Error Detection in Polynomial Basis Multipliers
over Binary Extension Fields

Arash Reyhani-Masoleh! and M.A. Hasan?

1 Centre for Applied Cryptographic Research,
Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
areyhani@math.uwaterloo.ca
2 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
ahasan@ece.uwaterloo.ca

Abstract. In many of cryptographic schemes, the most time consuming
basic arithmetic operation is the finite field multiplication and its hard-
ware implementation may require millions of logic gates. It is a complex
and costly task to develop such large finite field multipliers which will
always yield error free outputs. In this effect, this paper considers fault
tolerant multiplication in finite fields. It deals with detection of errors
of bit-parallel and bit-serial polynomial basis multipliers over finite
fields of characteristic two. Our approach is to partition the multiplier
structure into a number of smaller computational units and use the
parity prediction technique to detect errors.

Keywords: Finite fields, fault tolerant computing, polynomial
basis multiplier, error detection.

1 Introduction

Among the basic arithmetic operations over finite fields GF'(2™), multiplication
is the one which has received most attention in the literature [ZJ4JTT9]. This is
mainly because the implementation of a multiplier is much more complex com-
pared to a finite field adder and using multiplication operation repeatedly one
can perform other difficult field operations, such as inversion and exponentiation,
which are extensively used in cryptographic systems [T/T0].

Finite field multiplication is quite different from its counterparts in integer
and floating point number systems. For todays cryptographic applications, the
field size can be very large and each input of the multiplier can be 160 to 2048
bits long. Such a multiplier may require millions of logic gates and it is a chal-
lenging task to implement it free of faults. If one can have a multiplier which is
capable of detecting error on-line at the presence of certain faults, cryptographic
schemes can be operated more reliably. The importance of eliminating errors in
cryptographic computations has been pointed out in some recent articles, for
examples [25]. The presence of faults in cryptosystems can lead to an active

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 515-528] 2003.
© Springer-Verlag Berlin Heidelberg 2003

516 A. Reyhani-Masoleh and M.A. Hasan

attack and the simplest way to prevent such an attack is to ensure that the
computational device verifies the values it computes before sending them out.

In an attempt to detect errors in finite field multipliers, the authors of [3] have
considered bit-serial multipliers in GF'(2™) and have presented error detection
schemes for four types of multipliers using a parity prediction technique. Their
polynomial basis scheme for error detection is applicable to a special class of
fields. These fields are defined using irreducible all-one polynomials that are
available for certain values of m only. Additionally, when an all-one polynomial
is irreducible, the corresponding m is not a prime. This makes many designers
to avoid such a value of m and the corresponding irreducible all-one polynomial
that define the underlying field for certain cryptosystems, such as those based
on elliptic curve cryptography.

In this paper, we consider GF(2™) multipliers of both bit-parallel and bit-
serial types. The polynomial basis is used for representing the field elements. We
investigate error detection techniques for such multipliers and develop parity
prediction based error detection schemes for both bit-serial and bit-parallel mul-
tipliers. The new schemes can be used for any field defining irreducible binary
polynomial.

2 Preliminaries

2.1 Multiplication Using Polynomial Basis

Let .
F(z)=2"+) fi (1)

i=0
be a monic irreducible polynomial over GF'(2) of degree m, where f;€GF(2) for
i=0,1,---, m—1. Let « € GF(2™) be a root of F(z), i.e., F(a) = 0. Then the
set {1, a, a2, -+, @™ 1} is known as the polynomial (or standard) basis and

each element of GF(2™) can be written with respect to (w.r.t.) this basis, i.e.,
if A is an element of GF(2™), then

m—1

A= Z a;a’, a; € {0, 1}, (2)
i=0
where a;’s are the coordinates of A w.r.t. polynomial basis (PB). For convenience,
these coordinates will be denoted in vector notation as

a= [a07 ai, ag, - - amfl]Tv (3)

where T’ denotes the transposition of a vector.
Let C be the product of any two elements A and B of GF(2™). Then, C' can
be represented w.r.t. PB as follows:

m—1 m—1
A-B=A-Y ba'=> b-(Ad"),
=0 =0

Error Detection in Polynomial Basis Multipliers

m—1
C=A-B mod F(a)= Z b; - ((Aa') mod F(a))
i=0
m—1
= Z by - XD,
i=0
where
X =q. X0 mod F(a), 1<i<m—1
and

XO — 4.

517

(6)

A bit-parallel architecture for GF(2™) multiplication using (@) is shown in
Figure [l It mainly consists of three types of modules, namely, sum, pass-thru
and « modules. The sum module (denoted as a double circle with a plus inside)
is to simply add two GF(2™) elements and it can be realized in hardware using
m two-input XOR gates. The pass-thru module (denoted as a double circle with
a dot inside) is to multiply a GF(2™) element by a GF(2) element, i.e., if
X0 € GF(2™) and b; € GF(2) are two inputs to a pass-thru module, then its

output is

. @ ifp, =1
() X b =1,
b X { 0 if b; =0.

In hardware, each pass-thru module consists of m two-input AND gates.

Fig. 1. Multiplication of two elements in GF(2™)

In Figure [l the third module (i.e., the rectangular shape « module) mul-
tiplies its input, which is an element of GF'(2™), by « and reduces the result
modulo F(«). Thus, this module is to essentially realize equation (B) in hard-

ware.

518 A. Reyhani-Masoleh and M.A. Hasan
Since « is a root of F(z),
m—1
Fla)=a™+ Z fia! = 0. (7)
i=0

Then multiplication of an arbitrary element A € GF(2™) by « gives

m—1 m—1 m—1
A-a=(E a;a’) o= g ;1! = E ai—10" + apm_10™. (8)
i=0 i=0 i=1

Using ([7) and (8)), one can write

X 2 A-amod F(a)
= a1 fo+ S0 (@it + amo1 - fi)ad,
where z;’s are in GF(2) and are the coordinates of X w.r.t. the PB. For any irre-

ducible polynomial over GF(2), fo = 1. Thus from (@), we write the coordinates
of X as

9)

) . f. <i<m—
T = {az—l + Gm—1 fz 1 1= m 1a (10)
Am—1 1 =0.

If w is the Hamming weight of the irreducible polynomial F'(z), then the real-
ization of ([I0) requires w — 2 XOR gates, and so does an o module. Thus, unlike
the sum and pass-thru modules, the & module has a space (or circuit) complex-
ity which depends on F'(z). The space complexity is minimum when F(z) is a
trinomial and maximum when F(z) is an all-one-polynomial (AOP).

In vector notations, the coordinates of the GF(2™) multiplication can be
calculated by the well-known formulation [7] as

C = [Co, Cl,y " Cm_l]T:M~b, (11)
where M = [m,;], m;; € GF(2), is the m x m product matrix and b =
[bo, b1, - -+ by_1]T. Note that in Figure[I], the a array generates m; ;’s and an-

other part of the multiplier which consists of all pass-thru and sum modules
realizes matrix-vector multiplication of ().

2.2 Error Detection Strategy

In the following sections, we investigate error detection schemes for GF(2™)
multiplication operation that relies on the architecture shown in Figure [1. To-
wards this effort, the parity prediction method is used. This method is shown in
Figure[2 where the CUT (circuit under test) block can be either a complete finite
field multiplier or a part of it with A and B as inputs and Y as output, where
A, B,Y € GF(2™). In this figure, the parity generation (PG) block produces the
actual parity of Y, i.e., py = Z:’;Bl y;, where y;’s are the coordinates of Y w.r.t.
the PB. The actual parity py is then compared with the predicted parity py

Error Detection in Polynomial Basis Multipliers 519

using a single XOR gate as shown in the figure. This comparison is monitored
by an error indicator flag €., ;. where ;. = 0 indicates that no error has been
detected and €, = 1 flags the detection of errors. The parity prediction (PP)
block predicts the parity of the output Y using a PP function which depends

only on the inputs of the CUT as
py = I'cur(4, B).

We assume that the parity of A and B (i.e., pa and pg, respectively) are available
or they can be reliably pre-computed while loading the coordinates of A and B
into the multiplier. We also assume that the PP and PG blocks can be made
fault free or any fault in them can be detected using a suitable mechanism since
these blocks are simple and/or regular (for example PP can be as simple as an
XOR gate and PG is a modulo 2 adder). In the following sections, we derive the
function I'cyr for each of the modules of the multiplier of Figure [Tl

A
B

CUT

Y
<

PG

> Py
vy
PP D_’ ecur
Py /

Fig. 2. Error indication of the circuit under test (CUT) using parity prediction method.

For the purpose of this investigation, we consider GF(2™) multiplier circuit
with a single fault. The single fault case provides simplicity in our analysis.
Although various types of multiple faults in the multiplier can be detected, we
first consider the single fault case and then we show how multiple faults can be
detected. This fault is modeled as a stuck-at fault, which appears to be the most
common model used for logical faults. For this model, a fault in a logical gate
(i.e., XOR, AND, OR, etc.) results in one of its inputs or the output being fixed
to either a logic 0 (stuck-at-0, or s-a-0 in short) or a logic 1 (stuck-at-1, or s-a-1),
respectively [6].

3 Parity Predictions of Individual Module

In the following, we obtain the parity prediction functions of the modules of
the bit-parallel multiplier of Figure [l PB multipliers (both bit-parallel and bit-
serial) that are capable of detecting errors are considered in the next section.

520 A. Reyhani-Masoleh and M.A. Hasan

3.1 Parity Prediction in o Module

Let w be the Hamming weight of the irreducible polynomial F'(z). Then, () can
be written as

w—2
F(z)= 1—|—Zzpj + 2™, (12)
j=1
where p;’s are powers of z in ([I]) with f,, =1, 1 < j <w — 2. Then we have

1<p<p2<psg - <po2<m-—1

and (I0) can be written as

xi:{am_wam_l i=ppl<i<w=2 (13)
@i—1 mod m otherwise.

Using ([@3)), a circuit diagram for the o module is shown in Figure Bl Note
that a stuck-at fault in one of the (w — 2) XOR gates of this module causes at
most one error at the output.

For j € {p1, p2, - -, pw—2}, assume that the j-th gate in Figure Blis faulty.
Then all the output coordinates, except x;, are error free. If the upper input of

the j-th gate is stuck, then the erroneous j-th coordinate is

. J am— for s-a-0,
Ti= {aml for s-a-1, (14)

where T indicates complement of x. On the other hand, if the lower input is
stuck, then

. _ J a1 fors-a-0,
ti= {ajl for s-a-1. (15)

Detection of such errors are discussed below.
Assume that A and X are the input and output of the o module, respectively.
Then we have the following lemma.

Lemma 1. Let py = Z?:Ol a; and px = 22161 x; be the parity bits of A and
X, respectively. Then, the predicted parity of X is

Px =Ia =pa+am-, (16)
where ay,—1 is the (m — 1)-th coordinate of input A.
Proof. Using ([I0), px can be written as

m—1 m—1 m—1
Px =ama+ Y (Gi1+amafi)=am1 Y fit D> a
i=1 i=1 =0
Since F(z) is irreducible over GF(2), F(z) is not divisible by z + 1, and

F(1) = 1. Then from (I, one obtains 211_11 fi = fo = 1 and the proof is
complete.

Error Detection in Polynomial Basis Multipliers 521

Qo

Qpy—1

A @) X o~

Am—1

Fig. 3. The original circuit of o module.

Using ([I6), we can obtain the relation between X and A in the fault free o
module as

bx +pA = Qm—1- (17)

Um—1

pA N pX

Fig. 4. The circuit for detecting a single fault.

In the a module, a stuck-at fault in one of its gates will result in an output
which is different from X and (I6]) will not hold. Thus, equation (IG]) can be
used for detecting an error in the output of the a module. Circuit for detecting
such errors is shown in Figure @ where é, = 0 indicates that no error has been
detected and é, = 1 flags the detection of an error. Since (I6]) is over GF(2),
the values of é, would detect not only a single error, but also any odd number
of errors. With a similar argument, it is clear that even number of errors are not
detected by é,.

522 A. Reyhani-Masoleh and M.A. Hasan

3.2 Parity Predictions of Sum and Pass-Thru Modules

The sum module of Figure [Tl is a finite field adder which produces sum of the

two elements of GF(2™) at its output. Let A = (ag, a1, --+ , am—1) and B =
(bo, b1, -+, bm—1) be two inputs to this module. Then the output is D = A+B =
(do, d1, -+, dyp—1) where d; = a; +b; for 0 < i < m—1. The architecture of this

module uses m two-input XOR gates. Let p4 = 2261 a; and pp = Z?igl b;

be the parity bits of A and B, respectively. Then the parity bit of the output,
m—1 . .
Pp = Zi:o d; , is predicted by

f)D = Fsum =pa+pB (18)
using one extra XOR gate. Let us denote this m + 1 XOR gates as the new sum
module.

The pass-thru module of Figure [I] multiplies an element A € GF(2™) by a
single bit b € GF(2) which can be implemented using m two-input AND gates.
Let G € GF(2™) be the output of such a module with inputs of A and b. Thus,
the output of this module G is zero when b = 0 and A when b = 1.

Detection of an odd number of errors is accomplished by using a single parity
bit similar to the o and sum modules. Let A and py = 22161 a; be the input
of the pass-thru module and its parity bit respectively. Then, the parity bit of
the output G = bA is found as pg = Z:;Bl gi, where g; =b-a;, 0< 1< m—1,
are the coordinates of G. Thus, the predicted parity bit of the output can be
expressed as

Pa = Fpass =b-pa (19)
which requires only one AND gate for its implementation. Let us denote the
original pass-thru module together with this AND gate as the new pass-thru
module similar to the new sum module. These new modules are used in the next
section.

4 Error Detections in Polynomial Basis Multipliers

The discussions of the previous section deals with the parity prediction functions
of individual modules of the multiplier of Figure[Il Using these parity functions,
below we attempt to detect errors in the entire multiplier.

4.1 Bit-Parallel PB Multiplier

Let us generalize () for the cascading of j, 1 < j < m —1, @ modules as follows:

Lemma 2. As defined earlier xﬁ,’fll and b; are the (m — 1)-th and j-th coordi-

nates of XU) = Aa? mod F(a) and B w.r.t. the polynomial basis, respectively.
Then

j—1

ﬁX(j):pA+Z$£7’:)—17 j:1527"'5m_17 (20)
k=0

Error Detection in Polynomial Basis Multipliers 523

Thus, the parity bit of the output of the polynomial basis multiplier can be
predicted using the following theorem.

Theorem 1. Let C' be the product of two arbitrary elements A and B of
GF(2™). Let pa, pp and pc be the parity bits of A, B and C respectively.
Then,

m—1
Pe =Y bipxo, (21)
j=0

A proof of the above theorem is not included here for lack of space. Note that
the theorem is not restricted to any particular irreducible polynomials. When
F(2) is an all-one polynomial, the expression for pc, which can be obtained from
Theorem [[] matches the corresponding result reported in [3].

To detect only one error (in general any odd number of errors) at the output
of the multiplier, equation (ZI]) can be realized easily by replacing all the «, pass-
thru and sum modules in Figure [lwith the o/ module and the new pass-thru and
sum modules as shown in Figure[H (these three new modules are shaded in this
figure to distinguish them from the old ones). The bus width of this multiplier is
m+ 1. Since the output of any gate of the shaded pass-thru and sum modules in
Figure Blis connected to only one gate, the single stuck fault at any gate of these
modules changes only one coordinate of the output of this multiplier. Therefore,
a circuit that compares the actual parity po with the predicted po, which is
shown at the end of the figure, is capable of detecting any single fault in the
shaded sum and pass-thru modules of Figure Bl Also, it is clear that any single
fault in any XOR gate in the parity generation circuit pc and the very last XOR
gate can be detected by é. This circuit, however cannot detect a single stuck-at
fault in any of the o/ modules with the exception of the rightmost o/ module,
because such a fault is most likely to change more than one bit of the multiplier
output. Then, these errors cannot be detected if an even number of output bits
are changed due to a single fault in the o’ array. To overcome this problem, the
following method is proposed.

AAJ\ (YI O{I °°°J\ (YI T O[/
p?‘/ [] ﬁ/ *‘/

m+ 1

! 1Ll
® - @ @

Fig. 5. Multiplication of two elements in GF(2™) with error detection capability.

524 A. Reyhani-Masoleh and M.A. Hasan

For detecting a single fault in the entire multiplier one can change the «
array (all o/ modules excluding the XOR, gates for parity prediction of py)’s)
in such a way so that all X(9’s, 0 < i < m — 1, are obtained directly from A
(instead of X(=1) ie., X(¥ = a’A and this is shown in Figure [6] This makes
the output of any gate inside the new « array connected to only one gate. In
Figure [0} the output of the a’ modules, X9 1 <i < m — 1, are found directly
from A. Also, it is noted that the coordinates of X ()’s are obtained using the
following matrix equation

xD =Gi.a 1<i<m-—1, (22)

where x(¥) is a vector whose entries are coordinates of X defined by (B) and

00---0 1
10---0 fy
G=|01---0 f2

001 fin—1
is the a-multiplication matrix. Using (22)), the o' module in Figure Blis realized
with XOR gates according to the G matrix. As a result, a single stuck-at fault
at any logic gate in the multiplier, except in the XOR gates for parity prediction
of Px’s, can affect at most one bit of the output so that it is detected using
the parity prediction of (21).

Note that qul;)q used in (20) is a function of A and can be calculated and
then should be realized separately by using Proposition 4.1 of [7] as follows

k—1
1/'5:),1 =am-1-k + quflft,mfl Am—1—t k= 1,---,m—1, (23)
t=0

where g; m—1 € {0,1}, for i = 0,1,---,m—2, is the i-th entry of the last column
of the m — 1 x m binary reduction matrix Q associated with F'(z) as follows:

a™ 1
a™t! o
=Q) mod F(«).

By substituting (23]) into (ZII), one can realize px¢) as a function of the
coordinates of A using XOR gates. Thus any single stuck-at fault in the entire
new multiplier results in at most one error and can be detected.

4.2 Bit-Serial PB Multiplier

The PB multiplier of Figure [[lcan be realized in a bit-serial fashion as shown in
Figure [l In this figure, both X and Y are m bit registers. Let X (n) and Y (n) be

Error Detection in Polynomial Basis Multipliers 525

AT ;
; 10 F ;
i a o? oo aml i
R S
X (0) x @) X (2) X (m—1)

Fig. 6. The architecture of new a array to have a detection capability at the output.

the contents of X and Y registers, respectively, at nth, 1 < n < m, clock cycle.
Suppose the X register is initialized by A, i.e., X(0) = A, then the content of this
register at the nth clock cycle is X (n) = X, where X() € GF(2™) is defined
in (B). Also, suppose that the register Y is cleared at the initial step, i.e., Y (0) =
0. Then one can obtain the content of Y at the first clock cycle as Y (1) = by A
and in general at the nth clock cycle as Y (n) = bp A+ Z?;ll b X(i), 1 <n<m.

It is easy to verify that after m clock cycle Y contains C = AB € GF(2™), i.e.,
Y(m)=_=C.

Q

Fig. 7. Bit-serial PB multiplier.

In order to detect errors in the bit-serial multiplier of Figure [, we check
the contents of two registers in every clock cycle. Consider Figure [[] before the
triggering of the nth clock cycle when the input and output of the X register
are X (n) and X (n — 1), respectively and using Lemmal[ll, we have

526 A. Reyhani-Masoleh and M.A. Hasan

m—2
pX(n)_pX(n 1)+xm 1’I’L—1 :Zmz 7’L—1
=0

where z;(n — 1) € GF(2) is the ith coordinate of X (n — 1). In order to compare
Px(n) With the actual value of px(,), we store px () into a 1 bit register Dy as
shown in Figure Bl Then, after the nth clock cycle, X (n) appears at the output of
the X register and the actual value of px(,) is evaluated and compared with the
value of Dx, i.e., px(n) using the last XOR gate of Figure B Similar expression
can be obtained for the Y register. Since Y'(n) =Y (n —1) +b,_1X (n— 1), then

DY (n) = Py (n—1) T bn—1PX (n—1),

and can be implemented and compared with the actual value of py(,) as shown
in Figure[8. As a result, after the first clock cycle, both écx and écy should be
0 during the next m clock cycles if there are no single errors.

Fig. 8. Detection of errors in the bit-serial PB multiplier.

5 Conclusions and Future Work

In this article, we have considered detection of errors in polynomial basis multi-
pliers. We have used a multiplier structure where a single stuck-at fault causes
only odd number of errors at the output. Towards the detection of this type
of errors, necessary theoretical results have been presented. Compared to the
previously published results [3], the work presented here is quite generic in the
sense that it can be applied to any irreducible polynomial defining the field. The

Error Detection in Polynomial Basis Multipliers 527

parity prediction method of [3] is only for bit-serial multipliers and based on
the prediction of the output parity after the final clock cycle and then compar-
ing it with the actual parity. Although, it reduces the cost of overhead, but its
probability of error detection is only about 50% or less. This is because a single
fault in their bit-serial multiplier produces multiple errors after m clock cycles
and the number of effective errors resulting from the single fault is either odd or
even and only the odd number of errors can be detected. The proposed circuit in
Figure Bl overcomes this problem. It compares the predicted parity of the stor-
age registers with the actual ones at every clock cycle. Although it costs extra
hardware, the probability of error detection of our bit-serial multiplier is about
100%. This result has been verified using a simulation program for a prototype
multiplier with F(z) = 2% + z 4 1. Using VHDL, we have injected single faults
at different nodes of the bit-serial multiplier for all elements of A and B. The
probability reaches unity as m increases.

The proposed error detection schemes are not limited to the multiplier ar-
chitectures discussed in this article. They can be easily extended and applied to
other GF(2™) multipliers. For example, we have considered the bit-serial mul-
tiplier introduced by Peterson [7] and have made it capable of detecting single
faults. Furthermore, although our discussions have centered around bit-parallel
and bit-serial multipliers over GF'(2™), by combining the error detection schemes
for serial and parallel multipliers, one can develop an error detection scheme for
hybrid multipliers over composite fields |§].

More research is needed to reduce the overhead cost of the proposed multi-
plier. For example, hardware implementation of the architecture shown in Figure
appears to be expensive. Currently we are trying to develop an architecture
that can alleviate this problem.

References

1. G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone. “Arithmetic Operations
in GF(2™)”. Journal of Cryptology, 6:3-13, 1993.

2. D. Boneh, R. A. DeMillo, and R. J. Lipton. “On the Importance of Eliminating
Errors in Cryptographic Computations”. Journal of Cryptology, 14:101-119, 2001.

3. S. Fenn, M. Gossel, M. Benaissa, and D. Taylor. “On-Line Error Detection for
Bit-Serial Multipliers in GF(2™)”. Journal of Electronic Testing: Theory and Ap-
plications, 13:29-40, 1998.

4. A. Halbutogullari and C. K. Koc. “Mastrovito Multiplier for General Irreducible
Polynomials”. IEEE Transactions on Computers, 49(5):503-518, May 2000.

5. M. Joye, A. K. Lenstra, and J. J. Quisquater. “Chinese Remaindering Based
Cryptosystems in the Presence of Faults”. Journal of Cryptology, 12:241-245,
1999.

6. P. K. Lala. Fault Tolerant and Fault Testable Hardware Design. Prentice Hall,
1985.

7. E. D. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD
thesis, Linkoping Univ., Linkoping Sweden, 1991.

8. C. Paar, P. Fleishmann, and P. Soria-Rodriguez. “Fast Arithmetic for Public-Key
Algorithms in Galois Fields with Composite Exponents”. IEEE Transactions on
Computers, 48(10):1025-1034, Oct. 1999.

528

9.

10.

11.

A. Reyhani-Masoleh and M.A. Hasan

A. Reyhani-Masoleh and M. A. Hasan. “A New Efficient Architecture of Mastrovito
Multiplier over GF(2™)”. In 20"" Biennial Symposium on Communications, pages
59-63, Kingston, Ontario, Canada, May 2000.

H. Wu and M. A. Hasan. “Efficient Exponentiation of a Primitive Root in
GF(2™)”. IEEE Transactions on Computers, 46(2):162-172, Feb. 1997.

T. Zhang and K. K. Parhi. “Systematic Design of Original and Modified Mas-
trovito Multipliers for General Irreducible Polynomials”. [IEEE Transactions on
Computers, 50(7):734-748, July 2001.

	Introduction
	Preliminaries
	Multiplication Using Polynomial Basis
	Error Detection Strategy

	Parity Predictions of Individual Module
	Parity Prediction in (alpha) Module
	Parity Predictions of Sum and Pass-Thru Modules

	Error Detections in Polynomial Basis Multipliers
	Bit-Parallel PB Multiplier
	Bit-Serial PB Multiplier

	Conclusions and Future Work

