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Abstract. This paper describes a methodology based on dependency graphs for doing concurrent run-time error 

detection in systolic arrays and wavefront processors. It combines the projection method of deriving systolic arrays 

from dependency graphs with the idea of input-triggered testing. We call the method ITRED, for Input-driven 

7~me-Redundancy Error Detection. Tests are triggered by inserting special symbols in the input, and so the approach 

gives the user flexibility in trading off throughput for error coverage. Correctness of timing is proved at the dependency 

graph level. The method requires no extra PEs and little extra hardware. We propose several variations of the 

general approach and derive corresponding constraints on the modified dependency graphs that guarantee correct- 

ness. One variation performs run-time error correction using majority voting. Examples are given, including a 

dynamic programming algorithm, convolution, and matrix multiplication. 

1. Introduction 

Reliability is often a critical issue in applications of 

high-performance systolic or wavefront array processors, 

and for that reason much recent work has addressed 

the problems of on-line error detection (see, for exam- 

ple, [1]). We consider in this paper a flexible and general 

methodology for incorporating error detection in array 

design. 

The two general approaches pursued in the literature 

for error detection are hardware and time redundancy. 

That is, one can detect errors by introducing additional 

computing hardware, perhaps duplicating PEs, or one 

can do duplicate computations using the same hard- 

ware. In general, there is a tradeoff between the de- 

crease in throughput caused by the time redundancy, 

and the cost of the extra hardware used for hardware 

redundancy. A high degree of time redundancy can 

achieve good error detection, but at the cost of de- 

creased throughput; a high degree of hardware redun- 

dancy can do the same without the attendant decrease 

in throughput, but at the cost of more hardware. 

Much previous work takes advantage of the regu- 

larity of systolic arrays. For example [1] describes 

algorithm-based techniques that are especially suited 

to systolic arrays, but these are applicable only to a 

subset of linear systems, and it is unclear how to use 
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them on problems like the substring comparison we 

consider in Section 2. The work in [2], [3] uses dual- 

module redundancy to detect errors; the essentially 

time-redundant technique of [4] applies only to uni- 

lateral linear arrays and results in a slowdown by a fac- 

tor of two; [5] also deals with special classes of systolic 

arrays and agalns halves the throughput rate using time 

redundancy. The method of roving spares described in 

[6] uses limited hardware redundancy, but it is not clear 

how to extend the method to bilateral arrays or more 

complicated structures. 

This idea of using tokens to trigger error detection 

appears to have been introduced in [7]. They use both 

time and space redundancy, and a fixed periodic pattern 

of inserting tokens. In the case of unilateral linear ar- 

rays, the number of inserted tokens in the array at any 

instant cannot exceed the number of extra PEs. Thus, 

the frequency of token insertion is predetermined by 

the number of extra PEs. In the case of bilateral linear 

arrays, they make use of the idle PEs and idle cycles 

in the original computations for space and time redun- 

dancy, so only one extra PE is needed. 

We will combine two ideas to achieve rim-time error 

detection: First, as in [7], we introduce special symbols 

in the input that signal the processors to perform com- 

parisons for the purposes of detecting discrepancies. 

Typically, this is done by having two (or more) adjacent 

processors perform the same computation and compar- 

ing results. In contrast with [7], however, the frequency 

of insertion of these special symbols is determined by 
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the user at run time, rather than being pre-determined 

by hardware constraints. Second, we introduce the 

special symbols at the level of the dependency graph, 

and follow the effect through the projections used to 

arrive at a systolic or wavefront array [8]. 

There are several advantages to this general approach 

over more specialized or ad h o c  approaches. First, it 

allows the user to determine the frequency of error 

checking at run time. Thus more error checking can 

be done when a lower throughput is acceptable. A sec- 

ond advantage stems from the fact that the method is 

expressed in terms of the dependency graph. This 

allows us to use previous work [8] on scheduling and 

projection to prove the correctness of the resulting 

working architectures. A third advantage is that the ap- 

proach requires no extra PEs ,  and little extra hardware. 

In the next section we briefly describe dependency 

graphs using the problem of finding minimum substring- 

distance as an example. In Section 3 we describe the 

general methodology of ITRED. In Section 4 we discuss 

our fault model at the level of array nodes, nodes in 

the signal flow graph that are mapped to the working 

architecture. The details of implementing ITRED for 

unilateral linear arrays, which include the minimum 

substring-distance problem and convolution, are dis- 

cussed in Section 5. Section 6 then shows how to extend 

ITRED to more general problems, using matrix multi- 

plication as an example. We prove correctness in Sec- 

tion 7. Finally, in Section 8 we show how ITRED can 

be adapted to handle some special design requirements. 

2. Minimum Substring-Distance 

In this section, we introduce as a working example the 

problem of finding minimum substring-distance. We 

use this problem to illustrate the dependency graph D G  

and the mapping method for transforming a D G  to an 

array architecture [8]. String comparison is a time- 

consuming and important operation in many applica- 

tions, such as information retrieval, databases, artifi- 

cial intelligence, pattern recognition, and DNA pattern 

matching. 

The ed i t  d i s t a n c e  between two strings is the mini- 

mum number of basic operations (insertion, deletion 

and substitution) necessary to transform one string to 

the other. For example, chao can be transformed to 

sha by a sequence of three operations as follows: 

chao ( d e l e t e  c) - - > h a o  ( d e l e t e  o) --> 

ha ( i n s e r t  s)  - - >  sha .  

But two transformations suffice: 

chao ( s u b s t i t u t e  s f o r  c) - - >  

shao  ( d e l e t e o )  - - > s h a .  

In fact this is minimum, so the edit distance between 

the two strings is two. 

Systolic arrays for computing edit distance between 

two strings have been described in [9]-[11]. In [12], 

Landau and Vishkin consider the problem of finding 

a substring of a string S most similar to a given pattern 

P. Given string S and pattern P, let S ( i  : j )  be the sub- 

string of S from position i to position j and let d i s ( S ( i  : 

j) ,  P)  be the edit distance between S ( i  : j )  and P. The 

m i n i m u m  s u b s t r i n g - d i s t a n c e  is the minimum distance 

d i s (S ( i  :j),  P),  where i andj range from 1 to the length 

of S. Thus, the minimum substring-distance between 

the string "I like Systolic VLSI arrays," and "Systolic 

arrays" is five. 

The problem of minimum substring-distance can be 

solved by two-dimensional dynamic programming, 

which in turn can be implemented by a one-dimensional 

systolic array. 

An input instance of the problem is 

S = s i s 2  . . .  Sn: a (long) string 

P = P i P 2  . . .  Pro: a (short) string 

The output of the problem is the minimum of all edit 

distances of substrings S ( i  - k : i) = s i -ks i -~+l  �9 �9 si 

from the pattern P, where 1 _< i < n, 0 _< k < i - 1. 

The dynamic programming algorithm proceeds as 

follows. Let D [ i ,  j ]  denote the minimum distance of 

all substrings as si from the prefix P(1 : j ) ,  where 

1 __< i < n, 1 < j < m. Initially, 

D [ i ,  0] = 0 for every i and 

D[0, j] = j for every j.  

If we think of the D[i, j]  as being in a two-dimensional 

array, each D [i, j]  can be computed from the entries 

above, to the left, and above and to the left, as follows: 

fo r  i = 1 to  n do 

f o r j  = 1 t o m  do 

D [ i , j ] = m i n  ( D [ i  - 1,j] + 1, D [ i , j  - 1] + 1, 

D [ i  - 1, j - 1] i f s i = p j o r  

D [ i  - 1, j - 1], o t h e r w i s e  ) 

When this double loop is completed, the entries 

D[i ,  m] contain the minimum distance of all substrings 

ending at si from the pattern P. If we consider each 

m i n  operation as a node and represent each dependence 
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Fig. 1. Dependency graph for minimum substring-dist. 

of an operation on data as a directed edge between two 

nodes, the resulting dependency graph DG is as shown 

in figure 1. The graph DG is acyclic and therefore 

computable. 

We call a node in DG a computation cell, or cell. 

As described in [8], the two design steps of processor 

assignment and scheduling can be used to map such 

a DG to a lower dimensional signal flow graph SFG. 

We call a node of the signal flow graph a Processor 

Element (PE), this being justified because the signal 

flow graph is very close to a hardware specification for 

a SIMD systolic or wavefront array. Let an equiproc- 

essor curve be a curve containing all the ceils of the 

dependency graph that are projected onto one PE of 

the signal flow graph of lower dimension, and let an 

equitemporal surface be a surface containing all the 

computation cells that are active at a given time. 

Usually, the equiprocessor curves are parallel straight 

lines, in which case we let fr be a vector parallel to 

the equiprocessor lines, called the projection vector. 

Further, it is often the case that the dependency graph 

has a linear schedule; that is, all equitemporal surfaces 

are parallel hyperplanes, and so have a unique normal 

direction. Let Fbe a vector in this normal direction, 

called the schedule vector. 

Kung [8] showed that given a projection vector 2Y, 

necessary and sufficient conditions for a linear schedule 

to be permissible, that is, represent a realizable com- 

putation in the signal flow graph, are the following: 

(1) V edge ~" i n DG, F r F  ~_ 0. 

(2) s*Tff t > 0.  

In our example of the minimum substring-distance 

problem, we can choose the projection vector ~ = (1, 0) 

and the permissible linear schedule F = (1, 1), as shown 

in figure 1. This leads to a signal flow graph with m 

processors, where m is the size of the pattern P, and 

that is reasonable since n, the size of the string S, is 

usually very much larger than m. 

3. ITRED: General Approach 

In this section we discuss ways of modifying dependency 

graphs to achieve error detection, and we will call a 

specific algorithm for doing so a strategy. The strategy 

determines the way in which special symbols are inserted 

in the input data stream. We propose two approaches. 

In the first, we derive some strategies that allow every 

PE to be tested if the user chooses to provide the right 

inputs. In the second approach not only can every PE 

be tested consecutively by choice of the input stream, 

but the computation results themselves can be produced 

by majority vote. We begin with the first approach, 

which is actually a special case of the second. 

We use a special input symbol, called e~, which 

serves the purpose of informing a PE to do error detec- 

tion (as in [13]). When PEi receives an a symbol, PEi 

will do the same operation as PEi-~ and compare its 

result with that of PEi-1. (We assume here that PE i is 

in fact capable of performing the same operation as 

PEi_ 1. If  all processors are not identical, this require- 

ment might require augmenting the capabilities of some 

of the processors.) If  the results are not the same, an 

error has been detected. The user has the freedom to 

decide how frequently an o~ symbol is inserted in the 

original input. At one extreme, the user inserts no ot 

symbols, in which case there is no decrease in through- 

put: At the other extreme, the user inserts an ot symbol 

before each input data point in the original input stream, 

so the throughput becomes at most half the original 

speed. Thus, the tradeoff between speed and error 

coverage is under user control. 

DEFINITIOn 3.1. We say a strategy for inserting a ' s  into 

the input stream is oz-successful if all PEs are tested 

at least once and all computation cells have the correct 

timing. 

Actually, ITRED can be easily extended so that 

every computation cell is tested, but sometimes we may 

need to add extra PEs so the computation cells on the 

border can be tested. 

We want to think of adding the o~ symbols into the 

original dependency graph; to do this we add special 
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cells called a cells. In the dependency graph, the effect 

of an a symbol is similar to a delay, since when PEi 

receives an a symbol, it will save its state, discard what 

it produces after it simulates PEi_ l's computation, and 

then restore its previous state. 

For simplicity, we first consider the case of  a two- 

dimensional dependency graph G like the one in figure 

1, with m columns and n rows. Without loss of general- 

ity, we assume that data for a particular problem in- 

stance enters along a row (row input), and flows from 

column to column. Let gij be a computation cell, 

where 1 < i <_ n, and 1 < j <- m. 

To insert an a symbol in the input stream that travels 

from PE to PE, insert a complete row of a cells in the 

dependency graph, as shown in figure 2. If  this row 

is inserted before row i, this splits G into two parts, 

the part from row 1 to row i - 1, and the part from 

row i to the last row. Keep the edges that went from 

row i - 1 to i in the first part. Let 5~ be the vector 

normal to the added row, so ~ is (0, 1). Note that in 

other, more general situations the inserted a symbols 

may not form a hyperplane, and therefore there may 

not be a well defined ~ vector. We will see an example 

of  this in a later section. 

Let a j, 1 < j _< m be the row of added a ceils, 

ordered in the direction of  increasing time. I f  column 

j is projected to PE], add the directed edge (a ], g i,y). 

Call these edges delay edges and denote by c j the 

computation cell pointed to by the delay edge leaving 

a j. Since a j and c j project to the same PE, the differ- 

ence between their coordinate vectors is a vector paral- 

lel to ft. Figure 1 shows the original dependency graph 

for the minimum substring-distance problem and figure 

2 shows the dependency graph modified in the way just 

discussed. 

An a stream inserted into the dependency graph in 

this way can be regarded as a surface, which we call 

an a-surface. When the a-surface is a hyperplane, we 

can call it an a-hyperplane. We say that an a-surface 

is a cutting surface if removing it separates the depend- 

ency graph into disconnected pieces. We say that a cut- 

ting surface is unicutting if all the edges crossing this 

surface cross it in the same direction. Cutting or anicut- 

ting hyperplanes are defined analogously. 

We next derive constraints on the way in which the 

original dependency graph should be modified so that 

testing takes place correctly. We prove later that these 

conditions are sufficient to ensure that a strategy is a -  

successful. Observe first that since we need to test every 

PE, the vector ~ cannot be perpendicular to the vector 

if1,1 

delay edges 

g2,l 

gn,l 

t =  t = 2  t = 3  

,/'ffl,~ /'•1,3 , , /  //ffl,m 

1 

P E1 P E2 P E3 P E,~ 

Fig. 2. Modified dependency graph for minimum substring-dist. 

p, and in fact every PE should be the image under pro- 

jection of at least one a cell. Furthermore, because we 

do not intend to increase the number of  PEs, we also 

require that each PE be the image under projection of  

at least one computation cell. 

We know that different PEs should be tested at dif- 

ferent times, so the vector ~ cannot be parallel to the 

vector Z (When working architecture is a wavefront 

array, this sequential property of the testing will be 

naturally ensured by the fact that the testing is data- 

driven.) Since each a j is basically a delay for some 

later operation c j by the same PE, the delay edge 

should be in the same direction as the vector p. 

Let PE j be the PE to which a j is projected. We 

know that whenever a PE receives an a ,  this PE needs 

to do the same operation as its neighboring PE will do. 

Thus, for each a ) there should exist a computation cell 

(not an a cell) that is projected to PEJ's neighbor at 

the same time that the a cell is projected to PE j. We 

summarize the constraints discussed above in the fol- 

lowing, which we call the Z constraints for hyperplanes. 

~C c o n s t r a i n t s  f o r  h y p e r p l a n e s :  

O. ~ i s  n o t  p a r a l l e l  t o  ~' 

1. 3 an a c e l l  on t h e  b o r d e r  a t  w h i c h  d a t a  

a r r i v e s  

2. a l l  d e l a y  edges  a r e  p a r a l l e l  t o  

3. VPE, rl a n a c e l  I w h i c h  i s p r o j e c t e d t o P E  

4. VPE, 3 a c o m p u t a t i o n  c e l l  w h i c h  i s  p r o -  

j e c t e d  t o  PE 
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5. rot j, 3 a n o n - e  c o m p u t a t i o n  c e l l  t h a t  i s  

in t h e  s a m e e q u i t e m p o r a l  h y p e r p l a n e a s  

(~Jand i s  p r o j e c t e d  t o a  n e i g h b o r i n g P E  

o f  PE j 

6.  The  e - h y p e r p l a n e  i s  u n i c u t t i n g  

As noted above the zeroth constraint is not needed 

at all when the working architecture is a wavefront 

array, so we assume without loss of generality that the 

working architecture is a synchronous, systolic array, 

rather than a wavefront array. Actually, the zeroth con- 

straint is implied by the fifth constraint, so it is redun- 

dant and can be omitted. If  the equitemporal surface 

or the c~ surface is not a hyperplane, we can generalize 

the above constraints easily as follows: 

c o n s t  ra  i n t s  : 

1.  3 an cz c e l l  on t h e  b o r d e r  a t  w h i c h  d a t a  

a r r i v e s  

2 .  a l l  d e l a y  e d g e s  a r e  p a r a l l e l  t o  

3 V P E , : l a n e c e l l w h i c h  i s p r o j e c t e d t o P E  

4 VPE, =1 a c o m p u t a t  i on c e l  I wh i ch i s p r o -  

j e c t e d  t o  PE 

5 Ve j ,  3 a n o n - e  c o m p u t a t i o n  c e l l  t h a t  is  

in t h e  same e q u i t e m p o r a l  s u r f a c e  as (z ] 

and i s p r o j  e c t e d  t o  a n e i g h b o r  i ng PE o f  

pE j 

6 The  e - h y p e r p l a n e  i s  u n i c u t t i n g  

If  the projection, schedule, and modified depend- 

ency graph satisfy the above constraints, we say that 

this dependency graph is correctly modified. We leave 

for Section 7 a proof that a correctly modified depend- 

ency graph is a-successful. 

In the second approach to modifying the dependency 

graph, majority voting is applied. In this scheme k adja- 

cent PEs will perform the same operation, the output 

will be the majority result, and error detection will be 

performed at the same time. We introduce k - 1 special 

symbols e l ,  . . . ,  otk_l, which play roles similar to the 

e symbol. For simplicity, we assume that k is 3, but 

it is straightforward to extend k to be any odd number. 

When PEi receives an cq symbol, it performs the same 

action as before--it simulates a computation in the adja- 

cent PE, say PEi_ 1. If  PEi+ 1 receives an c~ 2 symbol, 

it simulates the computation of a PE which is distance-2 

from it, say PEi_ 1. We need to guarantee that PEi+I 

receives e 2 and PE i receives cq at the same time, and 

at a time when they can both simulate the same com- 

putation by PEi_l, do the error detection, and output 

the majority result. 

Therefore, 0~2 should immediately precede e I in the 

e stream. The constraints analogous to the E constraints 

for performing majority voting are given below, with 

all terms previously used now indexed by the same in- 

dex i as the corresponding symbol e i. For example, ~i 

is the normal vector for the oz i hyperplane. 

~maj~kconst ra  i n t s  f o r  h y p e r p l  a n e s  : 

1.  a l l  t h e  ~ i  a r e  p a r a l l e l  t o  each  o t h e r  

2 .  t h e  ek_ t ,  . . . ,  e l - S y m b o l s  a r e  i n  t h e  same 

e q u i t e m p o r a l  h y p e r p l a n e ,  and  a r e  p r o -  

j e c t e d  t o  k - 1 a d j a c e n t  PEs 

3. t h e  e l - h y p e r p l a n e  s a t i s f i e s  t h e  [;  

Cons t  ra i n t s  

The corresponding more general constraints for the 

case of surfaces are: 

~ m a j ~  c o n s t  ra  i n t s  : 

1. a l l  t h e c ~ i - s u r f a c e s a r e p a r a l l e l  t o e a c h  

o t h e r  

2 ,  t h e e k _ l ,  . . . ,  e l - S y m b o l s  a r e  i n  t h e  same 

e q u i t e m p o r a l  s u r f a c e ,  and a r e  p r o j e c t e d  

t o  k - 1 a d j a c e n t  PEs 

3.  t h e  e l - s u r f a c e  s a t i s f i e s  t h e  

C o n s t  ra  i n t s  

For example, the modified dependency graph in fig- 

ure 3 satisfies the above ~maj_jc constraints. Note that 

if we want every computation cell in the dependency 

graph to be tested k PEs, we may need to add some 

gl,1 
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Fig. 3. Modified dependency graph for the minimum substring- 
distance problem (approach 2). 
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extra PEs to take care of the cells on the border of the 

dependency graph. 

In the remainder of this paper we assume that 

ITRED uses the first approach (no majority voting), 

unless we explicitly state otherwise. 

4. Fault Model 

Given a dependency graph, we project it to a lower 

dimensional signal flow graph [8], and map this signal 

flow graph to a working architecture. Each cell of the 

signal flow graph that is mapped to the real working 

architecture is called an array node, which can usually 

be regarded as a PE. We use array and fault models 

similar to those in [2], [3], [7]. 

Each PE is composed of two parts: the buffers and 

the processing unit (PU). The buffers can be divided 

into two parts: the data buffers (DB) and internal buf- 

fers (IB). DB holds the input data and IB holds the state 

necessary to perform the next operation. 

In our first approach to run-time error detection, 

every two consecutive PEs do the same operation and 

compare results. In the second approach, a majority 

vote determines the outcome if a discrepancy occurs. 

The comparator and majority voter can be implemented 

to be totally self-checkable [14], [13], and faults in buf- 

fers or communication can be detected and corrected 

by using coding techniques [14[, [13]. The extra 

hardware for error detection in ITRED is so simple, 

and therefore can be built so reliably, that we can 

assume all faults occur in PEs. 

A fault here will mean a functional fault, not the 

traditional gate-level stuck-at fault. In the first approach 

it is usually convenient to assume that when two adja- 

cent PEs have their outputs compared, and they are both 

faulty, then their incorrect outputs are different, so that 

an error is detected immediately. Similarly, in the sec- 

ond approach, where we compare the outputs of k adja- 

cent PEs operating on the same inputs, we assume that 

no k adjacent faulty PEs whose outputs are compared 

produce identical (incorrect) results. 

5. One-Dimensional Linear Arrays 

In this section we give details of the application of 

ITRED in the simplest case--one-dimensional linear 

arrays. Two-dimensional meshes and more complicated 

topologies are considered in the next section. As men- 

tioned in Section 3 the constraints for introducing 

symbols are more stringent for systolic arrays than 

wavefront arrays, so we restrict attention to the former. 

We say a linear array is unilateral if data flows in only 

one direction (see figure 4 for an example). We say a 

linear array is bilateral if data can flow between two 

PEs in both directions. We begin with details for the 

first approach in the unilateral case, and discuss the 

second approach and the bilateral case subsequently. 

Let PE1 be the leftmost PE and PE i the ith PE from 

the left. For the case of a linear systolic array, this first 

approach yields a result similar to the one in [7], but 

no extra PE is needed. When PEi receives an c~ sym- 

bol, it will do the same operation as PEi_ 1 and com- 

pare both results. If  the results are not the same, an 

error has been detected. I f  there are c o~'s, as long as 

there is at least one input data value between any two 

consecutive a's, c different pairs of PEs can concur- 

rently check their results. In figure 4, there are two a's 

and we show the sequence of pairs which do error 

detection at different clock times. 

We next explain the details of the extra hardware re- 

quired to implement ITRED. As mentioned above, the 

PEs are divided into processing unit PU, and buffers-- 

which in turn are divided into the data buffer DB and 

the ouptut buffer IB. The buffer IB normally stores 

PU's previous output. We index PU, DB and IB accord- 

ing to their corresponding PE. 

Without loss of generality, we assume a three-phase 

clock. In the ordinary situation (without error detection), 

during the first phase (input phase) PU/ loads data 

from DBi_ 1 and some part of IBi-1 into DB i. During 

the second phase (processing phase) processing unit 

PUi gets input from DB i and IB i, and performs its oper- 

ation. During the third phase (output phase) PU i loads 

its result to IBi (again, assuming no error detection). 

I 
I 

t = l  a a 

t = 2  a - - a  

t = 3  - - a  a 

Fig. 4. An example of a unilateral linear array using ITRED. 
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D B i i - i  _ 

PUi-1 

Q multiplexor 

(~1 

PUi 

(~  ~) A r 

Q comparator 

Fig. 5. T h e  P E  c e l l s .  

In error-detection mode, when PE i receives an c~ 

symbol, it will do the same operation as PEi_ 1 and 

compare results. The input phase is as before, passing 

along the a symbol in the input data stream. In the proc- 

essing phase, PUi needs to get its input from D B H  

and IBi_p In the output phase, PEi will not load its 

results to IB i, so as to preserve the old contents of IBi 

for further use. The only extra thing PE i needs to do 

in the output phase is to check its output with the out- 

put from PE/_ 1. A block diagram for PE i and PEi_I is 

shown in figure 5. 

Now we need to make sure that PEi will be in the 

correct state and get the correct input after an c~ sym- 

bol has passed through it. When PE/receives an c~ 

symbol it does not perform its real operation but per- 

forms the same operation that PEi_ 1 does. At the next 

clock tick, say time j,  since IBi did not change at time 

j - 1, and data to DBi is also delayed one tick 

(because of the a symbol in the input stream), PE i can 

perform the same operation as it would have without 

the c~ symbol. 

We give a simple example in figure 6. Assume the 

original input data is first a, and then b, c, and write 

ai to indicate the state of PE i after processing a. The 

succession of PE states without error detection is shown 

at the top of figure 6. Next, consider what happens 

when the user inserts an et after a to do error detection. 

We write a i to indicate that PEi's internal buffer has 

cba a l  t = l  

bl a2 ~ = 2 

cl b2 aa  t = 3 

c2 b3 a4 t = 4 

cbaa al  t =  1 

a{ a2 ~ = 2 

b~ a~ aa  t = 3 

Cl b2 a~ a4 t = 4 

~ b3 , q  - -  t = 5  

Fig. 6 An example showing correct timing for a unilateral array. 

not changed, which happens when PE receives an c~ 

symbol. The bottom of figure 6 shows the modified suc- 

cession of events, and verifies the fact that each PE 

receives the correct inputs and is in the correct states 

at the right times. From this example, we can see that 

the timing under a particular strategy may not be ob- 

viously correct. A general proof of correctness for 

ITRED will be given in Section 7. 

We next discuss the second approach, where the 

results of more than two computations are compared. 
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For the purpose of discussion, we assume that the 

parameter k is 3, so there are two special symbols ~1 

and a 2. Since PEi+ ~ now needs to simulate the com- 

putation in P E N ,  there needs to be a new data line 

from PEi_ 1 to PEi+ 1. We need also to include a major- 

ity voter in every PE, which entails only a simple mod- 

ification of the hardware in figure 5. One correctly 

modified dependency graph for the above example is 

shown in figure 3, and a more condensed version of 

the same systolic array is shown in figure 7. In the next 

section, we will demonstrate the application of this ap- 

proach to a two-dimensional systolic array for matrix 

multiplication. 

Next we illustrate the application of ITRED to the 

case of bilateral linear arrays using the example of con- 

volution. Given two sequences x ( j )  and y ( j ) ,  i = O, 

. . . .  n - 1, the convolution for x and y is 

z(i) - x ( j ) y ( i  - j ) ,  
j=0 

where i = 0, . . . ,  2n - 2. The dependency graph is 

shown in figure 8. 

We first modify the dependency graph to add o~ sym- 

bols, taking care to satisfy the I constraints. The vector 

p c a n  be chosen to be (1, 1), which results in a bilateral 

linear array. Inserting rows of ot's results in a unicutfing 

cr and the vector 5~ = (1, 0). We then add 

delay edges that are parallel to pr, shown as bold edges 

in figure 9. Finally, we choose a schedule, which results 

in the signal-flow graph shown below the dependency 

graph. Note that this choice of schedule results in equi- 

Fig. 7. More condensed systolic array. 

x(o) 
\ 

y(o) ->( 

z(O 

x(1) x(2) xl 

)-< 

y(',) 

z(~) ~(2) 

3) 

z(3) z(4) z(5) z(6) 

Fig. 8. The dependency graph for convolution. 

temporal surfaces that are not hyperplanes. It is now 

easy to verify the remaining I constraints: for every 

cd, there exists a non-a computation cell that is in the 

same equitemporal surface as aJ and is projected to a 

neighboring P E  of PE j. Figure 9 shows the final, cor- 

rectly modified dependency graph. 

In the original dependency graph every other PE is 

idle at any given time, and the schedule can use these 

idle PEs to simulate their neighbors. Under this 

=(o) 

y(o)~  

t = l  t = 2  t = 3  t---4 

x ( 1 ) / / x ( 2 ) / x ( 3 ) / /  / / 

I." - \  Y \ 7 \ T \  

z(O) z(1) z(2) 

oUo<--'oZo 
Fig. 9. Modified dependency graph for convolution. 
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schedule, at most one extra clock period is needed after 

any number of ot symbols are inserted. Although some 

vertical edges in figure 9 are in equitemporal surfaces, 

it is still a legal systolic scheduling, since these vertical 

edges point to oe ceils and not computation cells. The 

result in this simple example differs from that of [7] 

in the following respects: First, our method does not 

need an extra PE. Second, [7] assumes that a PE be- 

comes idle at every other cycle, and that every other 

PE is idle at any given time. Our method, however, does 

not depend on this assumption, but still works when 

there are no idle PEs or no idle cycles are available. 

The same general scheduling strategy works for the 

second approach when k = 3. We use idle PEs for sim- 

ulation, and the throughput is reduced by a factor of 

at most 2 instead of 3. 

6. An Example of a Two-Dimensional Working 

Architecture 

In this section, we illustrate how ITRED can be used 

to incorporate error detection in a two-dimensional 

systolic mesh for matrix multiplication. Given two n 

by n matrices A and B, we want to compute C = AB. 

Thus, 

ci, j -- ai,kbk,j, 
k=l 

where 1 < i, j _ n. Writing this as the single assign- 

ment statement 

Ci,j, k = Ci,j,k_ 1 + ai,kbk,j 

leads to the three-dimensional dependency graph shown 

in figure 10, with axes (i, j ,  k). 

We choose the projection vector to be p = (0, 0, 1), 

and the ~-hyperplane to be the two-dimensional plane 

of the input data A, which means that ~ = (0, 0, 1) 

(see figure 11). The vector X'can be taken to be (1, 1, 1). 

It is easy to verify that with these choices the 2 con- 

straints are satisfied, and the correctly modified depend- 

ency graph is shown in figure 11. 

For the second approach, we can use a two- 

dimensional hexagonal array to implement majority 

voting for k = 3. A modified dependency graph can 

be easily obtained from the graph in figure 11 by sub- 

stituting cq for tx and adding an ot 2 hyperplane above 

the oe I hyperplane. When PEi,j receives c~1, it will 

simulate the computation in PEi,j_I, and when PEi+I,j 

receives a2, this PE will also simulate the computation 

in PEi,j_ 1 . The corresponding two-dimensional hex- 

agonal array representing the working architecture is 

shown in figure 12. 

B 

A 

J 

k 

Fig. I0. The dependency graph for matrix multiplication. 

I Y 

Equitemporal hyperplane for time 3 

B ~-" '  ~ t )  
I 

) delay edges 

< 

A 

Two dimensional mesh at time 3 

Fig. 11. The modified dependency graph for matrix multiplication. 

i 

Fig. 12. The hexagonal array for the second approach. 
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7. Proof of Correctness of ITRED 

In this section we prove that ITRED results in a correct 

design if the ~ constraints are satisfied. We begin with 

a lemma. We say that a dependency graph is feasible 

for ITRED if  a symbols can be inserted at inputs, and 

each PE receiving an a symbol will delay its own com- 

putation and simulate the computation of a neighbor- 

ing PE. 

LEMMA 7.1. A dependency graph modified according 

to the Z constraints will be feasible for ITRED, and 

no extra PEs will be introduced. 

Proof. Constraint 1 (there is an a cell on the border 

where data arrives) ensures that a symbols can be in- 

serted in the input. Constraint 2 (delay edges are paral- 

lel to the projection vector) ensures that a PE will do 

its delayed computations later. Constraint 4 (every PE 

is the image of a computation cell) ensures that there 

are no extra PEs. Constraint 5 (there is a non-a com- 

putation cell in the same equitemporal surface as a j 

that projects to a neighbor of PE j) ensures that PEs 

neighbor does its normal computation at the same time 

that PE j simulates it. 

We can now prove our main result. Recall that a 

strategy for inserting a ' s  is termed alpha-successful if 

it results in all PEs being tested at least once, and with 

correct timing. 

THEOREM 7.2. A strategy for ITRED that obeys the 

constraints is a-successful. 

Proof. From lemma 7.1 we know that the modified de- 

pendency graph can be used by ITRED. Constraint 3 

(every PE is the pre-image under projection of an a 

cell) implies that every PE can be tested. It remains 

to be shown that the timing is correct. 

An a cell represents a delay (or null operation) in 

the modified dependency graph. Recall that from con- 

straint 6 (the a-surface is unicutting) we know that all 

edges cross the a-surface in the same direction. 

Let il, i2, �9 �9 ik be incoming data for one compu- 

tation of a normal computation cell in the original, un- 

modified dependency graph. Suppose for a contradic- 

tion that after the a 's  are inserted and the computation 

graph modified, one of the data items, say ij, arrives 

earlier than the other data. Then it was not delayed by 

an a cell, which contradicts the condition that the a 

surface is a cutting surface. I f  it arrives later than the 

other data items, it crossed the a surface more than 

once, which contradicts the fact that the dependency 

graph is acyclic and the a surface is unicutting. Thus 

the required data items arrive together at the correct 

time, which finishes the proof. 

The proof can be extended easily to the second 

approach. 

8. Diagonal Projection with Modified ITRED 

In this section we give an example where a certain 

choice of a projection vector/r results in a signal flow 

graph for which it appears impossible to apply the 

ITRED method without introducing extra PEs. We then 

show how to modify the ITRED method to handle this 

case, and how to modify the ~ constraints to reflect 

this modification. This example is meant to illustrate 

the flexibility of the approach, and suggest ideas for 

further applications. 

Thee example is the minimum substring-distance dis- 

cussed in Section 2. For simplicity, assume that strings 

S and P both have the same length n. Suppose now that 

given the dependency graph in figure 1, for some reason 

the designer chooses the projection vector ~ to  be (1, 1), 

resulting in a diagonal projection. If  now the a surface 

is chosen to be a row (column), a symbols will pass 

through only the right (left) half of the processors, vio- 

lating constraint 3 and resulting in a design where not 

all the processors can be tested. It is clear that we must 

introduce a ' s  into both rows and cohmms. Figure 13 

shows such an a surface. This satisfies both contstraints 

3 and 4: every PE is the image under projection of both 

of an a cell and a normal computation cell. 

But now we run into a problem because constraint 

1 is violated: there is no a cell on the border at which 

input data enters. We can in effect generate a symbols 

from inside the dependency graph by modifying the 

ITRED method as follows. Each data value that needs 

to be transmitted between twp PEs will be in one of 

the two states: normal, or a '. I f  the user wants to test 

the PEs, an input data point is inserted in the a '  state; 

otherwise, the input data is inserted in the normal state. 

Note that we do not insert special a symbols here. 

Whenever two data values that are both in the a '  state 

meet at PEi, that PE changes the state of the data 

values to normal, simulates the same operation as one 

of its neighbors, and sends a symbols on in accordance 

with the modified dependency graph. That is, PEi 

behaves as if it had received an a symbol, and then 
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t = l  t = 2  t = 3  t = 4  

ff 7"" ,"" J'" 

~ N . . ~  ~ t = 5 delay edges 

- ,. ",,. ~, ~ 

delay edges "-,, "',, "', N ~ '  

Fig. 13. Modified dependency graph for a bilateral linear array. 

generates c~ symbols for the other processors. In our 

example, two data values in the cx' state are inserted 

into row and column inputs, and meet  in the middle 

PE. At the next clock interval, two a symbols are sent 

to the left and right neighboring PEs respectively (see 

figure 13). 

There is no decrease in throughput with this schedul- 

ing. Also, as before, although some vertical and hori- 

zontal edges are in an equitemporal surface, the sched- 

ule is still systolic because these edges point to c~ cells. 

This modified strategy does result in one disadvantage: 

the last computation cell in the first row and first col- 

umn cannot be tested. Al l  the other computation cells 

can be tested, however. 

In our example, although there is no a cell on the 

border  at which data arrives, the union of the row and 

column of o~ cells forms a unicutting surface in the 

dependency graph. Thus, if  the PEs introduce a delay 

when they receive an a symbol, the tinting correctness 

will be preserved. To take this new method into account, 

we should change the ~ constraints by substituting the 

following for constraints 1 and 6: 

1 ' .  t h e  u n i o n  o f  ~ c e l l s  i s  a u n i c u t t i n g  

s u r f a c e  

The proofs of  lemma 7.1 and theorem 7.2 then go 

through with obvious changes for this more general ver- 

sion of ITRED. 

9. Conclusions 

We proposed a new methodology for run-time error 

detection in systolic and wavefront arrays. The method 

is based on modifying the dependency graph to allow 

special symbols to enter the computation. These special 

symbols cause error checking to take place. We devel- 

oped a set of constraints, the ~ constraints, and showed 

that they are sufficient to ensure that the timing is cor- 

rect, that every P E  can be tested, and that no extra PEs 

are introduced. Since the design choices are made at 

the abstract level of the dependency graph, the approach 

is very general,  and can be applied to a wide variety 

of arrays in any dimension. 
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