
Error Detection Techniques Applicable in an 
Architecture Framework and Design Methodology for 

Autonomic SoCs* 

Abdelmajid Bouajila', Andreas Bemauer^, Andreas Herkersdorf', Wolfgang 
Rosenstiel^'^, Oliver Bringmann^, and Walter Stechele' 

' Technical University of Munich, Institute for Integrated Systems, Germany 
^ University of Tuebingen, Department of Computer Engineering, Germany 

^ FZI, Microelectronic System Design, Karlsruhe, Germany 

Abstract. This work-in-progress paper surveys error detection techniques for 
transient, timing, permanent and logical errors in system-on-chip (SoC) design 
and discusses their applicability in the design of monitors for our Autonomic 
SoC architecture framework. These monitors will be needed to deliver necessary 
signals to achieve fault-tolerance, self-healing and self-calibration in our Auto­
nomic SoC architecture. The framework combines the monitors with a well-
tailored design methodology that explores how the Autonomic SoC (ASoC) can 
cope with malfunctioning subcomponents. 

1 Introduction 

CMOS technology evolution leads to ever complex integrated circuits with nanome­
ter scale transistor devices and ever lower supply voltages. These devices operate on 
ever smaller charges. Therefore, future integrated circuits will become more sensi­
tive to statistical manufacturing/environmental variations and external radiation caus­
ing so-called soft-errors. Overall, these trends result in a severe reliability challenge 
for fiiture ICs that must be tackled in addition to the already well-known complex­
ity challenges. The conservative worst case design and test approach will no longer 
be feasible and should be replaced by new design methods. Avizienis [1] suggested 
integrating biology-inspired concepts into the IC design process as a promising alter­
native to today's design flow with the objective to obtain higher reliability while still 
meeting area/performance/power requirements. Section 2 of the paper presents an Au­
tonomic SoC (ASoC) architecture framework and design method which addresses and 
optimizes all of the above mentioned requirements. Section 3 surveys existing error 
detection techniques that may be used in our Autonomic SoC. Section 4 discusses im­
plications on the ASoC design method and tools before section 5 closes with some 
conclusions. 

* This work is funded by DFG within the priority program 1183 "Organic Computing" 

Please use the foUowing format when citing this chapter: 

Bouajila, A., Bemauer, A., Herkersdorf, A., Rosenstiel, W., Bringmann, O., Stechele, W.,2006, in IFIP International 
Federation for Information Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y, 
Rammig, R, Schmeck, H., Solar, M., (Boston: Springer), pp. 107-113. 



108 A. Bouajila, A. Bemauer et al. 

SoC Library 

Application 
Requirements 

:s: 
Application 

Characteristics 

^ ^ 
i Characteristics I 

t mctio'inl SoC L^wcr 

Reliability Driven 
Architectural 
Optimization 

FE Parameter 
Selection 

AE Parameter 
Selection 

3z: 

. Penorman^ic 

Reiiability 
/ -

Power 

C 
/ /7.^ AjL^ •'••n;or 

FE/AE-Model 

' ^ 

Parameter 
Evaluation 

7T 
C _ y / . — / 

^ Autonom.c SoC Lavor 

Evaluation 

Fig. 1. Autonomic SoC design method and architecture [2] 

2 Autonomic SoC Architecture and design method 

Figure 1 [2] shows the proposed ASoC architecture platform. The ASoC is split into 
two logical layers: The functional layer contains the intellectual property (IP) compo­
nents or Functional Elements (FEs), e.g. general purpose CPUs and memories, as in a 
conventional, non-autonomic design. The autonomic layer consists of interconnected 
Autonomic Elements (AEs), which in analogy to the IP library of the functional layer 
shall eventually represent an autonomic IP library (AEJib). At this point in time, it is 
not known yet whether there will be an AE for each FE, or whether there will be one 
AE supporting a class of FEs. 

Each AE contains a monitor or observer section, an evaluator and an actuator. The 
monitor senses signals or states from the associated FE. The evaluator merges and 
processes the locally obtained information originating from other AEs and/or memo­
rized knowledge. The actuator executes a possibly necessary action on the local FE. 
The combined evaluator and actuator can also be considered as a controller. Hence, our 
two-layer Autonomic SoC architecture platform can be viewed as a distributed (de­
centralized) observer-controller architecture. AEs and FEs form closed control loops 
which can autonomously alter the behavior or availability of resources on the func­
tional layer. Control over clock and supply voltage of redundant macros can provision 
additional processing performance or replace on-the-fly a faulty macro with a "cool" 
stand-by alternative. 

Although organic enabling of next generation standard IC and ASIC devices rep­
resents a major conceptual shift in IC design, the proposed ASoC platform represents 



Error Detection Techniques for ASoC 109 

a natural evolution of today's SoCs. In fact, we advocate to reuse cores as they are and 
to augment them with corresponding AEs. 

In order to study the feasibility of our ASoC framework, we already started looking 
in-depth into how to design such SoCs. We adopted a bottom-up approach in which 
we design autonomic building blocks and connect them to build an Autonomic SoC. 
The ultimate objective is to understand how to form an Autonomic IP library and, thus, 
how to design Autonomic SoCs in a systematic and well-established top-down design 
flow. 

3 Existent CPU concurrent error detection techniques 

The human body needs to sense the state of its different organs, e.g. pain or temper­
ature, to let the immune system handle the problem or to try to ask for external help, 
e.g. medicines [1]. In analogy to the human body, the SoC needs to detect errors for 
example to allow a CPU to re-execute an instruction or to ask for a replacement CPU. 

There are three main concurrent error detection techniques: hardware redundancy, 
information redundancy and time redundancy. In our survey, the efficiency of each 
technique is measured by 1) how many different types of errors can be detected (so 
we need to define a fault model and then to evaluate the fault coverage), 2) how much 
overhead (in terms of area, performance and power) the concurrent error detection 
technique induces, and 3) how feasible IP-reuse is, i.e. is it possible to achieve error 
detection in an already existent CPU by adding a separate monitor? 

In [3], an (extended) fault model classification is presented. In fault-tolerant inte­
grated circuits literature, faults are usually classified as permanent [4,5], timing [6], 
transient [7] or design (logic) errors. The most widely used fault model is the single 
error fault, in which different errors don't occur simultaneously. The fault coverage [3] 
of a detection technique is given for a specific fault model. Fault coverage is either 
given by analytical (formal) methods or by simulation. 

A. Hardware redundancy techniques: Hardware redundancy has good fault cover­
age (transient, timing and permanent errors). However, the area and power overheads 
are big. In the particular case of duplication, the monitor will be the duplicated circuit 
and the comparator. In spite of its big overheads, we could use this technique in our 
ASoC project because the percentage of logic parts in modem SoCs is less than 20%. 

B. Information redundancy techniques: There are two different approaches us­
ing information redundancy. The first approach synthesizes HDL descriptions [4] to 
generate so-called path fault-secure circuits. The second approach tries to build self-
checking arithmetic operators to achieve the fault-secure property [5]. The main draw­
back of the first approach towards our ASoC framework is the difficulty in separating 
between the fiinctional and autonomic layers. Self-checking designs give fault-secure 
arithmetic operators for stuck-at faults (permanent faults) with low area overhead but 
their use requires redesigning existing IP-libraries. 

C. Time redundancy technique: The time redundancy technique was proposed to 
detect transient errors. Transient errors can be modeled by SEU (Single Event Upset) 
and SET (Single Event Transient) [8]. 



110 A. Bouajila, A. Bemauer et al. 

Combinational 
Circuit 

Clc+6 

Out 

, 

Latch 1 

|Clc 

Output 
Latcli 

Comparator E.l, 

Fig. 2. Time redundancy technique [7] 

The idea of Nicolaidis [7] is to benefit fi'om the fact that a transient error will occur 
only for a short duration. Hence, if we sample a primary output at two successive 
instants separated by a duration larger than that of the SET pulse, we will be able—in 
theory—to detect all SETs. Figure 2 presents this scheme. 

Simulations [9] on adders and multipliers showed that this scheme detects around 
99% of SETs (an SET can escape from detection because of reconvergent paths). It 
also detects SEUs and timing errors. The area overhead depends on the circuit area 
per output parameter. Razor, a similar time redundancy technique for detection and 
correction of timing errors was suggested in [6]. 

These time redundancy techniques are very interesting for our ASoC framework 
and could be integrated in a systematic way to protect circuits against transient and 
timing errors. Also, the separation between the functional and autonomic layer is quite 
simple; for instance the monitor for Nicolaidis scheme (Fig. 2) will include the extra 
latch and the comparator. 

D. Combination of Hardware and Time Redundancy: The Dynamic Implementa­
tion Verification Architecture (DIVA) [10] incorporates a concurrent error detection 
technique to protect CPUs. We can classify it either as a time redundancy and/or a 
hardware redundancy technique. The baseline DIVA architecture (Fig. 3a) consists 
of a (complex) processor without its commit stage (called DIVA core) followed by 
a checker processor (which consists of CHKcomp and CHKcomm pipelines, called 
DIVA checker) and the commit stage. 

The DIVA checker checks every instruction by investigating in parallel (Fig. 3 a) 
the operands (re-reading them)and the computation by re-executing the instruction. In 
case of an error, the DIVA checker, which is assumed to be simple and reliable, will fix 
the instruction, flush the DIVA core and restart it at the next program counter location. 
Physical implementation of a DIVA checker has an overhead of about 6% for area and 
5% for power [11]. 

We believe that in very deep sub-micron technologies a checker which is reliable 
enough is difficult to achieve and could also result in a large area overhead. We suggest 
a modified version of DIVA in which both the DIVA core and checker re-execute an 
errant instruction, so that the checker no longer needs to be reliable. 

The modified DIVA (Fig. 3 b) only checks the CPU computation and protects the 
DIVA core/memory interface and the register file with error correcting codes (ECC). 
Therefore, the DIVA checker no longer needs to access the register file and data cache, 
eliminating structural hazards between the DIVA core and checker. The fault coverage 
of both DIVA versions includes transient, timing, permanent and logic errors. In both 
DIVA versions, it is mandatory that the error rate is bounded not to decrease perfor-



Error Detection Techniques for ASoC 

CHKcomp pipeline 

111 

speculative 
computation 
from DIVA 
source 

suit 

suit 

srcl,src2> 

<inst,result> 

srcl,src£> 

E 

X' 

B 

D 

C 

c 
H 

K 

^^^^^<siiccess?> 

^ <success?> 

C 
T 

CHKcomm pipeline (a) 

speculative 
computation 
from DIVA 
source 

suit srcl,src2> 

<in3t,result> 

E 

X' 

c 
M 

P 

—^<success?> 

C 
T 

(b) 

Fig. 3. DIVA architecture, (a) Baseline DIVA architecture [10], (b) Modified DIVA architecture 

mance. DIVA cannot be inserted in a systematic way to protect existent CPUs because 
there are no standards in designing CPUs. Hence, a designer should study the CPU ar­
chitecture and implementation and then separate the commit stage to be able to insert 
the DIVA checker. Nevertheless, we should mention that the separation between the 
functional layer and the autonomic layer is clear (the DIVA checker is the monitor). 
Also, DIVA enables us to re-use existent CPUs by identifying their commit stage. 

We decided to use the modified version of DIVA to build autonomic CPUs because 
it allows us to separate ftinctional and autonomic layers, permits IP-reuse and has the 
best fault coverage when compared to other detection techniques: it detects transient, 
timing, permanent and logic errors with a fault coverage close to 100%. The draw­
backs of the other techniques are either big overheads (duplication, path fault-secure 
circuits), limited fault coverage (transient and timing-error detection oriented tech­
niques (Nicolaidis and Razor), or restrictions to just stuck-at detection (Self-checking 
designs)). 

4 Design Methodology and architecture for ASoC 

A successful design of Autonomic SoCs needs a well-tailored design methodology that 
explores the effect of the AEs to cope with malfunctioning subcomponents. Our ASoC 
design methodology (Fig. I) follows the established platform-based design approach, 
where a predefined platform consisting of a set of architectural templates is optimized 
for a given application with respect to several design constraints like area, performance 
and power consumption. In the context of this paper, the traditional process is extended 
by adding the autonomic layer to the platform model and considering reliability as 
an additional parameter. Therefore, the evaluation process now has to deal with the 
effects of the AEs—which include algorithms to support self-optimization—as well as 



112 A. Bouajila, A. Bemauer et al. 

with the AEs' relationship to system reliability. The evaluation process results in an 
optimized set of FE/AE parameters including provision of an a priori knov^fledge for 
the evaluators at the autonomic layer. 

The design methodology will decide where and how many of the aforementioned 
error detection units the ASoC will need to meet the application's reliability require­
ments. The error detection units will be part of the AEJib. 

As the resulting ASoC will be able to change parts of its design during run time it 
will need design time information. In particular, the ASoC will need a priori knowl­
edge about the application's behavior when an error occurs and, more importantly, 
about how the system has to self-modify to handle the error. The design methodology 
will gather this knowledge by injecting errors according to the error model into the 
application and architecture model and analyzing the consequences. The knowledge 
will be implemented distributed over the AEs in a self-organizing algorithm. 

However, it won't be feasible to explore for all possible combinations of errors. 
For the explored error situations the self-organizing algorithm can react as given by 
the a priori knowledge. For the unexplored error situations it must be able to derive 
applicable measures but still meet the application constraints like temperature, timing 
and power consumption. The XCS classifier system presented by Wilson et al. [12] is 
capable to do this. 

Registers attached to the error detection units will count the detected and corrected 
errors within a sliding time interval. When the counter exceeds some threshold, the 
self-organizing algorithm will take the necessary measures to correct for the error. 
It is also possible to provide a way to make the reliability information accessible to 
the application. With this, not only the hardware but also the application can adapt 
to varying reliabilities of some components, e.g. by rescheduling tasks to some more 
reliable CPU. 

5 Conclusions and Outlook 

This paper presented an Autonomic SoC architecture framework and design method. 
We are going to build an Autonomic CPU based on the LEON processor [13]. This 
will help us to evaluate the design effort, overheads and the gain of reliability achieved 
by our method. Later, we will build autonomic memory and autonomic interconnect; 
the ultimate objective is to get an ASoC architecture and design method integrating 
biology-inspired concepts. 

References 

1. A, Avizienis, Toward Systematic Design of Fault-Tolerant Systems, IEEE Computer 30(4), 
51-58 (1997). 

2. G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann and W. Stechele, Towards a Frame­
work and a Design Methodology for Autonomic SoC, in: 2nd ICAC (2005). 



Error Detection Techniques for ASoC 113 

3. A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, Basic Concepts and Taxonomy of 
Dependable and Secure Computing, IEEE Trans, on Dependable and Secure Computing 
1(1) (2004). 

4. N. Touba and E. McCluskey, Logic Synthesis of Multilevel Circuits with Concurrent Error 
Detection,/£•£•£• Trans. CAD 16(7), 783-789 (1997), 

5. M. Nicolaidis, Efficient Implementations of Self-Checking Adders and ALUs, in: Proc. 
23rd Intl. Symp. Fault-Tolerant Computing, pp. 586-595 (1993). 

6. D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T. Austin, 
T. Mudge and K. Flautner, Razor: A Low-Power Pipeline Based on Circuit-Level Timing 
Speculation, in: Proc. 36th Intl. Symp. Microarch., pp. 7-18 (2003). 

7. M. Nicolaidis, Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer Tech­
nologies, in: Proc. 17th IEEE VLSI Test Symposium, pp. 86-94 (1999). 

8. S. Mitra, N. Seifert, M. Zhang, Q. Shi and K. S. Kim, Robust System Design with Built-in 
Soft-Error Resilience, IEEE Computer 38(2), 43-52 (2005). 

9. L. Anghel and M. Nicolaidis, Cost Reduction and Evaluation of a Temporary Faults Detect­
ing Technique, in: Proc. DATE, pp. 591-598 (2000). 

10. T. M. Austin, DIVA: A Dynamic Approach to Microprocessor Design, Journal of 
Instruction-Level Parallelism 2, 1-6 (2000). 

11. C. Weaver and T. Austin, A Fault Tolerant Approach to Microprocessor Design, in: Proc. 
Intl. Conf Dependable Systems and Networks, pp. 411-420 (2001). 

12. S. W. Wilson, Classifier Fitness Based on Accuracy, Evolutionary Computation 3(2), 149-
175 (1995). 

13. LEON VHDL code is available atwww.gaisler.com. 


