∑

i=1

hi(x
T δhi − δyi)

zTRi z

]T






= E

{

m
∑

i=1

hih
T
i (x

T δhi − δyi)
2

(zTRi z)2

}

(73)

Using E{(xT δhi − δyi)
2} = zTRi z leads to

P = F−1

(

m
∑

i=1

hih
T
i

zTRi z

)

F−1 = F−1 (74)

Comparing Eqs. (54) and (74) shows that the Cramér-Rao lower bound is achieved to within first-order
terms.

The FIM is evaluated at the respective true values for hi and x, which are not available in practice.
Either the estimated or measured values are typically used in their place. The expected errors induced by
using the measured values are now shown. The estimate is again written by x̂ = x+δx where the covariance
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of δx is given by P . The estimate of the FIM, denoted by F̂ , using the measured values can now be written
as

F̂ =

m
∑

i=1

(hi + δhi)(hi + δhi)
T

zTRi z+ δxTRhhi
δx + 2(Rhhi

x− Rhy
i
)δx

(75)

Using Eq. (58) leads to the approximation

F̂ ≈

m
∑

i=1

(hi + δhi)(hi + δhi)
T

zTRi z
−

[δxTRhhi
δx+ 2(Rhhi

x− Rhy
i
)δx](hi + δhi)(hi + δhi)

T

(zTRi z)2
(76)

Computing δF , E{F̂} − F gives

δF =

m
∑

i=1

Rhhi

zTRi z
−

Tr(P Rhhi
)(hih

T
i + Rhhi

)

(zTRi z)2
(77)

The relative magnitudes of the terms in Eq. (77) and the FIM, given by the inverse of Eq. (54), are now
compared. If the signal-to-noise ratio is large then ||hih

T
i ||F = hT

i hi >> ||Rhhi
||F. Thus the first term on

the right-hand side of Eq. (77) is negligible. Also, Rhhi
in second term on the right-hand side of Eq. (77) can

be neglected since hih
T
i is added to it. Thus, the second term on the right-hand side of Eq. (77) is negligible

if the following inequality holds:
hT
i hi

zTRi z
>>

Tr(P Rhhi
)hT

i hi

(zTRi z)2
(78)

The term zTRi z is equal to Tr(xxT
Rhhi

) − 2RT
hy

i

x + Ryy
i
. Since Ryy

i
> 0 then Eq. (78) will hold if the

following holds:
Tr(xxT

Rhhi
) >> Tr(P Rhhi

) + 2RT
hy

i
x (79)

Even if the cross-correlations given by Rhhi
are on the same order as the terms given in Rhhi

the fact that
the signal-to-noise ratio is large and the estimate errors are small will make the inequality in Eq. (79) hold.
Therefore, the errors induced by using the measured values to compute the error-covariance are higher-order
in nature and thus are negligible. Also, if estimates are used in place of measurements, then Ri, along with
its partitions, in Eq. (77) is replaced with the covariance of the estimates.

The covariance of ĥi and variance of ŷi are now derived, which are defined by Phhi
= E{(ĥi−E{ĥi})(ĥi−

E{ĥi})
T } and Pyyi

= E{(ŷi − E{ŷi})(ŷi − E{ŷi})
T }, respectively. The cross-covariance Phyi

= E{(ĥi −

E{ĥi})(ŷi − E{ŷi})
T } is also derived which is used to derive the covariance of d̂i. These covariances are

useful for many applications. For example, the estimate ŷi may be employed in a Kalman filter to provide
filtered estimates. The correct variance of ŷi is need to ensure proper tuning in the Kalman filter design.
Using x̂ = x+ δx and Eq. (58), as well as h̃i = hi + δhi and ỹi = yi + δyi, in Eq. (25a) gives

ĥi = hi + δhi −
(Rhhi

x+ Rhhi
δx− Rhy

i
)(hT

i δx + hT
i δhi − δyi)

zTRi z

+
(Rhhi

x+ Rhhi
δx− Rhy

i
)(hT

i δx + hT
i δhi − δyi)(δx

TRhhi
δx + 2bT

i δx)

(zTRi z)2

(80)

Retaining terms up to second order only, then

E
{

ĥi

}

= hi −
Rhhi

P hi

zTRi z
+

2(hT
i P bi)bi

(zTRi z)2
(81)

The last two terms on the right-hand side of Eq. (81) are second order in nature. Thus, to within first order

E{ĥi} = hi, which indicates that the estimate is unbiased. Define the following matrices:

Mhi
,

[

In×n −
bix

T

zTRi z

bi

zTRi z

]

(82a)

Nhi
,

bih
T
i

zTRi z
(82b)

Myi
,

[

−
βix

T

zTRi z
1 +

βi

zTRi z

]

(82c)

Nyi
,

βih
T
i

zTRi z
(82d)
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where βi , RT
hy

i

x − Ryy
i
and In×n is an n× n identity matrix. Then the covariance of ĥi up to first-order

terms is given by
Phhi

= Mhi
RiM

T
hi

+Nhi
P NT

hi
(83)

The term Nhi
P NT

hi
is often much smaller than Mhi

RiM
T
hi

and can be ignored in most cases. In a similar
fashion the expected value of ŷi can be shown to be given by

E {ŷi} = yi −
RT

hy
i

P hi

zTRi z
+

2(hT
i P bi)βi

(zTRi z)2
(84)

As before the estimate is unbiased to within first order. Then the variance of ŷi up to first-order terms is
given by

Pyyi
= Myi

RiM
T
yi
+Nyi

P NT
yi

(85)

Also, the cross-covariance is given by

Phyi
= Mhi

RiM
T
yi
+Nhi

P NT
yi

(86)

Finally, the covariance of d̂i, denoted by Pddi
, is given by

Pddi
=

[

Phhi
Phyi

PT
hyi

Pyyi

]

(87)

The matrices in Eqs. (82) should be computed using the estimated values in practice because they are derived

using hT
i x− yi = 0. The estimates also obey ĥT

i x̂i − ŷi = 0 by virtue of the required constraint in Eq. (14),
but using the measurements with h̃T

i x̂i − ỹi = 0 is not zero in practice. Therefore it is more accurate to use
the estimates rather than the measurements to compute these matrices. Also, note that Pddi

can be written
by

Pddi
=

[

Mhi
Nhi

Myi
Nyi

][

Ri 0(n+1)×n

0T(n+1)×n P

][

Mhi
Nhi

Myi
Nyi

]T

(88)

where 0(n+1)×n is an (n+ 1)× n matrix of zeros. This shows that Pddi
is a singular matrix, which is due to

the constraint d̂T
i ẑ = 0.

B. Element-Wise Uncorrelated and Stationary Case

For this case R is assumed to have a block diagonal structure of the form

R = blkdiag
[

R · · · R

]

(89)

where R is an (n + 1) × (n + 1) matrix. The solution to this problem is presented in Ref. 10. First the
Cholesky decomposition of R is taken: R = CTC where C is defined as an upper block diagonal matrix.
Partition the inverse as

C−1 =







C11 c

0T c22






(90)

where C11 is an n × n matrix, c is an n× 1 vector and c22 is a scalar. The solution is given by taking the
singular value decomposition of the following matrix:

D̃C−1 = Ũ S̃Ṽ T (91)

where the reduced form is used, with S̃ = diag
[

s̃1 · · · s̃n+1

]

, Ũ is an m × (n + 1) matrix and Ṽ is an

(n+ 1)× (n+ 1) matrix partitioned in a similar manner as the C−1 matrix:

Ṽ =







Ṽ11 ṽ

w̃T ṽ22






(92)
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The total least squares solution assuming an isotropic error process, i.e. R is a scalar times identity matrix,
is

x̂I = −ṽ−1
22 ṽ (93)

The final solution is then given by
x̂ = c−1

22 (C11x̂I − c) (94)

Clearly if the error process is isotropic then x̂ = x̂I, because C11 = σ−2In×n where In×n is an n×n identity
matrix, c = 0 and c22 = σ−2 where σ2 is the variance associated with the isotropic process. The estimate
for D is given by

D̂ = ŨnS̃nṼ
T
n C (95)

where Ũn is the truncation of the matrix Ũ to m× n, S̃n is the truncation of the matrix S̃ to n× n, and Ṽn

is the truncation of the matrix Ṽ to (n+ 1)× n.
The solution summary is as follows. First form the augmented matrix, D̃, in Eq. (12) and take the

Cholesky decomposition of the covariance R. Take the inverse of C and obtain the matrix partitions shown
in Eq. (90). Then take the reduced-form singular value decomposition of the matrix D̃C−1, as shown in
Eq. (91), and obtain the matrix partitions shown in Eq. (92). Obtain the isotropic solution using Eq. (93)
and obtain the final solution using Eq. (94).

The error-covariance for the estimate in Eq. (94) is derived. For this case the FIM in Eq. (54) simplifies
to

F =
1

zTR z

m
∑

i=1

hih
T
i (96)

This requires an inverse of an n×n matrix. Note that if R is isotropic then Eq. (96) matches with the result
shown in Ref. 11. Since a closed-form solution exists for the element-wise uncorrelated and stationary case,
then an approximation for the error-covariance can be derived directly from the solution. The derivation
begins by applying perturbations to the vector ṽ and scalar ṽ22:

ṽ = v + δv (97a)

ṽ22 = v22 + δv22 (97b)

where v is the true value of ṽ, δv is its respective perturbation, v22 is the true value of ṽ22, and δv22 is its
respective perturbation. Using the binomial series the first-order expansion of (v22 + δv22)

−1 is given by

(v22 + δv22)
−1 ≈ v−1

22 − v−2
22 δv22 (98)

Substituting Eqs. (97) and (98) into Eq. (93) and ignoring higher-order terms leads to

x̂I − xI ≈ −v−1
22 δv + v−2

22 δv22 v (99)

where xI , −v−1
22 v. Assuming that δv and δv22 are random variables leads to the following error-covariance

matrix for the isotropic total least squares solution:

PI , E
{

(x̂I − xI)(x̂I − xI)
T
}

= v−2
22 E

{

δv δvT
}

+ v−4
22 vvTE

{

δv222
}

− v−3
22 E {δv22δv}v

T − v−3
22 vE

{

δv22δv
T
} (100)

Using x = c−1
22 (C11xI − c) and Eq. (94) leads to

x̂− x = c−1
22 C11(x̂I − x) (101)

Therefore, the error-covariance matrix for the total least squares solution is given by

P , E
{

(x̂− x)(x̂ − x)T
}

= c−2
22 C11PI C

T
11 (102)

Note that PI is evaluated at the true values, v and v22, which are not available in practice. These can be
replaced with ṽ and ṽ22 in practice, which leads to higher-order error effects that can be ignored for large
signal-to-noise ratios as stated previously.
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The expectations in Eq. (100) now need to be derived to complete the derivation of the error-covariance.
Using Eq. (91) and the fact that the errors are stationary gives

C−TE
{

d̃id̃
T
i

}

C−1 = C−T
RC−1 = C−TCTC C−1 = I(n+1)×(n+1) (103)

where C−T is defined as the transpose of the inverse of C. The goal here is to compute the following quantity:

B ,

[

E
{

δv δvT
}

E {δv22δv}

E
{

δv22δv
T
}

E
{

δv222
}

]

(104)

Let p̃ , [ṽT ṽ22]
T . Using the analogy from Eq. (10), together with Eq. (103), the matrix B is approximated

using the following matrix:

B̃ =

[

∂p̃

∂vec(D̃T )

] [

∂p̃

∂vec(D̃T )

]T

(105)

where “measured” values are used in place of estimated values, which again leads to higher-order error effects
that can be ignored for large signal-to-noise ratios.

A method to compute the Jacobian of the singular value decomposition is shown in Ref. 17, which is
reviewed here. The derivatives of the singular values are given by

∂s̃k

∂d̃ij
= ũik ṽjk (106)

where s̃k is the kth diagonal element of the matrix S̃, d̃ij is ijth element of D̃, ũik is the ikth element of Ũ ,

and ṽjk is the jkth element of Ṽ . To determine the partials of the matrices Ũ and Ṽ , first the following set

of linear equations must be solved for ωij

Ũkℓ

and ωij

Ṽkℓ

:

s̃ℓ ω
ij

Ũkℓ

+ s̃k ω
ij

Ṽkℓ

= ũik ṽjℓ (107a)

s̃k ω
ij

Ũkℓ

+ s̃ℓ ω
ij

Ṽkℓ

= −ũiℓ ṽjk (107b)

where ωij

Ũkℓ

and ωij

Ṽkℓ

are the kℓth elements of the skew symmetric matrices Ωij

Ũ
and Ωij

Ṽ
, respectively. Note

because these matrix are skew symmetric then only the upper triangular elements need to be computed to
determine the matrices. The partials are then given by

∂Ũ

∂d̃ij
= Ũ Ωij

Ũ
(108a)

∂Ṽ

∂d̃ij
= −Ṽ Ωij

Ṽ
(108b)

More details can be found in Ref. 17.
The procedure to compute the partials can be computationally expensive. However, for the total least

squares problem, only the partial of the last column of Ṽ , i.e. the vector p̃, is required which significantly
reduces the computations. Specifically only the last column of Ωij

Ṽ
is required. The first step is to compute

elements of the (n+ 1)× 1 vector ωij = [ωij
1 · · · ωij

n 0]T , with

ωij
k =

1

s̃2k − s̃2n+1

(s̃k ũik ṽj n+1 + s̃n+1 ũi n+1 ṽjk) (109)

for k = 1, 2 . . . , n. Then the following (n+ 1)× (n+ 1) matrix is formed:

Ωi ,

[

ωi1 | · · · |ωi n+1
]

(110)

Using the block diagonal structure of R allows Eq. (105) to be computed simply by

B̃ = Ṽ

[

m
∑

i=1

ΩiΩ
T
i

]

Ṽ T (111)
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Partition the matrix B̃ into

B̃ =







B̃11 b̃

b̃T b̃22






(112)

where B̃11 is an n× n matrix, b̃ is an n× 1 vector and b̃22 is a scalar. Equation (100), evaluated using the
tilde quantities, is now given by

PI = ṽ−2
22

[

B̃11 + ṽ−2
22 b̃22ṽ ṽT − ṽ−1

22 (b̃ ṽT + ṽ b̃T )
]

(113)

Then the error-covariance can now be computed using Eq. (102):

P = ṽ−2
22 c−2

22 C11

[

B̃11 + ṽ−2
22 b̃22ṽ ṽT − ṽ−1

22 (b̃ ṽT + ṽ b̃T )
]

CT
11 (114)

In the error-covariance approximation the “measured” quantities are used in place of the true variables.

Instead, the estimated values can be used. Note that Eq. (95) is equal to D̂ = Ũ ˜̄SṼ TC, where ˜̄S is given by
S̃ with s̃n+1 = 0. Therefore, Eq. (109) can be approximated by setting s̃n+1 = 0, which yields the following
expression:

ωij
k = ũik ṽj n+1/s̃k (115)

Define Ũn from Eq. (95) by its rows:

Ũn =













ũT
1

uT
2
...

ũT
m













(116)

Using Eqs. (115) and (116) allows Ωi to be simply written by

Ωi =

[

ṽ

ṽ22

]T

⊗

[

S̃−1
n ũi

0

]

(117)

where S̃n is defined in Eq. (95). Using Eq. (117) to compute Ωi reduces the computational load while still
producing accurate results. The error-covariance in Eq. (114) is valid for any sample size under the small
noise assumption. Both Eqs. (96) and (114) require a summation of terms over m, but Eq. (114) does not
require a matrix inverse of an n × n matrix to compute the error-covariance. Thus Eq. (114) is preferred
over the inverse of Eq. (96) to compute the error-covariance.

A sequential algorithm for the TLS estimate involving the element-wise uncorrelated and stationary case
is possible. Denote the point m by k + 1. Suppose that the TLS algorithm is executed on data up to and
including point k, and denote the estimate at that point by x̂k. Next, suppose that a new set of data,
denoted by d̃k+1, is now available. Then append the matrix D̃C−1 with a new row d̃T

k+1C
−1. A sequential

solution can be obtained using an SVD update of the appended matrix18 to yield the estimate at point
k + 1, denoted by x̂k+1. Several alternatives to this approach are shown in Ref. 19, two of which are now
summarized. Using a small batch up to some point k, perform a QR decomposition on the matrix D̃C−1 .
Denote the resulting R matrix from this composition as Rk. Using a new set of data d̃k+1 form the following
1× (n+ 1) vector:

sT = −d̃T
k+1Rk (118)

Next perform a QR decomposition on the vector [1 sT ]T and denote the resulting (n+2)× (n+2) Q matrix
by Qk+1. Then update R−1

k to obtain R−1
k+1 by

[

p R−1
k+1

]

=
[

0(n+1)×1 R−1
k

]

Qk+1 (119)

where 0(n+1)×1 is an (n+ 1)× 1 vector of zeros and p is an (n+ 1)× 1 vector not needed for the solution.
Then perform an SVD decomposition on the matrix Rk+1 and compute x̂Ik+1

using Eq. (93) employing the
V matrix from the resulting SVD decomposition of Rk+1. Finally, compute x̂k+1 using Eq. (94) so that

x̂k+1 = c−1
22 (C11x̂Ik+1

− c) (120)
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An approximate solution is also possible that does not involve an SVD decomposition. Using R−1
k+1 form the

following matrix:

Ek+1 = R−1
k+1R

−T
k+1 =







E11k+1
ek+1

eTk+1 e22k+1






(121)

where E11k+1
is an n× n matrix, ek+1 is an n× 1 vector and e22k+1

is a scalar. Using the previous estimate
x̂Ik the new estimate is approximated by

x̂Ik+1
=

ek+1 − E11k+1
x̂Ik

eTk+1x̂Ik − e22k+1

(122)

This approximation is very good if x̂Ik+1
is close to x̂Ik , otherwise an iteration is required.19 Equation (120)

is then used to compute the TLS estimate.
A sequential covariance expression can be derived from Eq. (120) using the SVD solution or the approx-

imate solution given by Eq. (122), however a simpler and less computationally expensive approach uses the
Fisher information directly. The FIM using data up to and including the point k is given by

Fk =
k
∑

i=1

hih
T
i

zTk R zk
(123)

Then the FIM using data up to and including the point k + 1 is given by

Fk+1 =
hk+1h

T
k+1

zTk+1R zk+1
+ Fk (124)

Using Pk = F−1
k and applying the matrix inversion lemma on Eq. (124) yields

Pk+1 =

(

In×n −
Pkhk+1h

T
k+1

hT
k+1Pkhk+1 + zTk+1R zk+1

)

Pk (125)

Equation (125) requires an inverse of a scalar quantity and thus is computationally efficient. Once again the
estimated or measured values are used to compute Pk+1 in practice.

IV. Examples

This section shows four examples. The first two involve curve fitting a set of data with one case involving
stationary noise processes and the other case involving non-stationary noise processes. The next example
involves a robot navigation problem. The last example involves bearings-only estimation with uncertain base
points.

A. Curve Fitting with Stationary Errors

An example is shown here that involves using total least squares to estimate the coefficients of a polynomial
function with stationary errors. The true H and x quantities are given by

H =
[

1 sin(t) cos(t)
]

, x =







1

0.5

0.3






(126)

A fully populated R matrix is used in this example, with

R =











1× 10−4 1× 10−6 1× 10−5 1× 10−9

1× 10−6 1× 10−2 1× 10−7 1× 10−6

1× 10−5 1× 10−7 1× 10−3 1× 10−6

1× 10−9 1× 10−6 1× 10−6 1× 10−4











(127)
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Figure 1. Total Least Squares Simulation Results: Stationary Case

Synthetic measurements are generated using a sampling interval of 0.01 seconds to a final time of 10 seconds.
The estimate is determined using Eq. (94) and the error-covariance is determined using Eq. (114).

Five thousand Monte Carlo runs are executed in order to compare the actual errors with the computed
3σ bounds using Eq. (114). Figure 1(a) shows the measurements and basis functions with errors. The
signal-noise-ratios are modest for this example. Figures 1(b)−1(d) show the errors for the estimates along
with their respective computed 3σ bounds. This indicates that Eq. (114) can be used to accurately compute
the 3σ bounds. Also, the error-covariance obtained using the inverse of Eq. (96) matches the one obtained
using Eq. (114) as expected. A sequential TLS algorithm has also been executed using a batch of the first
10 points to initialize the estimate and error-covariance. Plots of the estimation errors and associated 3σ
bounds, computed using Eq. (125), for a single Monte Carlo run are shown in Figures 2(a)−2(c). The
computed 3σ clearly bound the actual estimation errors.
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Figure 2. Sequential Estimation Errors

B. Curve Fitting with Non-Stationary Errors

This example is equivalent to the previous one except that a non-stationary process for the errors is used.
Three covariance matrices are used, given by

R1 =











1× 10−4 1× 10−6 1× 10−5 1× 10−9

1× 10−6 1× 10−2 1× 10−7 1× 10−6

1× 10−5 1× 10−7 1× 10−3 1× 10−6

1× 10−9 1× 10−6 1× 10−6 1× 10−4











(128a)

R2 =











2× 10−7 8× 10−9 4× 10−8 3× 10−8

8× 10−9 1× 10−6 3× 10−9 2× 10−9

4× 10−8 3× 10−9 2× 10−7 5× 10−10

3× 10−8 2× 10−9 5× 10−10 4× 10−8











(128b)

R3 =











6× 10−6 1× 10−6 4× 10−7 4× 10−7

1× 10−6 3× 10−6 8× 10−7 2× 10−6

4× 10−7 8× 10−7 3× 10−6 4× 10−7

4× 10−7 2× 10−6 4× 10−7 4× 10−6











(128c)
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Figure 3. Total Least Squares Simulation Results: Non-Stationary Case

The first covariance is used for the first 330 points, the second covariance is used for the next 330 points and
the third is used for the remaining points. A plot of the measurements and noisy basis functions is shown in
Figure 3(a). As shown by R2 and R3 the measurements and basis functions contain significantly lower errors
after the first 330 points. The estimate is determined using the iteration procedure shown by Eq. (28) and
the error-covariance is determined using Eq. (74), where h̃i is used in place of hi and ẑ is used in place of z.
Figures 3(b)−3(d) show the errors for the estimates along with their respective computed 3σ bounds. This
indicates that Eq. (54) can be used to accurately compute the 3σ bounds for non-stationary errors. The
computed error-covariance is given by

P =







3.5916× 10−9 3.9664× 10−9 −1.0948× 10−9

3.9664× 10−9 7.2525× 10−9 −1.2931× 10−9

−1.0948× 10−9 −1.2931× 10−9 2.9468× 10−9






(129)

This matches with the sample error-covariance obtained from the Monte Carlo runs.
The error-covariance using the average of the three covariances for R in Eq. (114), denoted now by P̄ , is
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given by

P̄ =







1.0082× 10−6 −3.8986× 10−7 1.1420× 10−7

−3.8986× 10−7 2.0963× 10−6 −9.7655× 10−8

1.1420× 10−7 −9.7655× 10−8 1.7888× 10−6






(130)

Clearly Eq. (129) does not match Eq. (130). This shows that the effect of using a non-stationary process can
be profound on the estimation accuracy. It should also be noted that the left-hand side of the inequality in
Eq. (79) is five orders of magnitude larger than the right-hand side of Eq. (79) for this case. Thus, using the
measured quantities to compute the error-covariance is valid. Another simulation involving only 11 samples,
using a sampling interval of 1 second, has also been done. It is found that even with 11 samples the error-
covariance in Eq. (74) provides good 3σ bounds. So for this particular simulation case the error-covariance
expression assuming an asymptotically efficient condition for the Cramér-Rao lower bound is valid even for
a small sample size, which matches the theoretically proven results leading to Eq. (74).

t1 t2 t3 t4t0

 1  2

Landmark

Robot Moves

 !1 2,x x

Figure 4. Robot Navigation Problem

C. Robot Navigation

This example uses total least squares to determine the best estimate of a robot’s position.20 A diagram of the
simulated robot example is shown in Figure 4. It is assumed that the robot has identified a single landmark
with known location in a two-dimensional environment. The robot moves along some straight line with a
measured uniform velocity. The goal is to estimate the robot’s starting position, denoted by (x1, x2), relative
to the landmark. The landmark is assumed to be located at (0, 0) meters. Angle observations, denoted by
αi, between its direction of heading and the landmark are provided. The angle observation equation follows

cot(αi) =
x1 + ti v

x2
(131)

where ti is the time at the ith observation time and v is the velocity. The TLS model is given by

hi =

[

−1

cot(αi)

]

, x =

[

x1

x2

]

, yi = tiv (132)

so that yi = hT
i x. Measurements of both αi and v are given by

α̃i = αi + δαi (133a)

ṽi = v + δvi (133b)

where δαi and δvi are zero-mean Gaussian white-noise processes with variances σ2
α and σ2

v , respectively. The
variances of both the errors in cot(α̃i) and ỹi = tiṽi are required. Assuming δαi is small then the following
approximation can be used:

cot(αi + δαi) ≈
1− δαi tan(αi)

tan(αi) + δαi
(134)
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Using the binomial series for a first-order expansion of (tan(αi) + δαi)
−1 leads to

cot(αi + δαi) ≈
[1− δαi tan(αi)][1 − δαicot(αi)]

tan(αi)

= cot(αi)− δαicsc
2(αi) + δα2

i cot(αi)

(135)

Hence, the variance of the errors for cot(α̃i) is given by σ2
αcsc

4(αi)+ 3σ4
αcot

2(αi). The variance of the errors
for ỹi is simply given by t2i σ

2
v, which grows in time. Therefore, the matrix Ri is given by

Ri =







0 0 0

0 σ2
αcsc

4(αi) + 3σ4
αcot

2(αi) 0

0 0 t2iσ
2
v






(136)

Since this varies with time the non-stationary TLS solution must be employed. The estimate is determined
using the iteration procedure shown by Eq. (28) and the error-covariance is determined using Eq. (74), where
h̃i is used in place of hi and ẑ is used in place of z. The true values for αi are also replaced with their
respective measured ones to compute Ri in Eq. (136). Also, note that this matrix is singular but does not
cause any issues in the TLS solution.
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Figure 5. Robot Estimation Errors

In the simulation the location of the robot at the initial time is given by (−10, −10) meters and its velocity
is given by 1 m/s. The variances are given by σ2

α = (0.1π/180)2 rad2 and σ2
v = 0.01 m2/s2. The final time

of the simulation run is 10 seconds and measurements of α and v are taken at 0.01 second intervals. Five
thousand Monte Carlo runs are executed in order to compare the actual errors with the computed 3σ bounds
using Eq. (74). Figures 5(a) and 5(b) show the errors for the estimates along with their respective computed
3σ bounds. This indicates that Eq. (74) can be used to accurately compute the 3σ bounds. Also, although
not shown here, the computed error-covariance using Eq. (74) matches with the sample error-covariance
obtained from the Monte Carlo runs.

D. Bearings-Only Point Estimation

Total least squares is applied to estimate the two-dimensional location of a stationary target point using
passive bearing measurements. The TLS problem is formulated in Ref. 21, however only stationary errors
are assumed. Here a more rigorous development is derived. The problem geometry is depicted in Figure 6.
The goal is to estimate the point p from bearings-only measurements, denoted by θ̃i. The baseline points,
denoted by Xi and Yi, are assumed to be imprecisely known. The bearing measurement model and baseline
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Figure 6. Two-Dimensional Bearings-Only Geometry

point models are given by

θ̃i = θi + δθi (137a)

X̃i = Xi + δXi (137b)

Ỹi = Yi + δYi (137c)

where δθi, δXi and δYi are zero-mean Gaussian noise processes with variances σ2
θi
, σ2

Xi
and σ2

Yi
, respectively.

The observations are modeled as

θi = tan−1

(

y − Yi

x−Xi

)

(138)

Taking the tangent of both sides of Eq. (138) leads to yi = hT
i x, with

yi = −Xi sin(θi) + Yi cos(θi) (139a)

hi = [− sin(θi) cos(θi)]
T (139b)

x = [x y]T (139c)

Replacing the true values with the measured values and using the first-order approximations sin(θi + δθi) =
sin(θi) + δθi cos(θi) and cos(θi + δθi) = cos(θi)− δθi sin(θi), yields the following expressions for ỹi and h̃i:

ỹi =− X̃i sin(θ̃i) + Ỹi cos(θ̃i)

=−Xi sin(θi) + Yi cos(θi)− δθiXi cos(θi)− δXi sin(θi)− δθiδXi cos(θi)

− δθiYi sin(θi) + δYi cos(θi)− δθiδYi sin(θi)

(140a)

h̃i = [− sin(θ̃i) cos(θ̃i)]
T

= [− sin(θi)− δθi cos(θi) cos(θi)− δθi sin(θi)]
T

(140b)

Then the elements of the covariance matrix Ri are computed to be

Ryy
i
= σ2

θi{[Xi cos(θi) + Yi sin(θi)]
2 + σ2

Xi
cos2(θi) + σ2

Yi
sin2(θi)}+ σ2

Xi
sin2(θi) + σ2

Yi
cos2(θi) (141a)

Rhhi
= σ2

θi

[

cos2(θi) sin(θi) cos(θi)

sin(θi) cos(θi) sin2(θi)

]

(141b)

Rhy
i
= σ2

θi [Xi cos(θi) + Yi sin(θi)]

[

cos(θi)

sin(θi)

]

(141c)
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Note that the covariance matrix does not contain the true locations x and y, unlike other approaches to this
problem.22, 23 As before the true values can be replaced with the measured ones to compute the covariance
matrix in practice.
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Figure 7. Total Least Squares Bearings-Only Estimation Errors

In the simulation the location of the point p is given at (100, 200) meters. The baseline points are time
varying with Xi = 500 sin(0.01 ti) and Yi = 300 cos(0.2 ti). The variances are given by σ2

θi
= (1π/180)2 rad2

and σ2
Xi

= σ2
Yi

= 25 m2 for all i points. The final time of the simulation run is 10 seconds and measurements

of θ̃i, X̃i and Ỹi are taken at 0.01 second intervals. Five thousand Monte Carlo runs are executed in order to
compare the actual errors with the computed 3σ bounds using Eq. (74). The TLS initial estimate is given by
using a standard linear least squares solution with the measurement variance given by Eq. (141a). Figures
7(a) and 7(b) show the errors for the TLS estimates along with their respective computed 3σ bounds. This
indicates that Eq. (74) can be used to accurately compute the 3σ bounds. Also, although not shown here,
the computed error-covariance using Eq. (74) matches with the sample error-covariance obtained from the
Monte Carlo runs. A plot of the output errors and 3σ bounds computed using Eq. (85) for one of the Monte
Carlo runs is shown in Figure 8(a). Also plots of the basis function errors and 3σ bounds computed using
Eq. (83) are shown in Figures 8(b) and 8(c). Clearly, the derived covariance expressions provide accurate
bounds for the actual errors.

A comparison is made using the standard linear least squares solution with its associated error-covariance.
Figures 9(a) and 9(b) show the errors for the linear least squares estimates along with their respective
computed 3σ bounds. Comparing these figures to the TLS errors in Figures 7(a) and 7(b) indicates that
the linear least squares solution is not optimal and even biased, as discussed in Ref. 21. Clearly the errors
in the basis function matrix can cause significant errors if a linear least squares solution is employed over a
TLS solution.

V. Conclusions

The error-covariances derived here for the total least squares problem provide useful measures to quantify
the expected errors in the estimates. A perturbation analysis showed that the derived error-covariance from
the associated loss function achieves the Cramér-Rao lower bound. Thus the total least squares estimator
is an efficient estimator. An expression for the error-covariance for stationary errors was derived using a
perturbation of the closed-form solution. This expression is useful because it does not require a matrix
inverse. Simulation results showed that the derived error-covariance expressions provide accurate bounds for
the estimate errors.
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Figure 8. Output and Basis Function Estimation Errors
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Figure 9. Linear Least Squares Bearings-Only Estimation Errors
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