
 
 

Abstract 

Large-scale conversational assistants like Alexa, 
Siri, Cortana and Google Assistant process every 
utterance using multiple models for domain, 
intent and named entity recognition. Given the 
decoupled nature of model development and 
large traffic volumes, it is extremely difficult to 
identify utterances processed erroneously by 
such systems. We address this challenge to 
detect domain classification errors using offline 
Transformer models. We combine utterance 
encodings from a RoBERTa model with the N-
best hypothesis produced by the production 
system. We then fine-tune end-to-end in a multi-
task setting using a small dataset of human-
annotated utterances with domain classification 
errors. We tested our approach for detecting 
misclassifications from one domain that 
accounts for <0.5% of the traffic in a large-scale 
conversational AI system. Our approach 
achieves an F1 score of 30% outperforming a bi-
LSTM baseline by 16.9% and a standalone 
RoBERTa model by 4.8%. We improve this 
further by 2.2% to 32.2% by ensembling 
multiple models. 

1 Introduction 

Conversational assistants such as Cortana, Google 
Assistant, Alexa and Siri leverage multiple 
machine learning models and services like 
automatic speech recognition (ASR), natural 
language understanding (NLU), entity resolution 
(ER), utterance routing and text-to-speech (TTS). 
In particular, the NLU system is modularized into 
multiple domains such as Music, Movies, Weather 
etc. These domain teams then train one-vs-all 
domain, intent and named entity recognition 
models independently. At run time, a re-ranker is 
used to sort the output of these independent models 
and route the utterance to the right domain. This is 

a well-known design pattern used in large scale 
conversational assistants (Sarikaya, 2017; Su et al., 
2018). 

This modularized architecture allows scaling of 
NLU systems to support multiple domains catering 
to billions of diverse utterances. However, it is 
extremely challenging to isolate the source of error 
in utterances where the system fails, both due to the 
large traffic volume and the asynchronous nature 
of model development and updates by multiple 
independent teams. In particular, we focus on 
identifying utterances with domain classification 
errors, which we call false rejects (FR). Such errors 
can arise due to errors in individual domain 
classification models, re-ranker or routing 
algorithm and are extremely hard to isolate. To 
illustrate this challenge, consider a domain X that 
accounts for 0.5% of the traffic in a conversational 
assistant receiving Y utterances every week. Also 
assume that 20% of the utterances belonging to X 
are falsely routed to another domain. This implies 
that we have 0.1% of the total traffic that are FRs. 
Given a large traffic, manually sifting through the 
entire traffic to find such utterances is prohibitively 
expensive and infeasible. 

Previous work in Feedback-Based Self-
Learning in Large-Scale Conversational AI Agents 
(Ponnusamy et al., 2020) uses implicit user 
feedback as a signal to generate automated 
reformulations. However, for low traffic domains, 
the low frequency of occurrence for utterances at 
the tail end of the distribution does not allow for 
automated reformulations at scale. Finetuning of 
pretrained language representation models which 
leverage inductive transfer learning (Howard and 
Ruder, 2018) have shown marked performance 
improvement with very small training datasets. 
Language models with bidirectional encoding such 
as BERT (Devlin et al., 2019; Liu et al., 2019) 
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which are pretrained using a masked language 
modeling task have shown further improvements 
on the finetuning task due to its deep bidirectional 
encoder-based language representation. Further, 
larger models with 100s of billions of parameters 
like GPT3 (Brown et al., 2020) have demonstrated 
significant performance improvements with 
increase in model size. However, leveraging such 
models in production systems is challenging due to 
latency constraints. 

We address this challenge by leveraging the 
power of BERT based pretrained language 
representation models in an offline setting. We 
combine utterance encodings from RoBERTa with 
embeddings of the N-Best hypothesis for the same 
utterance from the production system and conduct 
end-to-end finetuning in a multitask learning 
setting (Caruana, 1997) with a small, manually 
curated training set containing FRs. Multitask 
learning enhances language representation by 
discovering synergies between various finetuning 
tasks. We then use this model to sift through all the 
traffic and identify other FRs. 

We tested our approach for identifying FRs from 
one domain in a large-scale conversational 
assistant. Compared to the baseline F1 score of 
13% using a bi-LSTM model, our approach 
achieves an F1 of 25% using RoBERTa encodings. 
We further improve performance to 28% using N-
best output, 30% using multitask learning, and to 
32.3% using an ensemble of multitask models. 

The rest of the paper is organized as follows: 
first, we describe the production NLU system; next 
we present details of our FR detection system and 
finally we present experimental results and 
conclusion. 

2 Architecture of Large-Scale NLU 
Systems 

Large-scale NLU systems are typically 
modularized into domain-specific modules where 
a domain is typically something like Books, Music,  
Shopping etc. As illustrated in Figure 1, each 
domain consists of several sub-components that 
are served by models for Domain, Intent and 
Named Entity Recognition. Let's consider an 
example user utterance U: "play hello by adele". 
Assume there are M domains. This utterance is sent 
to all of them and each domain then processes the 
utterance by sending it through its sub-modules 
described below. 
(1) A Domain Classifier is a one-vs-all classifier  

indicating if the utterance belongs to that domain.  
For the example utterance U, a good classifier 
should output a high score for the positive class in 
the "Music" domain and output a high score for the 
negative class in all the other domains. 
(2) An Intent Classifier is a multi-class model that 
provides intent specific scores for each of the 
intents belonging to a target domain. For the 
example utterance U, a good intent classifier 
should produce a high score for the intent 
“PlayMusic” when run in the "Music" domain. 
(3) A Named Entity Recognizer (NER) that 
identifies named entities present in an utterance. 
For the utterance U, a good classifier in the 
"Music" domain should select "hello" and "adele" 
tokens as probable named entities. 
To minimize run-time latency constraints, most 
large-scale production systems use a combination 
of deterministic artifacts (like rules) and simple 
models like MaxEnt (Berger et al., 1996) for these 
tasks. Once the domains process the utterance, the 
outputs are fed into a predictive model called re-
ranker to obtain a sorted list. This sorted output is 
then used by the Router to send the utterance to the 
right domain for processing. 
Due to the high volumes of traffic and the modular 
architecture with several domains, detecting the 
presence of errors (for instance, a domain 
misclassification) and isolating their sources is 
very challenging. Errors can occur and accumulate 
through every step of the processing flow 
highlighted in Figure 1. We next present our 
approach to identify one such error called False 
Reject (FR) where an utterance does not get routed 
to the correct domain by the production system. 

Figure 1: NLU System Architecture 



 
 

3 False Reject Detection 

For a given domain D, the task of identifying false 
rejects (FR) involves analyzing all traffic routed to 
a domain other than D and identifying utterances 
that should instead have been routed to D. The key 
challenges are the availability of only a small 
number of annotated examples of such FR and the 
extreme imbalance in our test set between FRs and 
utterances that are routed correctly.  

3.1 Baseline System 

As a baseline model, we used a bi-LSTM (Schuster 
and Paliwal, 1997) model to classify whether an 
utterance belongs to a domain D or not. Utterances 
tokenized into words and characters are leveraged 
in the form of their pre-trained Glove embeddings 
(Sakketou and Ampazis, 2020) and passed to a bi-
LSTM layer. The stateful output of the bi-LSTM 
layer is passed through a fully-connected layer 
which outputs the probability of an utterance 
belonging to domain D as per equation (1) where 
𝑋!  represent the stateful output of the bi-LSTM 
layers, 𝛽  the learned weights of the fully-
connected layer and 𝑌! represents the classes. 

 

Pr(𝑌! = 0) = "!".$%
#$"!".$%

	  (1) 

Pr(𝑌! = 1) = 1 − Pr(𝑌! = 0) =
1

1 + 𝑒%&.(%
 

 
The training data used for fine-tuning comes from 
a low-cost human annotation effort where a small 
set of utterances are marked as “False Reject” (FR) 
or not by expert annotators. The False Rejects 
(FRs) for a domain D are then identified by 
applying the bi-LSTM based model on a test set of 
utterances that match the production traffic 
distribution. The utterances that are assigned to a 
domain D by the bi-LSTM based model but are not 
assigned to a domain D by the production model 
are filtered as the final FR candidates. 

3.2 Pre-trained transformer models 

Pre-trained transformer models such as BERT, 
GPT, T5 have proven to be quite effective at 
multitude of NLU tasks. Specifically, they can be 
adapted to a downstream task by fine-tuning on a 
small-sized dataset. 

 

We leverage this strength for the task of FR 
detection. Specifically, we fine-tune a RoBERTa-
based model for a binary classification problem in 
which given a domain D, we want the model to 
output the probability of an utterance belonging to 
that domain (represented as Pr(𝑌! = 1)  in 
equation (1). Instead of the bi-LSTM output, here 
𝑋!  represents the weights from the pre-trained 
model passed through a fully-connected layer. The 
model is trained to optimize the cross-entropy loss 
using the same dataset as the baseline system. We 
use the Adam optimizer with bias correction 
(Kingma and Ba, 2017) and a learning rate of 2e-5 
with a warmup for 1/10th of the total number of 
training steps. 

3.3 Leveraging N-Best Embeddings 

The NLU system described in Section 3 produces 
an N-best hypothesis that represents the top N 
domains a user utterance likely belongs to. We 
tested incorporating this information into the FR 
detection model using two steps. 
Embed & Concatenate (N-best module): To 
leverage the N-best hypotheses, we choose top N 
hypotheses from the re-ranker, embed each of them 
into a 6-dimensional vector and concatenate them 
into a 6N-dimensional vector. This vector is further 
concatenated with the 1024 dimensional [CLS] 
token embedding from the pre-trained RoBERTa 
model. This (1024 + 6N) dimensional vector is 

Figure 2: Transformer model leveraging N-Best 
from domain production models for FR detection 



 
 

then passed through a feed-forward layer to feed to 
the output layers. 
Multi-task output: The model is trained to output 
predictions for two tasks. The first task is to 
determine if the utterance belongs to a domain or 
not. This is a generic task and is not specifically 
geared towards identifying if the production 
system falsely rejected an utterance. To this, we 
add a second classification task to specifically 
classify if the utterance is falsely rejected or not. 
These tasks could also share useful information 
across one another through their input hidden 
features. 

The final model architecture that includes 
these components can be seen in Figure 2. A 
tokenized utterance is sent through the pre-trained 
RoBERTa model followed by the N-best module. 
The output from the N-best module is fed 
separately to two feed-forward layers to produce 
two outputs. The model is trained for 3 epochs 
using the same hyperparameters as the baseline 
transformer. The training took about 2 hours on a 
p3.dn24x large instance. 

4 Results 

We use a dataset with a FR to non-FR ratio of 1:15. 
This is not the true production distribution1.  
 

 Precision Recall F1 
bi-LSTM 20.3 9.7 13.1 
RoBERTa 50.1 16.3 25.2 

RoBERTa + N-
Best single task 

model 

23.4 35.3 28.1 

RoBERTa + N-
Best multitask 

model  

31.0 30.0 30.0 

RoBERTa + N-
Best multitask 

model (ensemble) 

37.4 28.3 32.2 

However, it captures the imbalance and the low 
resource setting that we want to address in our 
framework. We hold out 15% of this dataset for 
validation. We have processed the data so that users 
are de-identified. 
 

 
1 For confidentiality reasons, we don’t use the true 
production distribution. 

Table 1 compares the performance of different 
techniques we tested. We see a 12.1% absolute F1-
score improvement from bi-LSTM to RoBERTa 
illustrating the value of pre-training for problems 
with extreme class imbalance and small training 
sets. 
Incorporating the N-Best embeddings produces a 
further 3.1% improvement illustrating the value of 
using information from the production system 
itself to detect errors in its output. Using a 
multitask learning setting improves it further by 
1.9% showing how similar tasks share learning 
representations. Ensembling produces an 
additional 2.2% improvement that is consistent 
with other machine learning results.  

Figure 3 presents a comparison of the 
precision-recall curves for RoBERTa and 
RoBERTa+N-Best multitask models. While the 
performance is comparable at high precisions, at 
lower values, the latter significantly outperforms. 
This is because the standalone RoBERTa model 
identifies a small number of frequent FRs, while 
the RoBERTa+N-Best multitask model is able to 
identify a greater variety of FR patterns without 
compromising precision significantly. Thus, the 
latter model offers a better tradeoff in identifying 
FRs that can then be used as data to train the 
production domain classifiers. 

4.1 Production model improvements 

Our RoBERTa-large based model is not directly 
usable in production due to latency constraints. 
As a result, we use a human-in-the-loop system 
where we leverage our model by running it in an 
offline setting to identify false reject candidates. 
These false reject candidates are sent for human 
annotation and the resulting annotations are fed 
as training data to the production model. We've 
noticed that the annotation throughput of true 
false rejects is improved by 5x due to the curated 
candidates provided by the offline transformer 
model. Furthermore, because these annotations 
are used to further train the production model, 
the False Rejects are reduced by about 20%. 

 

Table 1: Performance comparison of different FR 
detection techniques 



 
 

        

 

5 Conclusion 

Our work presents a system for leveraging the 
power of computationally intensive, but accurate 
pre-trained language models to identify errors in 
a large-scale conversational assistant through 
offline analysis. Our results also demonstrate the 
effectiveness of such models in problems with 
large class imbalances. Specifically, we achieve 
an F1 score of 25.2% outperforming a bi-LSTM 
baseline by 12.1%. Further, we show that 
combining the output of the production system 
with pre-trained language models produce 
significant improvements (of 4.8 F1 points). As 
future work, we plan to leverage even larger 
models such as Megatron (Shoeybi et al., 2019) 
and T5 (Raffel et al., 2019) to achieve further 
improvements for the FR detection task. 
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