
Error Diagnosis for Transistor-Level Veri�cation

Andreas Kuehlmann� David I. Cheng�� Arvind Srinivasan� David P. LaPotin�

�IBM Thomas J. Watson Research Center

Yorktown Heights, N.Y.

��Dept. of Electrical and Computer Engineering

University of California

Santa Barbara, C.A

Abstract

This paper describes a diagnosis technique for locat-
ing design errors in circuit implementations which do
not match their functional speci�cation. The method
e�ciently propagates mismatched patterns from erro-
neous outputs backward into the network and calculates
circuit regions which most likely contain the error(s).
In contrast to previous approaches, the described tech-
nique does not depend on a �xed set of error models.
Therefore, it is more general and especially suitable
for transistor-level circuits, which have a broader va-
riety of possible design errors than gate-level imple-
mentations. Furthermore, the proposed method is also
applicable for incomplete sets of mismatched patterns
and hence can be used not only as a debugging aid for
formal veri�cation techniques but also for simulation-
based approaches. Experiments with industrial CMOS
circuits show that for most design errors the identi�ed
problem region is less than 3% of the overall circuit.

1 Introduction

Di�erent techniques have been developed for verify-
ing that an implemented design has the same behavior
as a given \correct" speci�cation. Classical design ver-
i�cation by simulation proves the correctness for only a
limited set of input patterns. A complete coverage for
all possible patterns can be accomplished by exhaus-
tive comparison methods like BDD-based formal veri-
�cation [1], test vector approaches [2] or probabilistic
methods [3]. In the case of a miscompare, all methods
provide a partial or complete list of counter examples
in the form of mismatched input patterns. However,
from a usage point of view the designer is primarily in-
terested in locating, and subsequently correcting, the
error.

Previous work in this area has focused on error di-
agnosis and correction as being one problem, where a
single occurrence of a design error from a prede�ned
set of possible models (e.g missing or superuous con-
nection, wrong gate type, etc.) is assumed. The idea
of error correction is to apply these hypothetical error
models to potential error locations and to repeat the
veri�cation procedure until the design is correct.

A general approach to check whether the modi�ca-
tion of a single internal net function could correct a

design can be formulated by means of a set of im-
plicit Boolean equations [4, 5]. If a solution exists
for these equations, then the reimplementation of the
tested net is su�cient to make the erroneous design
correct. Although di�erent pruning techniques, such
as input cone intersection [4] or elimination of domi-
nated nets [5, 6] have been proposed, the solution of
the Boolean equations is considerably expensive. In
[7], a set of pairs each consisting of a mismatched and
a matched input pattern, di�ering in one input value
only, are used to identify those gates where the propa-
gation of the pattern pair is interrupted. The identi�ed
gates are used as an initial guess for backtracking the
error. The drawback of this approach is again the lim-
itation to single errors. Moreover, the required pairs
of input patterns do not necessarily exist. In [8], a
speci�c method for identifying misordered inputs and
outputs is presented. This approach does not deal with
internal errors.

These previous approaches work on gate-level repre-
sentations and are intended as a correction mechanism
for errors which were induced by a synthesis tool or
for updating a previously synthesized result after some
manual change. This paper focuses on error diagnosis
for transistor-level veri�cation of CMOS designs which
implies the following speci�c problems:

� High-performance CMOS circuit design is most
often done manually, where automatic error cor-
rection would not be acceptable. A general debug-
ging technique which is able to identify potential
error regions in a general way is preferred.

� The variety of possible design errors introduced
at the transistor level is much broader than at the
gate level. After extracting an equivalent Boolean
network from the transistor-level representation,
errors typically appear in multiple locations of the
Boolean network. A diagnosis model which is re-
stricted to a single error occurrence from a �xed
set of templates is too simple.

� In hierarchical implementations, a single error in-
troduced in a frequently used subnetwork is repli-
cated many times over the whole design. The
common error source needs be identi�ed.

This paper describes a new diagnosis technique for
the identi�cation of possible error locations in incor-

rect transistor-level implementations of combinatorial
circuits. The proposed Error Coverage Algorithm (EC-
algorithm) works on the equivalent Boolean structure
of a CMOS circuit, where mismatched patterns are
propagated from incorrect outputs backward into the
network. These patterns are associated with internal
nets which most likely cause the errors. The back prop-
agation can be done implicitly for all patterns simulta-
neously (e.g. BDD-based) or explicitly for one pattern
at a time (e.g. simulation-based).

We show that the resulting number of collected er-
ror patterns at internal nets is an excellent base for
precisely identifying single design errors. We also show
that, in case of multiple errors, this number can be
used as a good metric for identifying problematic cir-
cuit regions where the designer should look �rst.

This paper is structured as follows: Section 2
presents a new gate-level diagnosis model which is ap-
plied to a Boolean network extracted from a transistor-
level circuit. Section 3 describes the EC-algorithm for
the back propagation of error patterns through the net-
work. Section 4 summarizes the transistor-level veri�-
cation extraction procedure and describes the applica-
tion of the diagnosis technique to the extracted model.
Sections 5 and 6 present results and conclusions, re-
spectively.

2 Gate-Level Model

Let N (G;W) denote a gate-level implementation
of some combinatorial network with a set of prim-
itive gates G = fG1; : : : ; Ggg and a set of nets
W = fW1; : : : ;Wwg interconnecting these gates.
fPO1; : : : ; POng � W are the n primary output nets
and fPI1; : : : ; P Img � W are the m primary input
nets of N . Without loss of generality, we assume that
each net has a fanout of one. Signals driving several
destinations are modeled by multi-output bu�er gates.
This enables us to distinguish between the destinations
for the sake of error diagnosis. A set of Boolean vari-
ables x = (xPI1 ; : : : ; xPIm) is assigned to the input
nets fPI1; : : : ; P Img. Based on the structure of N
and the primitive functions of G, each net Wi 2 W
computes some Boolean function fWi

(x).
A given functional speci�cation of network N as-

signs to each output POi an a priori correct func-
tion FPOi (x). Let us assume some veri�cation tech-
nique is used to compare the speci�cation with the
implementation for a set of input patterns X =
fX1; : : : ; Xpg; 1 � p � 2m. The network N is
said to be correct with respect to X if and only if:
fPOi (Xj) = FPOi (Xj); 1 � i � n; 8Xj 2 X, other-
wise N is incorrect.

De�nition: Given a network N which implements a
set of functions fPO1

(x); : : : ; fPOn (x) and their func-
tional speci�cation FPO1

(x); : : : ; FPOn (x), the set of
counter examples (CEX) for the set of input patterns
X is de�ned as: CEX = f(POi; Xj) j fPOi (Xj) 6=
FPOi (Xj); Xj 2 X; 1 � i � ng.

Figure 1 gives an example of an erroneous network.
Let us assume the design was wrongly implemented by
adding an inverter at net g which results in incorrect

x x

1

0

1

0

1

0

1

0

011110
a

00

z

zf

yF

cx

y

s

r

q
p

o

n

m

l

k

j
ih

g

f

e

d

c

b

a

CEX = {(y,1 0 1), (y,1 1 1), (z,1 0 1), (z,1 1 1)}

y

z

f

Fx

x

x a

b

c

b

Figure 1: Gate-level example (inverter incorrectly
added at net g).

functions fy and fz at outputs y and z, respectively.
The corresponding set of counter examples contains
four elements (y; 101); (y; 111); (z; 101) and (z; 111).

Clearly, it is always possible to correct all counter
examples by modifying the function fWi

of certain nets
Wi 2W . In the general case, the reimplementation of
the functions fPO1

; : : : ; fPOn of all output nets results
in a completely new design which could correct any
problem in N .

De�nition: The set of nets C = fWc1; : : : ;Wcpg �
W is called a correction of network N if there ex-
ists a set of corrected functions f ~fWc1

(x); : : : ; ~fWcp
(x)g

such that the replacement of ffWc1
; : : : ; fWcp

g by

f ~fWc1
; : : : ; ~fWcp

g results in a correct network N 0.

In general, there exist multiple corrections C for an
erroneous network N . For example, either net g; h,
or i could correct the circuit of �gure 1. The various
corrections usually di�er in: (1) the area and delay
performance of the resulting network N 0, (2) the ef-
fort to reimplement the new net functions and (3) the
applicability of speci�c error templates which can au-
tomatically be corrected (e.g.[5]).

In the following, we introduce the concepts of: (1)
sensitivity of counter examples and (2) error cover-
age of internal nets of N . Based on these de�nitions
we state an important theorem which can be used to
identify corrections for the network N .

De�nition: A counter example (POi; Xj) 2 CEX is
called sensitive to net Wk if there exists a set of nets
W 0 � W �Wk and an assignment of constant values
to all nets contained in W 0 such that:
(1) The output value fPOi (Xj) is not a�ected by the

constant assignment.

(2) For the given assignment of constant values, the
output value fPOi (Xj) becomes correct if the
value fWk

(Xj) is inverted.
We use SEN (POi; Xj) to denote the set of nets to
which (POi; Xi) is sensitive.

Figure 2 illustrates the concept of sensitivity and error
coverage for two counter examples (y; 101); (z; 111) of
�gure 1. The highlighted nets are those to which the
counter examples are sensitive. For example, consider

(y; 101) (�gure 2a) with respect to net k. If a constant
value 1 is assigned to net l then output fy(101) remains
una�ected (incorrect). The output can be corrected if
the value of net k is inverted. Therefore, counter exam-
ple (y; 101) is sensitive to net k. In contrast, (y; 101) is
not sensitive to net d, because there is no assignment
of constant values to other nets such that the correc-
tion of (y; 101) depends directly on the inversion of net
d.

De�nition: Given a set of counter examples CEX,
the error coverage of a net Wk is de�ned as
ECWk

= f(POi; Xj) j (POi; Xj) 2 CEX and Wk 2

SEN (POi; Xj)g.

SEN((z,1 1 1)) =

0

0

0

0

0

0

1

0

1

1

z

y

s

r

p q

o

h

g

e

f

m

k

j

n

l

i

d

c

b

a

a

b

c

e

f

g

d

i

l

n

m s

r

p
q

o

y

z

h

j

k

1

1

1

0 1
1

1

1

1

1

(b)

(a)

SEN((y,1 0 1)) =

{a, b, c, e, f, g, h, i, j, k, l,

o, p, q, y}

p, r, s, z}

{b, c, g, h, i, k, l, m, n,

Figure 2: Set of nets to which two counter examples
of �gure 1 are sensitive.

For the circuit in �gure 1, all four counter exam-
ples are sensitive to net k. Therefore, ECk =
f(y; 101); (y; 111); (z; 101); (z; 111)g. In contrast
ECj = f(y; 101); (y; 111)g.

The input cone for output POi is de�ned as the
set of nets from which a path to POi exists. Obvi-
ously, the input cone of POi provides an upper bound
on SEN (POi; Xj). However, this bound is typically
loose because, input cones are independent of input
patterns. In contrast, the EC-approach derives a spe-
ci�c sensitivity cone for each counter example.

Based on the error coverage of internal nets we can
state the following theorem (proof is provided in [9]):

Theorem: If C = fWc1; : : : ;Wcpg is a correction of
N then: [

Wk2C

ECWk
= CEX:

Corollary: If there exists a single net Wi such that
its reimplementation can correct the erroneous design
N , then ECWi

= CEX.

As an example of the EC-concept, �gure 3a highlights
the nets whose EC covers all counter examples. Note
that the stated theorem and corollary provide only a

necessary condition for the error identi�cation. For ex-
ample, the reimplementation of nets b, l, k or p alone
can not make N correct. In other words, the coverage
of all counter examples by some net Wi does not imply
that the reimplementation ofWi alone can correct the
circuit. However, our results (section 5) show that the
size of EC is a strong measure for identifying problem-
atic circuit regions, and in case of a single error this
region often contains one, or only few nets.

Since the input cones of erroneous outputs give
an upper bound on SEN (POi; Xj), their intersection
provides an upper bound on the set of nets which cover
all counter examples (see �gure 3b). Again this bound
is very loose because, input cones are independent of
input patterns. In contrast, the EC-approach inter-
sects the speci�c sensitivity cone for each counter ex-
ample. This technique is powerful because it is typi-
cal for design errors to cause a large number of mis-
matched input patterns and multiple incorrect out-
puts.

(a) {a, b, c, e, f, g, h, i, k, l, p}(b){b, g, h, i, k, l, p}

Figure 3: (a) Nets which cover all counter examples
(ECWi

= CEX). (b) Intersection of the input cones
of both outputs.

Corollary: If C = fWc1; : : : ;Wcpg is a correction of
N , then there exists at least one net Wk 2 C such

that: j ECWk
j�

jCEXj

p
.

In other words, if network N is assumed to have less
than p errors, we can identify a set of nets which con-
tains at least one of these errors. Although generally
the size of the set of such nets increases for a growing
number of errors, their identi�cation provides a valu-
able debugging aid to handle multiple design errors.

3 EC-Algorithm

The idea of the EC-algorithm is to compute the
error coverage of individual nets by propagating the
counter examples from erroneous outputs backward
into the network. The logic gates of the network will
act as propagation �lters where, depending on the in-
put and resulting output values at these gates, speci�c
counter examples are further propagated or blocked.

Let WI be an input and WO be an output of some
gate Gk. For a �xed primary input pattern Xi, let vWI

and vWO
denote the evaluated values at nets WI and

WO , respectively.

De�nition: Output WO is called gate-sensitive to in-
put WI , with respect to the pair of values (vWI

; vWO
),

if there exists an assignment of constant values to all
other inputs of Gk such that:
(1) The output value vWO

is not a�ected by the con-
stant assignment.

(2) For the given constant assignment the output
value vWO

changes if the value vWI
is inverted.

We use PROP (Gk;WI ;WO) to denote the set of value
pairs for which output WO is sensitive to input WI .

ec WoWi

Wi Woec = ec

{(0 0), (0 1), (1 0), (1 1)}
Wo

Wi .
.. = ec

, ec

+ f

, f= f (fec

WoWi

...

Wi

Wo

Gate G PROP(G, Wi, Wo)

{(0 0), (0 1), (1 1)}

{(0 0), (1 0), (1 1)}

{(0 0), (0 1), (1 0), (1 1)}

Wi WoWoWi)

...

Wi

Wo

+ f) ec= (fec
WoWi WoWi

Wi WoWi Wo
ec = (f) ec

Figure 4: Gate-sensitivity for AND, OR, INVERTER,
and multi-output bu�ers

Figure 4 gives the gate-sensitivity for some primi-
tive gate functions. For example, consider the gate-
sensitivity of an AND gate for the value pair (1; 0). In
this case it is assumed that some primary input pat-
tern Xj causes a 1 at the input and (because some
other input is 0) a 0 at the output. We say WO is not
sensitive to WI , because inverting the value at WI can
never cause a change of the value at WO for any con-
stant value assignment to the other inputs of the AND
gate. Therefore, (1; 0) 62 PROP (AND;WI;WO). The
idea is that if the output value 0 of an AND gate
is incorrect, then all inputs which are 1 can not be
held responsible for the error. The EC-algorithm
uses PROP (Gk;WI ;WO) as a \gate-�lter" to decide
whether for the corresponding input pattern a counter
example is to be back propagated through Gk. The
following pseudo code details the EC-algorithm:

Algorithm EC (N;F)

/* network : N(G;W); specification : F (x) */

FOR all outputs POi of N DO

ECPOi = f(POi; Xj) j fPOi (Xj) 6= FPOi (Xj); Xj 2 Xg;
END FOR;

FOR all outputs POi of N DO

Push Backward (POi);

END FOR;

END;

Algorithm Push Backward (Wi) /* net : Wi */

IF net Wi not marked as backward done DO

Pull Backward (Wi);

FOR all inputs Wj of gate Gk driving net Wi DO

Push Backward (Wj);

END FOR;

mark net Wi as backward done;

END IF;

END;

Algorithm Pull Backward (Wi) /* net : Wi */

IF net Wi not marked as forward done DO

FOR all outputs Wj of gate Gk driven by net Wi DO

Pull Backward (Wj);

END FOR;

FOR all inputs Wj of gate Gk driving net Wi DO

ECWj
= ECWj

S
f(POu; Xv) j (POu; Xv) 2 ECWi

and(fWi
(Xv); fWj

(Xv)) 2 PROP (Gk;Wj;Wi)g

END FOR;

mark net Wi as forward done;

END IF;

END;

The implementation of the EC-algorithm can be
done implicitly for all input patterns or explicitly for
one pattern at a time. The explicit approach comple-
ments a simulation based veri�cation method by an
additional step of backward-simulatingmismatched in-
put patterns. The implicit approach can be done by
a BDD-based implementation of the set operations for
simultaneously back propagating all mismatched in-
put patterns. The corresponding Boolean expressions
for the \gate-�lter" PROP (Gk;WI ;WO) are given in
the third column of �gure 4. For implementation pur-
poses, to distinguish between mismatched patterns of
di�erent counter examples, additional output speci�c
BDD-variables must be inserted.

Theorem: If F (x) is the functional speci�cation of
some incorrect design N , then the EC-algorithm com-
putes the error coverage ECWi

for the internal nets of
N (see[9] for detailed proof).

4 Transistor-Level Error Diagnosis

Algorithms for formally verifying the correctness of
a CMOS implementation versus its gate-level speci�ca-
tion are usually based on a switch-level interpretation
of the transistor circuit [10, 11, 12]. Such approaches
check the static equivalence of the function without
considering the timing or delay dependent behavior of
the circuit. A common approach is to �rst extract
a functionally equivalent Boolean network from the
transistor-level design, and then prove the correctness
of the Boolean network against the gate-level speci�-
cation.

In the following, we informally summarize the
extraction procedure of the Boolean network from
transistor-level designs and demonstrate the applica-
tion of the described diagnosis technique. To sim-
plify the discussion, and to focus on the main idea of
transistor-level error diagnosis, we exclude both ratio-
logic (i.e. MOS circuits where the function depends
on the strength ratio of certain transistors) and com-
binatorial loops from consideration. In contrast to the
gate-level model presented in section 2, we relax the
de�nition of a net to include connections with multiple
fanouts.

The extraction of the equivalent Boolean network
from a CMOS design is based on functional nets in
the transistor circuit. These nets include all primary
inputs, primary outputs and the nets which control
gates of MOS transistors. The extraction procedure

assigns two Boolean functions f1 and f0 to each func-
tional net. f1 and f0 de�ne the cases for which the
net is logically 1 and 0, respectively. Consider the erro-
neous CMOS circuit of �gure 5 for which �gure 6 gives
the corresponding Boolean network. Nets a; b; c; s; and
y establish the set of functional nets because they are
either circuit terminals or drive some transistor gate.
The corresponding nets in the Boolean representation
are marked as a0; a1; b0; b1; c0; c1; y0; and y1. In con-
trast, d and e (�gure 5) are not functional nets and
therefore they have no counter part in the Boolean
network.

2

e

d

} 65 109

10

10

4

3

9

9

8

2

8

7

6

5

3

2

c

10

8

9

7

6

5

4

3

2

y

s

b

a
t1

t

t

t

tt

t
t

t

t

P }, t7= {t

1= {t7 , t1}P

= {t , t1}P

P }, t= {t

= {t , t }P

P = {t

= {tP }, t

, t }

3

4

P = {t = {t }P

= {t , t }P4 8

Figure 5: Erroneous multiplexer implementation (in-
correct transistor type for t8).

8

6

2

7

3

01CEX = {(y , 0 1 1), (z, 1 0 1), (z, 0 1 1), (y , 1 0 1)}

9

10

5

6

0

0

z

z

0

1

0

1

0

0

1

0

1

c

c

s

b

b

a

a

z

y

y

s

b

a

1

1

yF

yf

1

0

0

1

1000 11 01
ab

s

F

f

1

0

0

1

1

0

0

1

fy

Fy

t

t

P

P

s1

t7

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t

1

1

8

9
3

3
10

7
2

2
8

9
4

4
10

P

P

P

P

P

P

P

P1

5

4

Figure 6: Equivalent Boolean network for circuit of
�gure 5 (highlighted nets cover all counter examples).

For each primary input, both polarities of the cor-
responding input variable are assigned to f1 and f0

(e.g. a1 = a; a0 = a). For primary outputs and inter-
nal nets, the ON-sets of f1 and f0 describe the set of

input patterns for which the net is driven by V DD and
GROUND, respectively. In other words, f1(Xi) = 1
means that there is a path of interconnected transistors
from that net to V DD such that all transistors are con-
ducting if pattern Xi is applied at the circuit inputs.
In a similar manner f0(Xi) = 1 denotes some path to
GROUND. The equivalent of a path in the transistor
circuit is an AND gate in the Boolean network. The
AND inputs are driven by the gate functions f1 (for
NMOS) or f0 (for PMOS) of the corresponding path
transistors. The AND outputs of all paths driving a
net to V DD or GROUND are collected by OR-gates
to generate f1 or f0, respectively.

The circuit of �gure 5 contains ten paths, eight dri-
ving net y and two driving net c. For example, path
P1 drives y by V DD if transistors t1 and t7 are con-
ducting. As shown in �gure 6, the AND of path P1
is fed by a0 for t1 and c1 for t7, which are PMOS
and NMOS transistors, respectively. Consider that the
given multiplexer example (�gure 5) is incorrectly im-
plemented where t8 is an NMOS transistor, instead of a
PMOS. This error causes the two paths P3 = ft8; t1g
and P4 = ft8; t2g to be activated by the wrong po-
larity of input s. In the Boolean representation, this
error is reected by connecting the input of both paths
AND's, P3 and P4, to s1 instead of s0. Note that for
this particular example, a single error in the transistor
circuit causes two errors in the corresponding Boolean
network.

The veri�cation step proves the correct implemen-
tation of the circuit outputs against a given speci�-
cation. f1 and f0 of each output must be compared
against both polarities F 1 and F 0 of their speci�ed
function, respectively. For the multiplexer output y,
�gure 6 shows the implemented functions fy1 and fy0

and their speci�cation Fy1 and Fy0 . The mismatched
input patterns are (011) and (101), respectively.

In addition to the comparison of the circuit outputs,
a set of consistency checks can be formulated for each
functional net. For example, if the designer is using
a circuit technique which excludes the application of
ratio-logic, the intersection of f1 and f0 detects colli-
sions where the net is driven simultaneously by V DD
and GROUND. Similarly, the union of both functions
could identify conditions for which a net is oating,
i.e. not driven by V DD or GROUND. These checks
can directly be mapped into some Boolean structure
providing additional test points. For the example in
�gure 6, output z computes the intersection of fy1
and fy0 , �nding collisions for input patterns (011) and
(101). Typical design errors often cause violations of
these consistency checks at many internal nets. This
results in a large amount of additional counter exam-
ples which signi�cantly improves the discrimination
capability of the presented diagnosis technique.

The presented EC-algorithm was applied to the
Boolean network for the four counter examples
CEX = f(y1; 011); (z; 101); (z; 011); (y0; 101)g. As a
result only two nets cover all counter examples. These
nets and their counter parts in the original transistor
circuit are highlighted in �gure 6 and �gure 5, respec-
tively. Note that the extraction and diagnosis algo-

design cone intersection EC-algorithm
transistors / # inputs / # suspicious # suspicious rel. area add. memory add. CPU

nets # outputs nets nets % kByte sec.
e1 900 / 454 194 / 64 47 5 1.1 131 3.62
e2 74 / 81 10 / 33 4 3 3.7 0 0.1
e3 346 / 259 68 / 68 3 3 1.2 0 0.2
e4 718 / 505 80 / 65 30 15 3.0 0 0.3
e5 134 / 77 8 / 2 20 7 9.1 0 0.2
e6 11254 / 3510 383 / 487 120 4 0.1 0 4.8
e7 915 / 486 163 / 3 9 3 0.6 0 1.9
e8 10948 / 3354 383 / 332 90 1 0.03 0 5.23
e9 5296 / 2031 312 / 26 685 3 0.15 33145 690.0
e10 2636 / 1430 175 / 61 56 4 0.3 0 1.1
e11 1016 / 676 64 / 18 54 10 1.5 2097 50.0
e12 12851 / 4628 258 / 66 638 19 0.4 43147 1567.0

Table 1: Diagnosis results for single errors.

rithms work directly on the transistor circuit by inter-
preting it according to the equivalent Boolean network.
Therefore, the inputs t8 for the paths AND gates P3
and P4 are not distinguished and treated as one net.
This enables the diagnosis algorithm to exactly iden-
tify the erroneous gate-connection of t8 and net s1.

5 Results

The EC-algorithm is part of a BDD-based veri�ca-
tion system, VERITY, which is being used for CMOS
processor designs within IBM. To evaluate the diag-
nosis capabilities of the presented approach, random
errors were introduced into a set of industrial CMOS
circuits of varying complexity. First, the veri�cation
step generates the complete set of counter examples.
Next, the EC-algorithm is applied to back propagate
these counter examples into the network. Based on the
size of the resulting error coverage at internal nets, and
depending on the number of assumed error locations,
circuit regions are identi�ed which contain at least one
error.

The �rst experiment evaluates the discrimination
capabilities for single errors. For each circuit example,
a single randomly chosen net was manipulated by ei-
ther connecting it to a di�erent source or setting it to
a constant value. Table 1 summarizes the results. We
de�ne a suspicious net as one which is possibly caus-
ing an error. The column titled \cone intersection"
reports the size of the input cone intersection of all
erroneous outputs (including test points). For single
errors the intersection provides the set of nets which
must contain the error. In some cases (e.g. e2 or e3)
this method gives a tight bound, producing only few
nets. However, it is more typical for the cone inter-
section to result in a considerably large fraction of the
whole circuit (e.g. e9 or e12).

The right portion of the table summarizes the per-
formance for the EC-algorithm. As shown, the num-
ber of resulting nets in the suspicious circuit region is
signi�cantly smaller than the input cone intersection.
The average size of the error region comprises 1.8% of
the whole circuit; for most examples it is below 3%.
Note that larger circuit examples produce a relatively
smaller number of suspicious nets.

The reported numbers for memory usage and CPU
time (IBM RS6000, Model 340) consider only the re-
sources for the diagnosis algorithm. A memory usage
of 0 indicates that no additional BDD-nodes were al-
located by the EC-algorithm, and hence a maximum
reusage of existing BDD-nodes from the veri�cation
part. Other examples (e.g. e9 and e12) demand a
signi�cantly large amount of new BDD-nodes as well
as CPU time for the BDD-operations. This increase
is caused by the ordering of the BDD-variables. In
the implementation, the ordering is optimized for the
extraction of the output functions only and does not
consider the operations for back propagating error pat-
terns. We expect that in future implementations tech-
niques for dynamically changing the variable ordering
[13] will reduce this problem.

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
er

ro
r

co
ve

ra
ge

 (
E

C
)

Nets

1 error
2 errors
4 errors
8 errors

contains at least
one error

Figure 7: Histogram for the error coverage of example
e6 (table 1).

The second experiment illustrates the distribution
of the error coverage for varying numbers of errors.
The EC-algorithm was applied to example e6 contain-
ing one, two, four, and eight randomly introduced er-
rors. Figure 7 shows the histogram for the error cov-

erage of all 3510 nets. For example, in case of a single
error, 4 nets have an error coverage of 100%, 9 nets
cover more than 99%, 11 nets more than 91%, etc. As
expected, as the errors increase, the distribution of the
error coverage becomes atter resulting in an increas-
ing number of nets in the suspicious circuit region. Ac-
cording the second corollary, for an assumed number
of errors, we can identify some part of the circuit which
must contain at least one of them. For each EC dis-
tribution, the \�" denotes the identi�ed circuit region
which must contain at least one of the errors. For the
one, two, four, and eight errors, this region comprises
4, 13, 39, and 133 out of 3510 nets, respectively; still a
small fraction of the overall network. This clearly illus-
trates that even for multiple errors, the EC-algorithm
provides a valuable debugging aid for the designer.

6 Conclusion

This paper describes a technique for locating design
errors in incorrectly implemented circuits. As com-
pared to previous approaches, the proposed method
is independent of prede�ned error models and is not
restricted to errors which are correctable in terms of
given correction templates. The algorithm is based
on a single e�cient network traversal for back propa-
gating mismatched input patterns from erroneous out-
puts.

The resulting error coverage at internal nets of the
circuit provides an upper bound for the identi�cation
of nets whose reimplementation can correct the design.
Practical experiments demonstrate that for single oc-
currences of design errors this bound is tight, produc-
ing only one or few nets as possible error candidates.
Results show that, even for multiple errors, the size of
the identi�ed region which contains at least one error is
su�ciently small, providing a valuable debugging aid
in practical design environments.

This paper has mainly focused on error diagno-
sis for transistor-level designs. Nevertheless, the pro-
posed technique is equally applicable to complement
other gate-level error correction techniques. The pre-
sented method provides a strong selection mechanism
for reducing the set of possible error candidates, which
is more general and faster than prior preselection
schemes. Since the resulting number of error candi-
dates is small, more expensive and complex correction
algorithms can be applied.

Acknowledgements

The authors would like to thank Geert Janssen from
the Technical University Eindhoven for providing his
BDD-package and Victor Rodriguez from IBM for his
technical support. Additional thanks are extended to
IBM designers Christopher Durham and David Appen-
zeller for contributing circuit examples.

References

[1] R. E. Bryant, \Graph-based algorithms for Boolean
function manipulation," IEEE Transactions on Com-

puters, vol. 35, pp. 677{691, August 1986.

[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland, \Logic
design veri�cation via test generation," IEEE Trans-

actions on Computer-Aided Design, vol. 7, pp. 138{

148, January 1988.

[3] J. Jain, J. Bitner, D. S. Fussel, and J. A. Abraham,
\Probabilistic design veri�cation," in Digest of Tech-

nical Papers of the IEEE International Conference on

Computer-Aided Design, pp. 468{471, IEEE, Novem-
ber 1991.

[4] J. C. Madre, O. Coudert, and J. P. Billon, \Automat-

ing the diagnosis and the recti�cation of design errors

with PRIAM," in Digest of Technical Papers of the

IEEE International Conference on Computer-Aided

Design, pp. 30{33, IEEE, November 1989.

[5] P.-Y. Chung, Y.-M. Wang, and I. N. Hajj, \Diagnosis

and correction of logic errors in digital circuits," in
Proceedings of the 30th ACM/IEEE Design Automa-

tion Conference, (Dallas, TX), pp. 503{508, IEEE,

June 1993.

[6] H.-T. Liaw, J.-H. Tsaih, and C.-S. Lin, \E�cient
automatic diagnosis of digital circuits," in Digest of

Technical Papers of the IEEE International Confer-

ence on Computer-Aided Design, pp. 464{467, IEEE,
November 1990.

[7] M. Tomita and H.-H. Jiang, \An algorithm for locat-

ing logic design errors," in Digest of Technical Papers

of the IEEE International Conference on Computer-

Aided Design, pp. 468{471, IEEE, November 1990.

[8] I. Pomeranz and S. M. Reddy, \On diagnosis and cor-

rection of design errors," in Digest of Technical Papers

of the IEEE International Conference on Computer-

Aided Design, (Santa Clara, CA), pp. 500{507, IEEE,

November 1993.

[9] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P.

LaPotin, \Error diagnosis for transistor-level veri�-
cation," Tech. Rep. Computer Science, RC 19219

(#83668), IBM Research Division, T. J. Watson Re-

search Center, Yorktown Heights, NY 10598, October
1993.

[10] G. Ditlow, W. Donath, and A. Ruehli, \Logic equa-
tions for MOSFET circuits," in Proceedings of the

IEEE International Symposium on Circuits and Sys-

tems, (Newport Beach, CA), pp. 752{755, IEEE, May

1983.

[11] R. E. Bryant, \Boolean analysis of MOS circuits,"

IEEE Transactions on Computer-Aided Design, vol. 6,

pp. 634{649, July 1987.

[12] D. T. Blaauw, D. G. Saab, P. Banerjee, and J. A.
Abraham, \Functional abstraction of logic gates for

switch-level simulation," in Proceedings of The Euro-

pean Conference on Design Automation, (Amsterdam,

The Netherlands), pp. 329{333, IEEE, February 1991.

[13] R. Rudell, \Dynamic variable ordering for ordered bi-

nary decision diagrams," in International Workshop

on Logic Synthesis, (Tahoe City, CA), pp. 3a{1{3a{
12, May 1993.

