
Journal of VLSI Signal Processing, 4, 331-342 (1992)
�9 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Error Detection in Arrays via Dependency Graphs*

EDWIN HSING-MEAN SHA AND KENNETH STEIGLITZ

Department of Computer Science, Princeton University, Princeton, NJ 08544

Received August 9, 1991; Revised December 3, 1991.

Abstract. This paper describes a methodology based on dependency graphs for doing concurrent run-time error

detection in systolic arrays and wavefront processors. It combines the projection method of deriving systolic arrays

from dependency graphs with the idea of input-triggered testing. We call the method ITRED, for Input-driven

7~me-Redundancy Error Detection. Tests are triggered by inserting special symbols in the input, and so the approach

gives the user flexibility in trading off throughput for error coverage. Correctness of timing is proved at the dependency

graph level. The method requires no extra PEs and little extra hardware. We propose several variations of the

general approach and derive corresponding constraints on the modified dependency graphs that guarantee correct-

ness. One variation performs run-time error correction using majority voting. Examples are given, including a

dynamic programming algorithm, convolution, and matrix multiplication.

1. Introduction

Reliability is often a critical issue in applications of

high-performance systolic or wavefront array processors,

and for that reason much recent work has addressed

the problems of on-line error detection (see, for exam-

ple, [1]). We consider in this paper a flexible and general

methodology for incorporating error detection in array

design.

The two general approaches pursued in the literature

for error detection are hardware and time redundancy.

That is, one can detect errors by introducing additional

computing hardware, perhaps duplicating PEs, or one

can do duplicate computations using the same hard-

ware. In general, there is a tradeoff between the de-

crease in throughput caused by the time redundancy,

and the cost of the extra hardware used for hardware

redundancy. A high degree of time redundancy can

achieve good error detection, but at the cost of de-

creased throughput; a high degree of hardware redun-

dancy can do the same without the attendant decrease

in throughput, but at the cost of more hardware.

Much previous work takes advantage of the regu-

larity of systolic arrays. For example [1] describes

algorithm-based techniques that are especially suited

to systolic arrays, but these are applicable only to a

subset of linear systems, and it is unclear how to use

*This work was supported in part by NSF Grant MIP-8912100, and
U.S. Army Research Office-Durham Grant DAAL03-89-K-0074.

them on problems like the substring comparison we

consider in Section 2. The work in [2], [3] uses dual-

module redundancy to detect errors; the essentially

time-redundant technique of [4] applies only to uni-

lateral linear arrays and results in a slowdown by a fac-

tor of two; [5] also deals with special classes of systolic

arrays and agalns halves the throughput rate using time

redundancy. The method of roving spares described in

[6] uses limited hardware redundancy, but it is not clear

how to extend the method to bilateral arrays or more

complicated structures.

This idea of using tokens to trigger error detection

appears to have been introduced in [7]. They use both

time and space redundancy, and a fixed periodic pattern

of inserting tokens. In the case of unilateral linear ar-

rays, the number of inserted tokens in the array at any

instant cannot exceed the number of extra PEs. Thus,

the frequency of token insertion is predetermined by

the number of extra PEs. In the case of bilateral linear

arrays, they make use of the idle PEs and idle cycles

in the original computations for space and time redun-

dancy, so only one extra PE is needed.

We will combine two ideas to achieve rim-time error

detection: First, as in [7], we introduce special symbols

in the input that signal the processors to perform com-

parisons for the purposes of detecting discrepancies.

Typically, this is done by having two (or more) adjacent

processors perform the same computation and compar-

ing results. In contrast with [7], however, the frequency

of insertion of these special symbols is determined by

332 S h a a n d S t e ig l i t z

the user at run time, rather than being pre-determined

by hardware constraints. Second, we introduce the

special symbols at the level of the dependency graph,

and follow the effect through the projections used to

arrive at a systolic or wavefront array [8].

There are several advantages to this general approach

over more specialized or ad h o c approaches. First, it

allows the user to determine the frequency of error

checking at run time. Thus more error checking can

be done when a lower throughput is acceptable. A sec-

ond advantage stems from the fact that the method is

expressed in terms of the dependency graph. This

allows us to use previous work [8] on scheduling and

projection to prove the correctness of the resulting

working architectures. A third advantage is that the ap-

proach requires no extra PEs , and little extra hardware.

In the next section we briefly describe dependency

graphs using the problem of finding minimum substring-

distance as an example. In Section 3 we describe the

general methodology of ITRED. In Section 4 we discuss

our fault model at the level of array nodes, nodes in

the signal flow graph that are mapped to the working

architecture. The details of implementing ITRED for

unilateral linear arrays, which include the minimum

substring-distance problem and convolution, are dis-

cussed in Section 5. Section 6 then shows how to extend

ITRED to more general problems, using matrix multi-

plication as an example. We prove correctness in Sec-

tion 7. Finally, in Section 8 we show how ITRED can

be adapted to handle some special design requirements.

2. Minimum Substring-Distance

In this section, we introduce as a working example the

problem of finding minimum substring-distance. We

use this problem to illustrate the dependency graph D G

and the mapping method for transforming a D G to an

array architecture [8]. String comparison is a time-

consuming and important operation in many applica-

tions, such as information retrieval, databases, artifi-

cial intelligence, pattern recognition, and DNA pattern

matching.

The ed i t d i s t a n c e between two strings is the mini-

mum number of basic operations (insertion, deletion

and substitution) necessary to transform one string to

the other. For example, chao can be transformed to

sha by a sequence of three operations as follows:

chao (d e l e t e c) - - > h a o (d e l e t e o) -->

ha (i n s e r t s) - - > sha .

But two transformations suffice:

chao (s u b s t i t u t e s f o r c) - - >

shao (d e l e t e o) - - > s h a .

In fact this is minimum, so the edit distance between

the two strings is two.

Systolic arrays for computing edit distance between

two strings have been described in [9]-[11]. In [12],

Landau and Vishkin consider the problem of finding

a substring of a string S most similar to a given pattern

P. Given string S and pattern P, let S (i : j) be the sub-

string of S from position i to position j and let d i s (S (i :

j) , P) be the edit distance between S (i : j) and P. The

m i n i m u m s u b s t r i n g - d i s t a n c e is the minimum distance

d i s (S (i :j), P), where i andj range from 1 to the length

of S. Thus, the minimum substring-distance between

the string "I like Systolic VLSI arrays," and "Systolic

arrays" is five.

The problem of minimum substring-distance can be

solved by two-dimensional dynamic programming,

which in turn can be implemented by a one-dimensional

systolic array.

An input instance of the problem is

S = s i s 2 . . . Sn: a (long) string

P = P i P 2 . . . Pro: a (short) string

The output of the problem is the minimum of all edit

distances of substrings S (i - k : i) = s i -ks i -~+l �9 �9 si

from the pattern P, where 1 _< i < n, 0 _< k < i - 1.

The dynamic programming algorithm proceeds as

follows. Let D [i , j] denote the minimum distance of

all substrings as si from the prefix P(1 : j) , where

1 __< i < n, 1 < j < m. Initially,

D [i , 0] = 0 for every i and

D[0, j] = j for every j.

If we think of the D[i, j] as being in a two-dimensional

array, each D [i, j] can be computed from the entries

above, to the left, and above and to the left, as follows:

fo r i = 1 to n do

f o r j = 1 t o m do

D [i , j] = m i n (D [i - 1,j] + 1, D [i , j - 1] + 1,

D [i - 1, j - 1] i f s i = p j o r

D [i - 1, j - 1], o t h e r w i s e)

When this double loop is completed, the entries

D[i , m] contain the minimum distance of all substrings

ending at si from the pattern P. If we consider each

m i n operation as a node and represent each dependence

Error Detection in Arrays via Dependency Graphs 333

33 3 2

Pl

..'" 3 3 ~

...'/]

P2 p3 P~
�9 .'"" .ql,rr, ~ ..'"'"

) _:,~:i~~
/ i i

" ~ , 1)

(1, 0)

F

Fig. 1. Dependency graph for minimum substring-dist.

of an operation on data as a directed edge between two

nodes, the resulting dependency graph DG is as shown

in figure 1. The graph DG is acyclic and therefore

computable.

We call a node in DG a computation cell, or cell.

As described in [8], the two design steps of processor

assignment and scheduling can be used to map such

a DG to a lower dimensional signal flow graph SFG.

We call a node of the signal flow graph a Processor

Element (PE), this being justified because the signal

flow graph is very close to a hardware specification for

a SIMD systolic or wavefront array. Let an equiproc-

essor curve be a curve containing all the ceils of the

dependency graph that are projected onto one PE of

the signal flow graph of lower dimension, and let an

equitemporal surface be a surface containing all the

computation cells that are active at a given time.

Usually, the equiprocessor curves are parallel straight

lines, in which case we let fr be a vector parallel to

the equiprocessor lines, called the projection vector.

Further, it is often the case that the dependency graph

has a linear schedule; that is, all equitemporal surfaces

are parallel hyperplanes, and so have a unique normal

direction. Let Fbe a vector in this normal direction,

called the schedule vector.

Kung [8] showed that given a projection vector 2Y,

necessary and sufficient conditions for a linear schedule

to be permissible, that is, represent a realizable com-

putation in the signal flow graph, are the following:

(1) V edge ~" i n DG, F r F ~_ 0.

(2) s*Tff t > 0.

In our example of the minimum substring-distance

problem, we can choose the projection vector ~ = (1, 0)

and the permissible linear schedule F = (1, 1), as shown

in figure 1. This leads to a signal flow graph with m

processors, where m is the size of the pattern P, and

that is reasonable since n, the size of the string S, is

usually very much larger than m.

3. ITRED: General Approach

In this section we discuss ways of modifying dependency

graphs to achieve error detection, and we will call a

specific algorithm for doing so a strategy. The strategy

determines the way in which special symbols are inserted

in the input data stream. We propose two approaches.

In the first, we derive some strategies that allow every

PE to be tested if the user chooses to provide the right

inputs. In the second approach not only can every PE

be tested consecutively by choice of the input stream,

but the computation results themselves can be produced

by majority vote. We begin with the first approach,

which is actually a special case of the second.

We use a special input symbol, called e~, which

serves the purpose of informing a PE to do error detec-

tion (as in [13]). When PEi receives an a symbol, PEi

will do the same operation as PEi-~ and compare its

result with that of PEi-1. (We assume here that PE i is

in fact capable of performing the same operation as

PEi_ 1. If all processors are not identical, this require-

ment might require augmenting the capabilities of some

of the processors.) If the results are not the same, an

error has been detected. The user has the freedom to

decide how frequently an o~ symbol is inserted in the

original input. At one extreme, the user inserts no ot

symbols, in which case there is no decrease in through-

put: At the other extreme, the user inserts an ot symbol

before each input data point in the original input stream,

so the throughput becomes at most half the original

speed. Thus, the tradeoff between speed and error

coverage is under user control.

DEFINITIOn 3.1. We say a strategy for inserting a ' s into

the input stream is oz-successful if all PEs are tested

at least once and all computation cells have the correct

timing.

Actually, ITRED can be easily extended so that

every computation cell is tested, but sometimes we may

need to add extra PEs so the computation cells on the

border can be tested.

We want to think of adding the o~ symbols into the

original dependency graph; to do this we add special

334 Sha and Steiglitz

cells called a cells. In the dependency graph, the effect

of an a symbol is similar to a delay, since when PEi

receives an a symbol, it will save its state, discard what

it produces after it simulates PEi_ l's computation, and

then restore its previous state.

For simplicity, we first consider the case of a two-

dimensional dependency graph G like the one in figure

1, with m columns and n rows. Without loss of general-

ity, we assume that data for a particular problem in-

stance enters along a row (row input), and flows from

column to column. Let gij be a computation cell,

where 1 < i <_ n, and 1 < j <- m.

To insert an a symbol in the input stream that travels

from PE to PE, insert a complete row of a cells in the

dependency graph, as shown in figure 2. If this row

is inserted before row i, this splits G into two parts,

the part from row 1 to row i - 1, and the part from

row i to the last row. Keep the edges that went from

row i - 1 to i in the first part. Let 5~ be the vector

normal to the added row, so ~ is (0, 1). Note that in

other, more general situations the inserted a symbols

may not form a hyperplane, and therefore there may

not be a well defined ~ vector. We will see an example

of this in a later section.

Let a j, 1 < j _< m be the row of added a ceils,

ordered in the direction of increasing time. I f column

j is projected to PE], add the directed edge (a], g i,y).

Call these edges delay edges and denote by c j the

computation cell pointed to by the delay edge leaving

a j. Since a j and c j project to the same PE, the differ-

ence between their coordinate vectors is a vector paral-

lel to ft. Figure 1 shows the original dependency graph

for the minimum substring-distance problem and figure

2 shows the dependency graph modified in the way just

discussed.

An a stream inserted into the dependency graph in

this way can be regarded as a surface, which we call

an a-surface. When the a-surface is a hyperplane, we

can call it an a-hyperplane. We say that an a-surface

is a cutting surface if removing it separates the depend-

ency graph into disconnected pieces. We say that a cut-

ting surface is unicutting if all the edges crossing this

surface cross it in the same direction. Cutting or anicut-

ting hyperplanes are defined analogously.

We next derive constraints on the way in which the

original dependency graph should be modified so that

testing takes place correctly. We prove later that these

conditions are sufficient to ensure that a strategy is a -

successful. Observe first that since we need to test every

PE, the vector ~ cannot be perpendicular to the vector

if1,1

delay edges

g2,l

gn,l

t = t = 2 t = 3

,/'ffl,~ /'•1,3 , , / //ffl,m

1

P E1 P E2 P E3 P E,~

Fig. 2. Modified dependency graph for minimum substring-dist.

p, and in fact every PE should be the image under pro-

jection of at least one a cell. Furthermore, because we

do not intend to increase the number of PEs, we also

require that each PE be the image under projection of

at least one computation cell.

We know that different PEs should be tested at dif-

ferent times, so the vector ~ cannot be parallel to the

vector Z (When working architecture is a wavefront

array, this sequential property of the testing will be

naturally ensured by the fact that the testing is data-

driven.) Since each a j is basically a delay for some

later operation c j by the same PE, the delay edge

should be in the same direction as the vector p.

Let PE j be the PE to which a j is projected. We

know that whenever a PE receives an a , this PE needs

to do the same operation as its neighboring PE will do.

Thus, for each a) there should exist a computation cell

(not an a cell) that is projected to PEJ's neighbor at

the same time that the a cell is projected to PE j. We

summarize the constraints discussed above in the fol-

lowing, which we call the Z constraints for hyperplanes.

~C c o n s t r a i n t s f o r h y p e r p l a n e s :

O. ~ i s n o t p a r a l l e l t o ~'

1. 3 an a c e l l on t h e b o r d e r a t w h i c h d a t a

a r r i v e s

2. a l l d e l a y edges a r e p a r a l l e l t o

3. VPE, rl a n a c e l I w h i c h i s p r o j e c t e d t o P E

4. VPE, 3 a c o m p u t a t i o n c e l l w h i c h i s p r o -

j e c t e d t o PE

Error Detection in Arrays via Dependency Graphs 335

5. rot j, 3 a n o n - e c o m p u t a t i o n c e l l t h a t i s

in t h e s a m e e q u i t e m p o r a l h y p e r p l a n e a s

(~Jand i s p r o j e c t e d t o a n e i g h b o r i n g P E

o f PE j

6. The e - h y p e r p l a n e i s u n i c u t t i n g

As noted above the zeroth constraint is not needed

at all when the working architecture is a wavefront

array, so we assume without loss of generality that the

working architecture is a synchronous, systolic array,

rather than a wavefront array. Actually, the zeroth con-

straint is implied by the fifth constraint, so it is redun-

dant and can be omitted. If the equitemporal surface

or the c~ surface is not a hyperplane, we can generalize

the above constraints easily as follows:

c o n s t ra i n t s :

1. 3 an cz c e l l on t h e b o r d e r a t w h i c h d a t a

a r r i v e s

2 . a l l d e l a y e d g e s a r e p a r a l l e l t o

3 V P E , : l a n e c e l l w h i c h i s p r o j e c t e d t o P E

4 VPE, =1 a c o m p u t a t i on c e l I wh i ch i s p r o -

j e c t e d t o PE

5 Ve j , 3 a n o n - e c o m p u t a t i o n c e l l t h a t is

in t h e same e q u i t e m p o r a l s u r f a c e as (z]

and i s p r o j e c t e d t o a n e i g h b o r i ng PE o f

pE j

6 The e - h y p e r p l a n e i s u n i c u t t i n g

If the projection, schedule, and modified depend-

ency graph satisfy the above constraints, we say that

this dependency graph is correctly modified. We leave

for Section 7 a proof that a correctly modified depend-

ency graph is a-successful.

In the second approach to modifying the dependency

graph, majority voting is applied. In this scheme k adja-

cent PEs will perform the same operation, the output

will be the majority result, and error detection will be

performed at the same time. We introduce k - 1 special

symbols e l , . . . , otk_l, which play roles similar to the

e symbol. For simplicity, we assume that k is 3, but

it is straightforward to extend k to be any odd number.

When PEi receives an cq symbol, it performs the same

action as before--it simulates a computation in the adja-

cent PE, say PEi_ 1. If PEi+ 1 receives an c~ 2 symbol,

it simulates the computation of a PE which is distance-2

from it, say PEi_ 1. We need to guarantee that PEi+I

receives e 2 and PE i receives cq at the same time, and

at a time when they can both simulate the same com-

putation by PEi_l, do the error detection, and output

the majority result.

Therefore, 0~2 should immediately precede e I in the

e stream. The constraints analogous to the E constraints

for performing majority voting are given below, with

all terms previously used now indexed by the same in-

dex i as the corresponding symbol e i. For example, ~i

is the normal vector for the oz i hyperplane.

~maj~kconst ra i n t s f o r h y p e r p l a n e s :

1. a l l t h e ~ i a r e p a r a l l e l t o each o t h e r

2 . t h e ek_ t , . . . , e l - S y m b o l s a r e i n t h e same

e q u i t e m p o r a l h y p e r p l a n e , and a r e p r o -

j e c t e d t o k - 1 a d j a c e n t PEs

3. t h e e l - h y p e r p l a n e s a t i s f i e s t h e [;

Cons t ra i n t s

The corresponding more general constraints for the

case of surfaces are:

~ m a j ~ c o n s t ra i n t s :

1. a l l t h e c ~ i - s u r f a c e s a r e p a r a l l e l t o e a c h

o t h e r

2 , t h e e k _ l , . . . , e l - S y m b o l s a r e i n t h e same

e q u i t e m p o r a l s u r f a c e , and a r e p r o j e c t e d

t o k - 1 a d j a c e n t PEs

3. t h e e l - s u r f a c e s a t i s f i e s t h e

C o n s t ra i n t s

For example, the modified dependency graph in fig-

ure 3 satisfies the above ~maj_jc constraints. Note that

if we want every computation cell in the dependency

graph to be tested k PEs, we may need to add some

gl,1

O~2

OL 1

delay edges

g2,1

gn,1

t = l t = 2 t = 3
.** ** 7" .'" / "

. ' "gl ,2 "* �9 /*~]l;m , ' / ," gl,3 /"

::%k
PE~ PE2 PE3 PE~

\

Fig. 3. Modified dependency graph for the minimum substring-
distance problem (approach 2).

336 Sha and Steiglitz

extra PEs to take care of the cells on the border of the

dependency graph.

In the remainder of this paper we assume that

ITRED uses the first approach (no majority voting),

unless we explicitly state otherwise.

4. Fault Model

Given a dependency graph, we project it to a lower

dimensional signal flow graph [8], and map this signal

flow graph to a working architecture. Each cell of the

signal flow graph that is mapped to the real working

architecture is called an array node, which can usually

be regarded as a PE. We use array and fault models

similar to those in [2], [3], [7].

Each PE is composed of two parts: the buffers and

the processing unit (PU). The buffers can be divided

into two parts: the data buffers (DB) and internal buf-

fers (IB). DB holds the input data and IB holds the state

necessary to perform the next operation.

In our first approach to run-time error detection,

every two consecutive PEs do the same operation and

compare results. In the second approach, a majority

vote determines the outcome if a discrepancy occurs.

The comparator and majority voter can be implemented

to be totally self-checkable [14], [13], and faults in buf-

fers or communication can be detected and corrected

by using coding techniques [14[, [13]. The extra

hardware for error detection in ITRED is so simple,

and therefore can be built so reliably, that we can

assume all faults occur in PEs.

A fault here will mean a functional fault, not the

traditional gate-level stuck-at fault. In the first approach

it is usually convenient to assume that when two adja-

cent PEs have their outputs compared, and they are both

faulty, then their incorrect outputs are different, so that

an error is detected immediately. Similarly, in the sec-

ond approach, where we compare the outputs of k adja-

cent PEs operating on the same inputs, we assume that

no k adjacent faulty PEs whose outputs are compared

produce identical (incorrect) results.

5. One-Dimensional Linear Arrays

In this section we give details of the application of

ITRED in the simplest case--one-dimensional linear

arrays. Two-dimensional meshes and more complicated

topologies are considered in the next section. As men-

tioned in Section 3 the constraints for introducing

symbols are more stringent for systolic arrays than

wavefront arrays, so we restrict attention to the former.

We say a linear array is unilateral if data flows in only

one direction (see figure 4 for an example). We say a

linear array is bilateral if data can flow between two

PEs in both directions. We begin with details for the

first approach in the unilateral case, and discuss the

second approach and the bilateral case subsequently.

Let PE1 be the leftmost PE and PE i the ith PE from

the left. For the case of a linear systolic array, this first

approach yields a result similar to the one in [7], but

no extra PE is needed. When PEi receives an c~ sym-

bol, it will do the same operation as PEi_ 1 and com-

pare both results. If the results are not the same, an

error has been detected. I f there are c o~'s, as long as

there is at least one input data value between any two

consecutive a's, c different pairs of PEs can concur-

rently check their results. In figure 4, there are two a's

and we show the sequence of pairs which do error

detection at different clock times.

We next explain the details of the extra hardware re-

quired to implement ITRED. As mentioned above, the

PEs are divided into processing unit PU, and buffers--

which in turn are divided into the data buffer DB and

the ouptut buffer IB. The buffer IB normally stores

PU's previous output. We index PU, DB and IB accord-

ing to their corresponding PE.

Without loss of generality, we assume a three-phase

clock. In the ordinary situation (without error detection),

during the first phase (input phase) PU/ loads data

from DBi_ 1 and some part of IBi-1 into DB i. During

the second phase (processing phase) processing unit

PUi gets input from DB i and IB i, and performs its oper-

ation. During the third phase (output phase) PU i loads

its result to IBi (again, assuming no error detection).

I
I

t = l a a

t = 2 a - - a

t = 3 - - a a

Fig. 4. An example of a unilateral linear array using ITRED.

Error Detection in Arrays via Dependency Graphs 337

D B i i - i _

PUi-1

Q multiplexor

(~1

PUi

(~ ~) A r

Q comparator

Fig. 5. T h e P E c e l l s .

In error-detection mode, when PE i receives an c~

symbol, it will do the same operation as PEi_ 1 and

compare results. The input phase is as before, passing

along the a symbol in the input data stream. In the proc-

essing phase, PUi needs to get its input from D B H

and IBi_p In the output phase, PEi will not load its

results to IB i, so as to preserve the old contents of IBi

for further use. The only extra thing PE i needs to do

in the output phase is to check its output with the out-

put from PE/_ 1. A block diagram for PE i and PEi_I is

shown in figure 5.

Now we need to make sure that PEi will be in the

correct state and get the correct input after an c~ sym-

bol has passed through it. When PE/receives an c~

symbol it does not perform its real operation but per-

forms the same operation that PEi_ 1 does. At the next

clock tick, say time j, since IBi did not change at time

j - 1, and data to DBi is also delayed one tick

(because of the a symbol in the input stream), PE i can

perform the same operation as it would have without

the c~ symbol.

We give a simple example in figure 6. Assume the

original input data is first a, and then b, c, and write

ai to indicate the state of PE i after processing a. The

succession of PE states without error detection is shown

at the top of figure 6. Next, consider what happens

when the user inserts an et after a to do error detection.

We write a i to indicate that PEi's internal buffer has

cba a l t = l

bl a2 ~ = 2

cl b2 aa t = 3

c2 b3 a4 t = 4

cbaa al t = 1

a{ a2 ~ = 2

b~ a~ aa t = 3

Cl b2 a~ a4 t = 4

~ b3 , q - - t = 5

Fig. 6 An example showing correct timing for a unilateral array.

not changed, which happens when PE receives an c~

symbol. The bottom of figure 6 shows the modified suc-

cession of events, and verifies the fact that each PE

receives the correct inputs and is in the correct states

at the right times. From this example, we can see that

the timing under a particular strategy may not be ob-

viously correct. A general proof of correctness for

ITRED will be given in Section 7.

We next discuss the second approach, where the

results of more than two computations are compared.

338 Sha and Steiglitz

For the purpose of discussion, we assume that the

parameter k is 3, so there are two special symbols ~1

and a 2. Since PEi+ ~ now needs to simulate the com-

putation in P E N , there needs to be a new data line

from PEi_ 1 to PEi+ 1. We need also to include a major-

ity voter in every PE, which entails only a simple mod-

ification of the hardware in figure 5. One correctly

modified dependency graph for the above example is

shown in figure 3, and a more condensed version of

the same systolic array is shown in figure 7. In the next

section, we will demonstrate the application of this ap-

proach to a two-dimensional systolic array for matrix

multiplication.

Next we illustrate the application of ITRED to the

case of bilateral linear arrays using the example of con-

volution. Given two sequences x (j) and y (j) , i = O,

. . . . n - 1, the convolution for x and y is

z(i) - x (j) y (i - j) ,
j=0

where i = 0, . . . , 2n - 2. The dependency graph is

shown in figure 8.

We first modify the dependency graph to add o~ sym-

bols, taking care to satisfy the I constraints. The vector

p c a n be chosen to be (1, 1), which results in a bilateral

linear array. Inserting rows of ot's results in a unicutfing

cr and the vector 5~ = (1, 0). We then add

delay edges that are parallel to pr, shown as bold edges

in figure 9. Finally, we choose a schedule, which results

in the signal-flow graph shown below the dependency

graph. Note that this choice of schedule results in equi-

Fig. 7. More condensed systolic array.

x(o)
\

y(o) ->(

z(O

x(1) x(2) xl

)-<

y(',)

z(~) ~(2)

3)

z(3) z(4) z(5) z(6)

Fig. 8. The dependency graph for convolution.

temporal surfaces that are not hyperplanes. It is now

easy to verify the remaining I constraints: for every

cd, there exists a non-a computation cell that is in the

same equitemporal surface as aJ and is projected to a

neighboring P E of PE j. Figure 9 shows the final, cor-

rectly modified dependency graph.

In the original dependency graph every other PE is

idle at any given time, and the schedule can use these

idle PEs to simulate their neighbors. Under this

=(o)

y(o)~

t = l t = 2 t = 3 t---4

x (1) / / x (2) / x (3) / / / /

I." - \ Y \ 7 \ T \

z(O) z(1) z(2)

oUo<--'oZo
Fig. 9. Modified dependency graph for convolution.

Error Detection in Arrays via Dependency Graphs 339

schedule, at most one extra clock period is needed after

any number of ot symbols are inserted. Although some

vertical edges in figure 9 are in equitemporal surfaces,

it is still a legal systolic scheduling, since these vertical

edges point to oe ceils and not computation cells. The

result in this simple example differs from that of [7]

in the following respects: First, our method does not

need an extra PE. Second, [7] assumes that a PE be-

comes idle at every other cycle, and that every other

PE is idle at any given time. Our method, however, does

not depend on this assumption, but still works when

there are no idle PEs or no idle cycles are available.

The same general scheduling strategy works for the

second approach when k = 3. We use idle PEs for sim-

ulation, and the throughput is reduced by a factor of

at most 2 instead of 3.

6. An Example of a Two-Dimensional Working

Architecture

In this section, we illustrate how ITRED can be used

to incorporate error detection in a two-dimensional

systolic mesh for matrix multiplication. Given two n

by n matrices A and B, we want to compute C = AB.

Thus,

ci, j -- ai,kbk,j,
k=l

where 1 < i, j _ n. Writing this as the single assign-

ment statement

Ci,j, k = Ci,j,k_ 1 + ai,kbk,j

leads to the three-dimensional dependency graph shown

in figure 10, with axes (i, j , k).

We choose the projection vector to be p = (0, 0, 1),

and the ~-hyperplane to be the two-dimensional plane

of the input data A, which means that ~ = (0, 0, 1)

(see figure 11). The vector X'can be taken to be (1, 1, 1).

It is easy to verify that with these choices the 2 con-

straints are satisfied, and the correctly modified depend-

ency graph is shown in figure 11.

For the second approach, we can use a two-

dimensional hexagonal array to implement majority

voting for k = 3. A modified dependency graph can

be easily obtained from the graph in figure 11 by sub-

stituting cq for tx and adding an ot 2 hyperplane above

the oe I hyperplane. When PEi,j receives c~1, it will

simulate the computation in PEi,j_I, and when PEi+I,j

receives a2, this PE will also simulate the computation

in PEi,j_ 1 . The corresponding two-dimensional hex-

agonal array representing the working architecture is

shown in figure 12.

B

A

J

k

Fig. I0. The dependency graph for matrix multiplication.

I Y

Equitemporal hyperplane for time 3

B ~-" ' ~ t)
I

) delay edges

<

A

Two dimensional mesh at time 3

Fig. 11. The modified dependency graph for matrix multiplication.

i

Fig. 12. The hexagonal array for the second approach.

340 Sha and Steiglitz

7. Proof of Correctness of ITRED

In this section we prove that ITRED results in a correct

design if the ~ constraints are satisfied. We begin with

a lemma. We say that a dependency graph is feasible

for ITRED if a symbols can be inserted at inputs, and

each PE receiving an a symbol will delay its own com-

putation and simulate the computation of a neighbor-

ing PE.

LEMMA 7.1. A dependency graph modified according

to the Z constraints will be feasible for ITRED, and

no extra PEs will be introduced.

Proof. Constraint 1 (there is an a cell on the border

where data arrives) ensures that a symbols can be in-

serted in the input. Constraint 2 (delay edges are paral-

lel to the projection vector) ensures that a PE will do

its delayed computations later. Constraint 4 (every PE

is the image of a computation cell) ensures that there

are no extra PEs. Constraint 5 (there is a non-a com-

putation cell in the same equitemporal surface as a j

that projects to a neighbor of PE j) ensures that PEs

neighbor does its normal computation at the same time

that PE j simulates it.

We can now prove our main result. Recall that a

strategy for inserting a ' s is termed alpha-successful if

it results in all PEs being tested at least once, and with

correct timing.

THEOREM 7.2. A strategy for ITRED that obeys the

constraints is a-successful.

Proof. From lemma 7.1 we know that the modified de-

pendency graph can be used by ITRED. Constraint 3

(every PE is the pre-image under projection of an a

cell) implies that every PE can be tested. It remains

to be shown that the timing is correct.

An a cell represents a delay (or null operation) in

the modified dependency graph. Recall that from con-

straint 6 (the a-surface is unicutting) we know that all

edges cross the a-surface in the same direction.

Let il, i2, �9 �9 ik be incoming data for one compu-

tation of a normal computation cell in the original, un-

modified dependency graph. Suppose for a contradic-

tion that after the a 's are inserted and the computation

graph modified, one of the data items, say ij, arrives

earlier than the other data. Then it was not delayed by

an a cell, which contradicts the condition that the a

surface is a cutting surface. I f it arrives later than the

other data items, it crossed the a surface more than

once, which contradicts the fact that the dependency

graph is acyclic and the a surface is unicutting. Thus

the required data items arrive together at the correct

time, which finishes the proof.

The proof can be extended easily to the second

approach.

8. Diagonal Projection with Modified ITRED

In this section we give an example where a certain

choice of a projection vector/r results in a signal flow

graph for which it appears impossible to apply the

ITRED method without introducing extra PEs. We then

show how to modify the ITRED method to handle this

case, and how to modify the ~ constraints to reflect

this modification. This example is meant to illustrate

the flexibility of the approach, and suggest ideas for

further applications.

Thee example is the minimum substring-distance dis-

cussed in Section 2. For simplicity, assume that strings

S and P both have the same length n. Suppose now that

given the dependency graph in figure 1, for some reason

the designer chooses the projection vector ~ to be (1, 1),

resulting in a diagonal projection. If now the a surface

is chosen to be a row (column), a symbols will pass

through only the right (left) half of the processors, vio-

lating constraint 3 and resulting in a design where not

all the processors can be tested. It is clear that we must

introduce a ' s into both rows and cohmms. Figure 13

shows such an a surface. This satisfies both contstraints

3 and 4: every PE is the image under projection of both

of an a cell and a normal computation cell.

But now we run into a problem because constraint

1 is violated: there is no a cell on the border at which

input data enters. We can in effect generate a symbols

from inside the dependency graph by modifying the

ITRED method as follows. Each data value that needs

to be transmitted between twp PEs will be in one of

the two states: normal, or a '. I f the user wants to test

the PEs, an input data point is inserted in the a ' state;

otherwise, the input data is inserted in the normal state.

Note that we do not insert special a symbols here.

Whenever two data values that are both in the a ' state

meet at PEi, that PE changes the state of the data

values to normal, simulates the same operation as one

of its neighbors, and sends a symbols on in accordance

with the modified dependency graph. That is, PEi

behaves as if it had received an a symbol, and then

Error Detection in Arrays via Dependency Graphs 341

t = l t = 2 t = 3 t = 4

ff 7"" ,"" J'"

~ N . . ~ ~ t = 5 delay edges

- ,. ",,. ~, ~

delay edges "-,, "',, "', N ~ '

Fig. 13. Modified dependency graph for a bilateral linear array.

generates c~ symbols for the other processors. In our

example, two data values in the cx' state are inserted

into row and column inputs, and meet in the middle

PE. At the next clock interval, two a symbols are sent

to the left and right neighboring PEs respectively (see

figure 13).

There is no decrease in throughput with this schedul-

ing. Also, as before, although some vertical and hori-

zontal edges are in an equitemporal surface, the sched-

ule is still systolic because these edges point to c~ cells.

This modified strategy does result in one disadvantage:

the last computation cell in the first row and first col-

umn cannot be tested. Al l the other computation cells

can be tested, however.

In our example, although there is no a cell on the

border at which data arrives, the union of the row and

column of o~ cells forms a unicutting surface in the

dependency graph. Thus, if the PEs introduce a delay

when they receive an a symbol, the tinting correctness

will be preserved. To take this new method into account,

we should change the ~ constraints by substituting the

following for constraints 1 and 6:

1 ' . t h e u n i o n o f ~ c e l l s i s a u n i c u t t i n g

s u r f a c e

The proofs of lemma 7.1 and theorem 7.2 then go

through with obvious changes for this more general ver-

sion of ITRED.

9. Conclusions

We proposed a new methodology for run-time error

detection in systolic and wavefront arrays. The method

is based on modifying the dependency graph to allow

special symbols to enter the computation. These special

symbols cause error checking to take place. We devel-

oped a set of constraints, the ~ constraints, and showed

that they are sufficient to ensure that the timing is cor-

rect, that every P E can be tested, and that no extra PEs

are introduced. Since the design choices are made at

the abstract level of the dependency graph, the approach

is very general, and can be applied to a wide variety

of arrays in any dimension.

References

1. J.A. Abraham, et al., "Fault tolerance techniques for systolic
arrays," IEEE Computer, 1987, pp. 65-74.

2. E.S. Manolakos and S.Y. Kuug, "CORP--a new recovery proce-

dure for VLSI processor arrays," IEEE Symp. on the Engin. of
Computer Based Medical Systems, 1988.

3. E.S. Manolakos and S.Y. Kung, "Neighbor assisted recovery in
VLSI processor arrays" European Signal Processing Symposium,
EUSIPCO '88, North Holland, 1988.

4. C.-C. Wu, and T.-S. Vv~, "Concurrent error correction in
unidirectional linear arithmetic arrays," Proc. Int. Symp. Fault-

Tolerant Computing, 1987, pp. 136-141.

5. R. Cosentino, "Concurrent error correction in systolic architec-

tures" IEEE Trans. on Computer-Aided Design, vol. 7, 1988,
pp. 117-125.

6. L. Shombert and D.P. Siewiorek, "Using redundancy for con-

current testing and repairing of systolic arrays" Proc. Int. Symp.

Fault-Tolerant Computing, 1987, pp. 246-249.

7. Y.H. Choi, S.M. Han, and M. Malek, "Fault diagnosis of recon-

figurable systolic arrays;' Proc. Int'l. Conf. Computer Design:
VLSI in Computers, 1984, pp. 451-455.

8. S.Y. Kung, VLSIArray Processors, Englewood Cliffs, NJ: Pren-
tice Hall, 1988.

9. H.-H. Liu and K.-S. Fu, "VLSI arrays for minimum-distance

classifications" VLSI for Pattern Recognition and Image Proc-

essing, (King-Sun Fu, ed.), New York: Springer-Verlag, 1984.
10. R.J. Lipton and D. Lopresti, ' ~ systolic array for rapid string

comparison" 1985 Chapel Hill Conference on Very Large Scale
Integration, (Henry Fuchs, ed.), Rockville, MD: Computer Sci-
ence Press, 1985, pp. 363-376.

11. R.J. Lipton and D. Lopresti, "Comparing long strings on a short

systolic array" 1986 International Workshop on Systolic Arrays,,
Oxford: University of Oxford, 1986.

12. G.M. Landau and U. Vishkin, "Introducing efficient parallelism
into approximate string matching and a new serial algorithm"
ACM STOC, 1986, pp. 220-230.

13. P.K. Lala, Fault Tolerance and Fault Testable Hardware Design,

Englewood Cliffs, NJ: Prentice Hall, 1987.

14. J.E Wakerly, Error Detecting Codes, Self-checking Circuits and
Applications, New York: North Holland, 1978.

3 4 2 Sha and Steiglitz

Edwin Hsing-Mean Sha received the B.S.E. degree in computer

science and information engineering from National Taiwan Univer-

sity, Taipei, Taiwan, in 1986, and the M.A. degree and Ph.D. degree

in computer science from Princeton University in 1990 and 1992.

He is going to join the faculty of the Department of Computer Science

and Engineering at the University of Notre Dame in the fall of 1992.

His research interests include fault tolerant computing, testing, VLSI

architectures, high-level synthesis in VLSI, and algorithms.

Kenneth Steiglitz received the B.E.E. (magna cum laude), M.E.E.,

and Eng.Sc.D. degrees from New York University, New York, NY,

in 1959, 1960, and 1963, respectively.

Since September 1963 he has been at Princeton University,

Princeton, NJ, where he is now Professor of Computer Science,

teaching and conducting research on parallel architectures, signal proc-

essing, optimization algorithms, and cellular automata. He is the

author of Introduction to Discrete Systems (New York: Wiley, 1974),

and coauthor, with C.H. Papadimitriou, of Combinatorial Optimiza-

tion: Algorithms and Complexity (Englewood Cliffs, NJ: Prentice

Hall, 1982).

Dr. Steiglitz served two terms as a member of the IEEE Signal

Processing Society's Administrative Committee, as chairman of their

Technical Direction Committee, member of their VLSI Committee,

their Digital Signal Processing Committee, and as their Awards Chair-

man. He is an Associate Editor of the journal Networks, and is a

former Associate Editor of the Journal of the Association for Com-

puting Machinery. A member of Eta Kappa Nu, Tan Beta Pi, and

Sigma Xi, he was elected Fellow of the IEEE in 1981, received the

Technical Achievement Award of the Signal Processing Society in

1981, their Society Award in 1986, and the IEEE Centennial Medal

in 1984.

