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ERROR ESTIMATES AND CONVERGENCE RATES

FOR THE STOCHASTIC HOMOGENIZATION

OF HAMILTON-JACOBI EQUATIONS

SCOTT N. ARMSTRONG, PIERRE CARDALIAGUET,
AND PANAGIOTIS E. SOUGANIDIS

1. Introduction

We consider the Hamilton-Jacobi equation

uε
t +H

(
Duε,

x

ε
, ω
)
= 0 in Rd × (0,∞),(1.1)

where the Hamiltonian H = H(p, y, ω) is level-set convex and coercive in p and
depends on an element ω of an underlying probability space (Ω,F,P). If the action
of translation on Rd is stationary and ergodic with respect to the law of H, then,
as ε → 0, the solutions uε = uε(x, t, ω) of (1.1), subject to appropriate initial
conditions, converge P-almost surely to the solution u of the deterministic equation

ut +H(Du) = 0 in Rd × (0,∞)(1.2)

with the same initial conditions, where the effective Hamiltonian H is level-set con-
vex, continuous, and coercive. This fundamental theorem concerning the qualita-
tive theory of stochastic homogenization of Hamilton-Jacobi equations was proved
for convex Hamiltonians by one of the authors [32] (see also Rezakhanlou and
Tarver [31]) and, more recently, by two of the authors [4] in the generality dis-
cussed here.

In this paper, we present the first quantitative homogenization results for
Hamilton-Jacobi equations in the stochastic setting. Throughout the paper we
assume that the Hamiltonian H = H(p, y, ω) satisfies a finite range dependence
hypothesis (a continuum analogue of “i.i.d.”) in its spatial dependence. This es-
sentially means that, for some fixed distanceD > 0, the values ofH(p, y, ·) for y ∈ E
are independent of those for y ∈ F provided that dist(E,F ) > D. (Obviously we
lose no generality by taking D = 1.)

By a novel integration of probabilistic and PDE techniques, we (i) obtain explicit
estimates showing the probability of |uε(x, t, ω)− u(x, t)| > λ decays exponentially
in λ2, and (ii) identify a necessary and sufficient condition for the almost sure,
local uniform convergence uε → u to proceed at an algebraic rate O(εα). The main

Received by the editors June 13, 2012 and, in revised form, July 4, 2013.
2010 Mathematics Subject Classification. Primary 35B27, 35F21, 60K35.
Key words and phrases. Stochastic homogenization, error estimate, convergence rate,

Hamilton-Jacobi equation, first-passage percolation.
The first author was partially supported by NSF Grant DMS-1004645.
The second author was partially supported by the French National Research Agency ANR-12-

BS01-0008-01.
The third author was partially supported by NSF Grant DMS-0901802.

c©2014 American Mathematical Society
Reverts to public domain 28 years from publication

479

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/jams/
http://www.ams.org/jams/
http://www.ams.org/jourcgi/jour-getitem?pii=S0894-0347-2014-00783-9


480 S. N. ARMSTRONG, P. CARDALIAGUET, AND P. E. SOUGANIDIS

results, including the precise assumptions, are stated in the next section. They
essentially give the error estimates

−O
(
ε

1
8−δ

)
≤ uε − u ≤ O

(
ε

1
5−δ

)
for all δ > 0(1.3)

for the homogenization of (1.1), where the first inequality depends on a supplemen-
tal assumption on the law of H.

The difficulty in obtaining estimates on the fluctuations of uε(x, t, ·)− u(x, t) is
due in part to the fact that the dependence of uε on H is highly singular. Under-
standing how the solutions depend on the random environment is very challenging.
Difficulties of a similar nature occur, for example, in the theory of first passage
percolation (see Kesten [18] and Alexander [1]) and in the study of the fluctua-
tions of the Lyapunov exponents for Brownian motion in Poissonian potentials (see
Sznitman [33] and Wüthrich [36]). As far as we know, the only previous result on
the oscillations of solutions of Hamilton-Jacobi equations in random media is found
in the work of Rezakhanlou [30], who gave structural conditions on H in dimension
d = 1 in which a central limit theorem holds. Such phenomena are not expected to
appear in any dimension d ≥ 2 (see Remark 4.3).

Our arguments rely crucially on adaptations of some of the probabilistic tech-
niques of [1,18], which are based on Azuma’s inequality and the martingale method
of bounded differences. This connection between first-passage percolation and the
stochastic homogenization of (1.1), made explicit for the first time in this paper
(as far as we know), arises naturally from an analogy between the passage time in
percolation and solutions of the metric problem (see Remark 3.2 below). Using ar-
guments inspired from [1,18], we prove exponential error estimate and obtain rates
of convergence for the homogenization of the metric problem. Then, by quantifying
the new proof of homogenization recently introduced by two of the authors [4], we
transform the estimates for the metric problem into error estimates for the approx-
imate cell problem (see (1.4) below).

The rate of convergence of periodic homogenization of Hamilton-Jacobi has been
understood for some time and goes back to the work of Capuzzo-Dolcetta and
Ishii [8], who proved that uε and u differ by at most O(ε

1
3 ). The periodic setting

is much simpler to understand due to the fact that the cell problem has periodic
solutions; that is, exact correctors exist. A quantitative version of the classical
perturbed test function proof of homogenization due to Evans [12, 13] then yields
the convergence rate. Our main results stated in Section 2 do not encompass the
periodic or almost periodic settings, since obviously an almost periodic function
cannot be embedded into the random setting in such a way that it satisfies a finite
range of dependence condition. However, as we show, our arguments yield a uniform
rate of convergence in the almost periodic setting (see Section 8).

In the stochastic environment, the situation is not only much more complicated
but also qualitatively different from the periodic setting. It is, therefore, necessary
to devise a new strategy, since the usual proof of periodic homogenization, which is
based on exact correctors and can be quantified to yield a rate, does not generalize
to random environments. Indeed, as Lions and Souganidis [22] demonstrated with
an explicit example, exact correctors do not exist, in general, for stochastic Hamilto-
nians. The only known proofs of the qualitative homogenization of Hamilton-Jacobi
equations in the stationary ergodic setting are based on an application of the sub-
additive ergodic theorem to certain subadditive quantities (e.g., the mμ’s below)
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ERROR ESTIMATES AND CONVERGENCE RATES 481

and then showing that these quantities control, in an appropriate way, the solu-
tions of (1.1). In order to obtain a convergence rate for the homogenization, one
is therefore left with the two-fold task of quantifying both the limits given by the
subadditive ergodic theorem as well as the precise way in which the subadditive
quantities control the solutions of (1.1). The former must necessarily be handled
by probabilistic methods and the latter by PDE methods.

These are not mere technical difficulties. It turns out that, in the stochastic
setting, the magnitude of the fluctuations of the solutions uε about their limit u
must be separated into two distinct regimes, which we refer to as ballistic and sub-
ballistic, respectively (this terminology is borrowed from the probability literature,
see, for example, Sznitman [34]). Intuitively, in the ballistic regime, the solutions
are able to “feel” the random environment sufficiently quickly as ε → 0. Then the
mixing of the medium dominates, which results in an algebraic convergence rate. In
the sub-ballistic regime, the dependence of the solutions on H is highly localized in
the vicinity of points y in which H(p, y, ω) is close to its essential supremum. It is
therefore the law of H(p, 0, ·) near its essential supremum that principally governs
the rate at which homogenization occurs, and this rate may be arbitrarily slow
without a further assumption on the law.

To give a more detailed overview of the approach, we start from the approximate
cell problem

(1.4) δvδ +H(p+Dvδ, y, ω) = 0 in Rd,

which, for each fixed p ∈ Rd and δ > 0, admits a unique bounded, uniformly
continuous solution vδ = vδ(y, ω ; p). The introduction of (1.4) in the context of
the homogenization of Hamilton-Jacobi equations goes back to the original proof of
periodic homogenization due to Lions, Papanicolaou, and Varadhan [21]. It is well
known by now (see, e.g., [3]) that the homogenization of (1.1) to (1.2) is equivalent
to (and the effective Hamiltonian H can be identified by) the limit

(1.5) lim
δ→0

−δvδ(0, ω ; p) = H(p) P-a.s.

Moreover, this equivalence is easy to quantify in the sense that an error estimate
or convergence rate for (1.5) can be transformed into one for homogenization. We
are therefore left with the task of quantifying the limit in (1.5).

The intuitive reason for the difficulty of arguing directly for the limit (1.5) in
the random case is the complicated dependence of the vδ’s on H, which is both
singular (information propagates only along characteristics and does not spread
out) and global (information may travel far away in space, which is compounded by
the lack of compactness). This problem is overcome in the stochastic setting by (i)
imposing some kind of convexity assumption on H and (ii) using the subadditive
structure of the metric problem (or its time-dependent analog) to obtain an almost
sure limit via the subadditive ergodic theorem. A comparison argument (introduced
in [3,4]) then yields that, in the ballistic regime (p’s satisfying H(p) > minH), the
metric problem controls the limiting behavior of the δvδ(0, ω ; p) as δ → 0. In the
sub-ballistic regime, i.e., for p’s belonging to the “flat spot” {H(·) = minH}, the
limiting behavior of the δvδ is driven primarily by the law of H(p, 0, ·) near its
essential supremum, as mentioned above, and it turns out to be the thickness of
the tail of this distribution which governs the rate of homogenization.
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482 S. N. ARMSTRONG, P. CARDALIAGUET, AND P. E. SOUGANIDIS

We continue by introducing the metric problem: for each fixed μ larger than a
certain constant, which turns out to be minH , x ∈ Rd, and ω ∈ Ω, there exists a
unique nonnegative continuous solution mμ = mμ(·, x, ω) : Rd → R of

(1.6) H(Dmμ, y, ω) = μ in Rd\{x} and mμ(x, x, ω) = 0.

In terms of control theory, the quantity mμ(y, x, ω) corresponds to a “cost” of
transporting a particle from x to y in the medium ω. It thus has the properties
of a metric and is analogous to the time constant in first-passage percolation (see
Remark 3.2).

The mμ(·, x, ω)’s are the maximal subsolutions of H(Dw, y, ω) ≤ μ in Rd subject
to w(x) = 0, and this implies a subadditivity property. An easy application of the
subadditive ergodic theorem (see [4]) then yields the existence of mμ ∈ C(Rd) such
that

(1.7) lim
t→∞

t−1mμ(ty, 0, ω) = mμ(y) P-a.s.

The deterministic mμ can be identified as the unique nonnegative solution of

H(Dmμ) = μ in Rd\{0} and mμ(0) = 0,

and this provides another way of identifying H, one level set at a time. (See
Subsection 3.3 for more information.)

The existence and some basic properties of the mμ(·, x, ω)’s have been known
for some time (see, for example, Lions [20]). More recently a simple comparison
argument was introduced in [4] which demonstrated that the mμ(·, x, ω)’s control
the δvδ(·, ω ; p)’s from below for every p ∈ Rd, and from above for p’s in the ballistic
regime. It follows from this analysis that the limit (1.7) implies the homogeniza-
tion of (1.1). As we show here, this argument is constructive in the sense that a
quantitative rate for the convergence of (1.7) implies a rate for (1.5).

The main advantage of the metric problem is that it is localized. Indeed, while
changes in the medium may influence the value of δvδ at far away points, the
quantity mμ(y, x, ω) depends only on the values of H(p, z, ω) for z’s satisfying
mμ(z, x, ω) ≤ mμ(y, x, ω), which is a bounded set with a diameter proportional
to |y − x|. This localization (see Lemma 3.4 and (3.25) below) permits us to use
the independence of the medium by way of the martingale method of bounded
differences and an application of Azuma’s concentration inequality in a similar
manner as in first-passage percolation [18].

In addition to quantifying the limit in (1.7) and hence in (1.5) for p’s in the
ballistic regime (and obtaining an almost sure, algebraic rate of convergence), we
identify a necessary and sufficient condition (see (2.11) below) for an algebraic rate
of convergence to hold for p’s in the sub-ballistic regime. This follows from a direct
analysis of the vδ’s using explicit comparison arguments. Merging the results for the
ballistic and sub-ballistic regimes then yields, under assumption (2.11), an algebraic
rate for (1.5) for all p’s.

We remark that we do not expect our arguments to yield sharp error estimates
or convergence rates for homogenization. Indeed, as we explain in Remark 4.3, this
is related to outstanding conjectures on the fluctuations of the time constant in
first-passage percolation. It is likely that the exponent in the rate of convergence
convergence improves in higher dimensions, as is expected in first-passage percola-
tion, although proving a rigorous statement to this effect seems out of reach.
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As mentioned above, the periodic homogenization of Hamilton-Jacobi equations
was proved in [21]. This was simplified in [12] and subsequently extended to al-
most periodic media by Ishii [17]. The stochastic homogenization of convex first-
order Hamilton-Jacobi equations was first proved in [31,32] and, for viscous convex
Hamilton-Jacobi equations, by Lions and Souganidis [23] and Kosygina, Rezakhan-
lou, and Varadhan [19]. Lions and Souganidis [22] obtained results on the existence
and nonexistence of correctors in the random setting and introduced in [24] a more
direct proof of homogenization in probability. Later, more direct proofs of almost
sure homogenization, based on the metric problem, were given in [3, 4].

The metric problem has been used by Davini and Siconolfi [10,11] to study some
connections between the stochastic homogenization of Hamilton-Jacobi equations
and weak KAM theory and, for periodic H’s with special structure, by Oberman,
Takei, and Vladimirsky [29] and Luo, Yu, and Zhao [25] in order to implement
efficient numerical schemes for computing H .

Outline of the paper. In the next section we give the precise assumptions and
the statement of the main results. In Section 3 we review some preliminary results
needed in our arguments. Controlling the fluctuations of the metric problem is the
topic of Section 4 and in Section 5 we control its statistical bias. These estimates
are combined with comparison arguments in Section 6 to obtain corresponding
bounds for the approximate cell problem in the ballistic regime. The sub-ballistic
regime is studied in the second part of Section 6, where we produce error estimates
under an auxiliary hypothesis on the law of H as well as examples demonstrating
that, without such a hypothesis, the rate may be arbitrarily slow. We complete
the proof of the error estimates in Section 7 and give convergence rate for the
homogenization of the time-dependent problem (1.1). Finally, in Section 8 we
discuss the convergence rates of the homogenization of (1.4) and (1.1) in almost
periodic media. In the appendices we summarize the fundamentals of the metric
and approximate cell problems.

Notation and conventions. The symbols C and c denote positive constants
which may vary from line to line and, unless otherwise indicated, depend only on the
assumptions for H and other appropriate parameters (often an upper bound for |p|
or μ). For s, t ∈ R, we write s∧t := min{s, t} and s∨t := max{s, t}. We denote the
d-dimensional Euclidean space by Rd, Qd is the set of elements of Rd with rational
coordinates, N is the set of natural numbers and N∗ := N\{0}. For each y ∈ Rd, |y|
denotes the Euclidean length of y. If E ⊆ Rd, then |E| is the Lebesgue measure of
E, intE the interior of E, E the closure of E and convE the closure of the convex
hull of E. For r > 0, we set B(y, r) := {x ∈ Rd : |x−y| < r} and Br := B(0, r). The
distance between two subsets U, V ⊆ Rd is dist(U, V ) = inf{|x−y| : x ∈ U, y ∈ V }.
If f : E → R then we denote oscE f := supE f − infE f . If K is a finite set, then
|K| is the number of elements of K. The set of Lipschitz functions on a set U ⊆ Rd

is written Lip(U) = C0,1(U) and we set L := Lip(Rd). The set of bounded and uni-
formly continuous real-valued functions on a metric space Y is denoted BUC(Y ),
and USC(Y ) and LSC(Y ) are respectively the sets of real-valued upper and lower
semicontinuous functions on Y . The Borel σ-field on Rd is B. If G1 and G2 are σ-
fields on sets X1 and X2, respectively, then G1 ⊗G2 denotes the σ-field on X1 ×X2

generated by G1×G2. For a probability space (Ω,F,P), we say that an event A ∈ F

is of full probability if P[A] = 1. We denote the indicator random variable of A ∈ F
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484 S. N. ARMSTRONG, P. CARDALIAGUET, AND P. E. SOUGANIDIS

by �A. If X is a random variable and G ⊆ F is a σ-field, then E [X|G] denotes the
conditional expectation of X with respect to G.

Throughout this paper all differential inequalities are taken to hold in the vis-
cosity sense. Readers not familiar with the fundamentals of the theory of viscosity
solutions may consult standard references such as [6, 9].

2. The assumptions and the statement of the main results

We introduce our hypotheses and state the main results of the paper.

2.1. The hypotheses. Let (Ω,F,P) be a probability space endowed with a group
(τy)y∈Rd of F-measurable, measure-preserving transformations τy : Ω → Ω. That

is, we assume that, for every x, y ∈ Rd and A ∈ F,

(2.1) P[τy(A)] = P[A] and τx+y = τx ◦ τy.
The Hamiltonian H : Rd × Rd × Ω → R is assumed to be measurable with respect
to B ⊗ B ⊗ F. We write H = H(p, y, ω) and require that H be stationary in its
dependence on (y, ω) with respect to the translation group (τy)y∈Rd , that is, we

assume that, for every p, y, z ∈ Rd and ω ∈ Ω,

(2.2) H(p, y, τzω) = H(p, y + z, ω).

In order to state the finite range of dependence assumption, which means roughly
that H is “i.i.d.” in its spatial dependence, we define, for each V ∈ B, the following
σ–algebra on Ω:

G(V ) := σ–algebra generated by the random variables ω �→ H(p, x, ω),

with p ∈ Rd, x ∈ V .

We may also suppose without loss of generality that F = G(Rd). The finite range
dependence hypothesis is then the requirement that, for every V,W ∈ B,

(2.3) dist(V,W ) ≥ 1 implies that G(V ) and G(W ) are independent.

Of course, this implies that the group (τy)y∈Rd is ergodic, but is much stronger.

We continue with other structural hypotheses on H. We assume, for each R > 0,
that the family

(2.4) {H(·, ·, ω) : ω ∈ Ω} is precompact in C(BR × Rd)

and

(2.5) {H(·, x, ω) : ω ∈ Ω, x ∈ Rd} is bounded in C0,1(BR).

We also require that H is uniformly coercive in p, that is,

(2.6) lim
|p|→∞

ess inf
ω∈Ω

H(p, 0, ω) = +∞.

We assume that H is slightly more than level-set convex in p. Precisely, we assume
that there exists Λ : R×R → R, which is nondecreasing in each variable, such that,
for all μ, ν ∈ R,

(2.7) Λ(μ, ν) ≤ μ ∨ ν and Λ(μ, ν) < μ ∨ ν if ν = μ,

and that H satisfies, for all p, q, y ∈ Rd and ω ∈ Ω,

(2.8) H
(
1
2 (p+ q), y, ω

)
≤ Λ

(
H(p, y, ω), H(q, y, ω)

)
.

Of course, H is convex if and only if (2.8) holds with Λ(μ, ν) = 1
2 (μ+ ν).
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We also make the following assumptions regarding the shape of the level sets of
H: for every p, y ∈ Rd and ω ∈ Ω:

(2.9) H(p, y, ω) ≥ H(0, y, ω) and ess sup
ω∈Ω

H(0, 0, ω) = 0.

From the point of view of optimal control theory, the fact that there is a common
p0 for all ω at which H(·, 0, ω) attains its minimum provides some “controllability,’,
i.e., upper and lower bounds on the length of optimal paths. We lose no generality
by assuming p0 = 0 and ess supω∈Ω H(0, 0, ω) = 0. From our point of view, (2.9)
controls the growth of the mμ’s (see (3.8) below).

With the exception of Section 8, the hypotheses (2.1)–(2.9) described above are
in force throughout the paper. For ease of reference, we write

(2.10) (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), and (2.9) hold.

Some of our results are proved under an extra assumption on the distribution
of H(0, 0, ·) near its maximum. Precisely, this extra hypothesis is that there exist
θ ≥ 0 and c > 0 such that, for every 0 < λ ≤ c,

(2.11) P [H(0, 0, ·) > −λ] ≥ cλθ.

In light of (2.9), we see that, roughly speaking, (2.11) is a requirement that the event
that H(0, 0, ·) is near its maximum is not too unlikely. For example, if H(0, 0, ·)
attains its maximum on a set of positive probability, then of course (2.11) holds for
θ = 0.

Throughout the paper, the quantification “for every ω ∈ Ω” is used exclusively
for deterministic statements. For assertions which holds P-almost surely (abbrevi-
ated as P-a.s. ) we may write, for example, “for every ω ∈ Ω1” where Ω1 ∈ F is a
specified event of full probability, i.e., P[Ω1] = 1.

2.2. The main results. Our first main result consists of error estimates for the
limit (1.7), which measure the likelihood that the quantity |mμ(y, 0, ω) − mμ(y)|
is large relative to |y|. The definition and basic properties of the metric prob-
lem (1.6) and its solutions mμ and mμ are reviewed in the next section. The proof
of Theorem 1 is completed in Section 5.

Theorem 1 (Error estimates for the metric problem). Assume (2.10) and fix K >
0. Then there exists C > 0, depending only on K and H, such that, for every
0 < μ ≤ K, λ > 0 and |y| > 1,

(2.12) P

[
mμ(y, 0, ·)−mμ(y) ≤ −λ

]
≤ exp

(
− μλ2

C|y|

)
,

and, if

(2.13) λ ≥ C

(
|y| 12
μ

3
2

+
|y| 23
μ

)(
log

(
1 +

|y|
μ

)) 1
2

,

then

(2.14) P

[
mμ(y, 0, ·)−mμ(y) ≥ λ

]
≤ exp

(
− μλ2

C|y|

)
.

The error estimates for the metric problem and a careful quantification of the
comparison arguments introduced in [4], together with an analysis of the conver-
gence on the flat spot under the additional assumption (2.11), yield the following
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error estimates for the limit (1.5). The basic properties of the solutions vδ of the
approximate cell problem (1.4) are outlined in the next section.

Theorem 2 (Error estimates for the approximate cell problem). Assume (2.10)
and fix K > 0. There exists C > 0, depending only on K and H, such that, for
every |p| ≤ K, we have:

(i) For every 0 < δ ≤ λ ≤ 1,

(2.15) P
[
−δvδ(0, · ; p) ≥ H(p) + λ

]
≤ Cδ−3d exp

(
− λ3

Cδ

)
.

(ii) If H(p) > 0 and 0 < δ ≤ λ ≤ 1 satisfy

(2.16) λ ≥ C
(
H(p)−

3
2 δ

1
2 +H(p)−1δ

1
3

) (
1 + | log δ|+ | logH(p)|

) 1
2 ,

then

(2.17) P
[
−δvδ(0, · ; p) ≤ H(p)− λ

]
≤ Cδ−3d exp

(
−H(p)λ2

Cδ

)
.

(iii) Assume also (2.11). There exists c > 0, depending on K and H, such that
if 0 < δ ≤ λ ≤ c satisfy

(2.18) λ ≥ Cδ
1
6 | log δ| 14 ,

then

(2.19) P
[
−δvδ(0, · ; p) ≤ H(p)− λ

]
≤ Cδ−3d exp

(
− 1

C

(
λ3

δ
∧ λd+θ

δd

))
.

By a covering argument and an application of the Borel-Cantelli lemma, the
error estimates contained in Theorem 2 yield P-almost sure, local uniform rates of
convergence for the limit (1.5).

Theorem 3 (A convergence rate for the approximate cell problem). Assume (2.10)
and fix K > 0. Then there exists an event Ω1 ∈ F of full probability and a constant
C > 0, depending on K and H, such that, for every |p| ≤ K and ω ∈ Ω1, the
following hold:

(i) For every R > 0,

(2.20) lim sup
δ→0

sup
y∈BR/δ

−δvδ(y, ω ; p)−H(p)

Cδ
1
3 | log δ| 13

≤ 1.

(ii) If H(p) > 0, then, for every R > 0,

(2.21) lim inf
δ→0

inf
y∈BR/δ

−δvδ(y, ω ; p)−H(p)

CH(p)−1δ
1
3 | log δ| 12

≥ −1.

(iii) If (2.11) holds and we set

(2.22) α :=
1

6
∧ d

d+ θ
and β :=

1

4
,

then, for every R > 0,

(2.23) lim inf
δ→0

inf
y∈BR/δ

−δvδ(y, ω ; p)−H(p)

Cδα| log δ|β ≥ −1.
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The previous two results are proved in Section 6, where we also give a converse to
Theorem 3(iii), which states that the extra assumption (2.11) is actually necessary
for an algebraic rate of convergence to hold at p = 0. Indeed, keeping in mind that
our assumptions imply that H(0) = 0, we prove in Proposition 6.7 roughly that,
if (2.11) is false, then for every exponent η > 0,

(2.24) lim inf
δ→0

−δvδ(0, ω ; 0)

δη
= −∞ P− a.s.

Furthermore, for any modulus function ρ, we construct examples of H’s satisfying
(2.10) for which

(2.25) lim inf
δ→0

−δvδ(0, ω ; 0)

ρ(δ)
≤ −1 P− a.s.

It is therefore necessary to impose, in addition to (2.10), some assumption on the
distribution of H(0, 0, ·) near its essential supremum in order to obtain a rate for
the limit (1.5) at p = 0.

We next present our main quantitative results for the homogenization of (1.1).
Here uε and u denote, respectively, the unique solutions of (1.1) and (1.2) subject
to the initial condition uε(·, 0) = u(·, 0) = u0 ∈ C0,1(Rd), which are bounded and
Lipschitz continuous on Rd × [0, T ] for each T > 0. We begin with exponential
estimates for the probability that |uε(x, t)− u(x, t)| is large.
Theorem 4 (Error estimates for homogenization). Assume (2.10) and fix K > 0.
Then there exists a constant C > 0, depending on K and H such that, for every
u0 ∈ C0,1(Rd) satisfying ‖u0‖C0,1(Rd) ≤ K and T ≥ 1, the following hold:

(i) For every 0 < ε ≤ 1 and λ ≥ Cε
1
3 ,

P

[
inf

x∈BT

inf
0≤t≤T

(uε(x, t, ·)− u(x, t)) ≤ −λT

]
≤ CT 6dλ9dε−6d exp

(
−Tλ5

Cε

)
.

(2.26)

(ii) If (2.11) holds, then, for every 0 < ε ≤ 1 and

(2.27) λ ≥ Cε
1
8 | log ε| 3

16 ,

P

[
sup
x∈BT

sup
0≤t≤T

(uε(x, t, ·)− u(x, t)) ≥ λT

]
(2.28)

≤CT 6dλ9dε−6d exp

(
− 1

C

(
Tλ5

ε
∧ T dλ3d+θ

εd

))
.

Our final main result is an almost sure, locally uniform, algebraic rate of con-
vergence for the homogenization of (1.1).

Theorem 5 (Convergence rate for homogenization). Assume (2.10) and fix K >
0. Then there exists an event Ω2 ∈ F of full probability and a constant C > 0,
depending on K and H, such that, for every ω ∈ Ω2 and u0 ∈ C0,1(Rd) with
‖u0‖C0,1(Rd) ≤ K, the following hold:

(i) For every T ≥ 1,

(2.29) lim inf
ε→0

inf
x∈BT

inf
0<t≤T

uε(x, t, ω)− u(x, t)

ε
1
5 | log ε| 15

≥ −CT.
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(ii) If (2.11) holds, α and β are as in (2.22) and we set

(2.30) a :=
α

1 + 2α
=

1

8
∧ d

3d+ θ
and b :=

β

1 + 2α
=

3

16
∨ d+ θ

4(3d+ θ)
,

then, for every T ≥ 1,

(2.31) lim sup
ε→0

sup
x∈BT

sup
0<t≤T

uε(x, t, ω)− u(x, t)

εa| log ε|b
≤ CT.

Remark 2.1. We discuss later the sharpness of the exponent a and b. Let us point
out for the moment that, in the special case that H is positively homogeneous of
order one in p, i.e., for every t ≥ 0, p, y ∈ Rd and ω ∈ Ω,

(2.32) H(tp, y, ω) = tH(p, y, ω),

condition (2.11) is clearly satisfied for θ = 0, and thus Theorem 5 gives a rate of

O
(
ε

1
8 | log ε| 3

16

)
for homogenization. Moreover, this rate can be improved since (2.32)

implies that H is also positively homogeneous of order one, or equivalently that
μ �→ mμ(y) is positively homogeneous of order one, that is, for all μ > 0, x, y ∈ Rd

and ω ∈ Ω,
mμ(y, x, ω) = μm1(y, x, ω).

Thus, the fluctuations of mμ −mμ are proportional to μ, and this prevents (2.14)
from degenerating as μ → 0. Indeed, we find that (2.14) holds for every λ > 0
satisfying

λ ≥ C2μ|y|
2
3 (log(1 + |y|))

1
2

instead of the more restrictive (2.13). This improvement may be propagated
throughout the rest of this paper to find that (2.23) holds for α = 1

3 and β = 1
2 ,

and (2.31) for a = 1
5 and b = 3

10 . A similar observation holds for Hamiltonians
which are positively homogeneous of any positive order and we expect that other
such improvements are possible for H’s with special structure.

2.3. Explicit examples. We illustrate the assumptions with two simple but typ-
ical classes of Hamilton-Jacobi equations:

H1(p, y, ω) =
1

2
|p|2 − V (y, ω) and H2(p, y, ω) = a(y, ω)|p|.

The former arises in problems in the calculus of variations and geometric optics,
for example, and the latter in front propagation. To ensure that (2.10) is satisfied,
we require a, V : Rd × Ω → R to be measurable, stationary with respect to the
action of the translation group, satisfy a finite range of dependence hypothesis, be
uniformly continuous and bounded in the first variable (uniformly in the second
variable) and nonnegative. We also require

(2.33) ess inf
ω∈Ω

V (0, ω) = 0

and that a(·, ω) is Lipschitz uniformly in ω and bounded below by a positive con-
stant. Observe that the more restrictive condition (2.11) is satisfied by H2 and for
H1 is equivalent to the existence of constants θ > 0 and c > 0 such that, for every
0 < λ ≤ c,

(2.34) P [V (0, ·) < λ] ≥ cλθ.

It is relatively easy to construct random potentials which do not satisfy (2.34); see
Subsection 6.3.
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We remark that the following Hamiltonian is not covered by our assumptions:

H ′
1(p, y, ω) =

1

2
|p|2 − p · b(y, ω).

Here b is a random vector field satisfying appropriate conditions, and the assump-
tion not satisfied is (2.9). We believe it would be very interesting to develop an
error analysis for stochastic homogenization for Hamiltonians like H ′

1 not satisfy-
ing (2.9). The difficulty from the point of view of our approach is that we lose
control on the rate of growth of the sublevel sets of mμ.

There are many ways of constructing of random functions like a, V, and b, above.
For example, one may consider a Poissonian point cloud, attaching a deterministic
bump function to every point and sum. Such a random function satisfies a finite
range of dependence if the bump function has compact support, and is called a
Poissonian potential. There are other possibilities such as “random checkerboards”
and so on, but we do not discuss these here.

3. Preliminaries

In this section we recall the basic properties of the metric problem and the
approximate cell problem and their connections to the effective Hamiltonian. We
conclude by giving the statement of some results needed in the sequel.

3.1. The metric problem: Basic properties. We summarize some elementary
facts concerning the functions mμ, which play a central role in the rest of the paper.
They are defined for each x, y ∈ Rd, μ ≥ 0, and ω ∈ Ω by

(3.1) mμ(z, x, ω) := sup
{
w(z)− w(x) : w ∈ L and H(Dw, y, ω) ≤ μ in Rd

}
.

Note that, due to (2.9), the zero function belongs to the admissible class, which is
therefore nonempty. Lemma A.1 and (2.6) yield that mμ(y, x, ω) is finite and, in
fact, nonnegative and bounded from above by C|y − x|, for some C > 0 depending
on an upper bound for μ.

It is immediate from (3.1) that mμ is measurable with respect to B ⊗ B ⊗ F,
since the expression on the right of (3.1) is. Moreover, from (3.1) and (2.2) we see
that mμ is jointly stationary in its first two variables, i.e., for every x, y, z ∈ Rd and
ω ∈ Ω,

(3.2) mμ(y, x, τzω) = mμ(y + z, x+ z, ω).

Also immediate from (3.1) (and the fact that a supremum of a family of viscosity
subsolutions is a viscosity subsolution, see [6,9]) is that the mμ(·, x, ω)’s are global
subsolutions of (A.2), i.e., for every μ ≥ 0, x ∈ Rd and ω ∈ Ω,

(3.3) H(Dmμ(·, x, ω), y, ω) ≤ μ in Rd.

Further properties of the mμ’s are recorded in the next proposition. Detailed proofs
of most of these facts can be found in [4]. In Appendix A we present sketches of
the arguments.

Proposition 3.1. For every μ ≥ 0 and ω ∈ Ω, the following hold:

(i) For each fixed x ∈ R, the function mμ(·, x, ω) is a solution of

(3.4) H(Dmμ(·, x, ω), y, ω) = μ in Rd\{x} and mμ(x, x, ω) = 0.

Moreover, if μ > 0, then mμ is the unique nonnegative solution of (3.4).
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(ii) If U ⊆ Rd is open, x ∈ Rd\U and u ∈ L is a subsolution of (A.2) in U ,
then

(3.5) u−mμ(·, x, ω) ≤ max
y∈∂U

(u(y)−mμ(y, x, ω)) in U.

(iii) For x, y, z ∈ Rd,

(3.6) mμ(y, x, ω) ≤ mμ(y, z, ω) +mμ(z, x, ω).

(iv) There exist lμ, Lμ ≥ 0 satisfying, for some C, c > 0 depending only on an
upper bound for μ,

(3.7) cμ ≤ lμ ≤ Lμ ≤ C,

such that

(3.8) lμ|y − x| ≤ mμ(y, x, ω) ≤ Lμ|y − x|.

(v) For every x, y ∈ Rd,

(3.9) |mμ(y, x, ω)−mμ(z, x, ω)| ≤ Lμ|y − z|.

(vi) For every open set U ⊆ Rd, x ∈ U and y ∈ Rd\U ,

(3.10) mμ(y, x, ω) = min
z∈∂U

(
mμ(y, z, ω) +mμ(z, x, ω)

)
.

(vii) For every x ∈ Rd,

(3.11) H(−Dmμ(x, ·, ω), ·, ω) = μ in Rd\{x}

and

(3.12) H(−Dmμ(x, ·, ω), ·, ω) ≤ μ in Rd.

(viii) There exists a constant c > 0, depending on an upper bound for μ, such
that, for every 0 ≤ μ̂ ≤ μ and x, y ∈ Rd,

(3.13) mμ̂(y, x, ω) + c(μ− μ̂)|x− y| ≤ mμ(y, x, ω).

Remark 3.2. The functions mμ can be expressed by the following representation
formula due to Lions [20], which provides the above facts with a control theoretic
interpretation:

(3.14) mμ(y, x, ω) = inf

{ˆ 1

0

Jμ(γ
′(s), γ(s), ω) ds : γ ∈ C(x, y)

}
,

where C(x, y) is the set of Lipschitz curves γ : [0, 1] → Rd such that γ(0) = x and
γ(1) = y and Jμ is the support function of the μ-sublevel set of H, given by

Jμ(q, y, ω) := sup {p · q : H(p, y, ω) ≤ μ} .

The expression (3.14) provides us with an interpretation ofmμ(y, x, ω) as measuring
the “cost” of moving from the point x to the point y in the medium ω. We make no
direct use of (3.14) in this paper, preferring instead to work with the maximality
property (Proposition 3.1(ii)) which is equivalent to it. Nevertheless, our intuition
is enriched from (3.14) and it suggests an analogy between the metric problem and
first-passage percolation.
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Definition 3.3. For each μ, t > 0, and x ∈ Rd, we define the reachable set to x in
time t by

(3.15) Rμ,t(x) :=
{
(y, ω) ∈ Rd × Ω : mμ(y, x, ω) ≤ t

}
.

We also use the notation Rμ,t = Rμ,t(0), R
ω
μ,t(x) := {y ∈ Rd : (y, ω) ∈ Rμ,t(x)} and

Rω
μ,t = Rω

μ,t(0).

We continue by examining some elementary properties of the reachable set. It
is useful to note that, in the particular case that x = 0 and U := {y ∈ Rd :
mμ(y, 0, ω) < t}, Proposition 3.1(vi) asserts that, for every t > 0 and y ∈ Rd such
that mμ(y, 0, ω) ≥ t,

(3.16) mμ(y, 0, ω) = t+ min
z∈Rω

μ,t

mμ(y, z, ω).

In view of (3.8) and (3.16), we see that mμ(y, x, ω) < t for every y in the interior
of Rω

μ,t(x) and ∂Rω
μ,t = {y ∈ Rd : mμ(y, 0, ω) = t}. In fact, (3.8) and (3.16), give

the following estimates for the growth rate of the reachable set: for every 0 < s < t
and ω ∈ Ω,

{
x ∈ Rd : dist

(
x,Rω

μ,s

)
≤ L−1

μ (t− s)
}
⊆ Rω

μ,t

(3.17)

⊆
{
x ∈ Rd : dist

(
x,Rω

μ,s

)
≤ l−1

μ (t− s)
}
.

We may think of t �→ Rω
μ,t as a “growing front,” and in this interpretation (3.17)

provides uniform positive lower and upper bounds on the speed of the front. In
particular, for all μ, t > 0 and ω ∈ Ω,

(3.18) Bt/Lμ
⊆ Rω

μ,t ⊆ Bt/lμ .

The maximality property (Proposition 3.1(ii)) can be improved for the domain
U = Rω

μ,t(x)\{x} by restricting the maximum over ∂U to {x}, as stated in the
following lemma. This is the crucial fact that localizes the metric problem.

Lemma 3.4. For every ω ∈ Ω, μ ≥ 0, x ∈ Rd, and w ∈ Lip(Rω
μ,t(x)),

(3.19)

H(Dw, y, ω) ≤ μ in Rω
μ,t(x) implies w(·)− w(x) ≤ mμ(·, x, ω) in Rω

μ,t(x).

Proof. Let w ∈ Lip(Rω
μ,t(ω)) satisfy the antecedent of (3.19) and assume with no

loss of generality that w(x) = 0. Define w̃ := mμ(·, x, ω) ∨ (w(·) ∧ (t − ε)) and,
noticing that w̃ = mμ(·, x, ω) near the boundary of Rω

μ,t(ω), extend w̃ to be defined

on Rd by taking w̃ = mμ(·, x, ω) in the complement of Rω
μ,t(ω). Observe that, in

light of Lemma A.1 and (2.9), w̃ is a subsolution of H(Dw̃, y, ω) ≤ μ in Rd. We
deduce from the maximality property that w̃ ≤ mμ(·, x, ω) in Rd and in particular
w ∧ (t− ε) ≤ mμ(·, x, ω) in Rω

μ,t(x). Sending ε → 0 and using that mμ(y, x, ω) < t
in the interior of Rω

μ,t(x), we obtain that w ≤ mμ(·, x, ω) in Rω
μ,t(x), as claimed. �

It follows from Lemma 3.4 that the representation formula (3.1) may be restricted
to the reachable set. Precisely, for every ω ∈ Ω, μ ≥ 0, x ∈ Rd and y ∈ Rω

μ,t(x),

mμ(y, x, ω)

(3.20)

= sup
{
w(y)− w(x) : w ∈ Lip(Rω

μ,t(x)) and H(Dw, y, ω) ≤ μ in Rω
μ,t(x)

}
.

This is immediate from (3.19).
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In the proof of Lemma 4.2, we require a refinement of Lemma 3.4. To this state
this, we define, for every nonempty closed set K ⊆ Rd, x, y ∈ K and ω ∈ Ω,

(3.21)

mK
μ (y, x, ω) := sup

{
w(y)− w(x) : w ∈ Lip(K) and H(Dw, y, ω) ≤ μ in K

}
.

It is immediate that

(3.22) mK
μ is G(K)–measurable

and

(3.23)

K1 ⊆ K2 implies that mK1
μ (y, x, ω) ≥ mK2

μ (y, x, ω) for all x, y ∈ K1.

Thus, (3.20) yields that

(3.24) Rω
μ,t ⊆ K ⊆ Rd implies that mμ(·, 0, ω) = mK

μ (·, 0, ω) in Rω
μ,t.

Lemma 3.5. Assume that K ⊆ Rd is nonempty, closed, and 0 ∈ K. Then

(3.25)

inf
y∈∂K

mK
μ (y, 0, ω) ≥ t implies that mK

μ (·, 0, ω) ≡ mμ(·, 0, ω) in
{
mK

μ (·, 0, ω) ≤ t
}
.

Proof. The argument is similar to the proof of Lemma 3.4. Consider the function
mK

μ (·, 0, ω)∧(t−ε) and extend this to Rd by giving it the value (t−ε) outside of K.

This is a global subsolution by Lemma A.1 and the assumption that mK
μ (·, 0, ω) ≥ t

on ∂K. By the maximality ofmμ we deduce thatmμ ≥ mK
μ (·, 0, ω)∧(t−ε). Sending

ε → 0 yields mμ(·, 0, ω) ≥ mK
μ (·, 0, ω) in

{
mK

μ (·, 0, ω) ≤ t
}
. In light of (3.23), this

completes the proof of (3.25). �

We next define, for every compact set K of Rd, y ∈ Rd and ω ∈ Ω,

(3.26)

mμ(y,K, ω) := inf
z∈K

mμ(y, z, ω) and mμ(K, y, ω) := inf
z∈K

mμ(z, y, ω).

The next proposition provides representation formulas for these functions, which
are needed to deduce (3.30) below. The proof (sketch) is given in Appendix A.

Proposition 3.6. For every μ > 0, the functions in (3.26) are the unique nonneg-
ative solutions of

(3.27) H(Dmμ(·,K, ω), ·, ω) = μ and H(−Dmμ(K, ·, ω), ·, ω) = μ in Rd\K
which satisfy the boundary condition mμ(·,K, ω) = mμ(K, ·, ω) = 0 on ∂K. More-
over, they are also given by the representation formulas

(3.28)

mμ(y,K, ω) = min
x∈K

sup
{
w(z)− w(x) : w ∈ L, H(Dw, z, ω) ≤ μ in Rd\K

}
,

and

(3.29)

mμ(K, z, ω) = min
x∈K

sup
{
w(x)− w(z) : w ∈ L, H(Dw, y, ω) ≤ μ in Rd\K

}
.
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It is immediate from (3.28) and (3.29) that, for every compact K ∈ Rd and
y ∈ Rd,

(3.30) ω �→ mμ(y,K, ω) and ω �→ mμ(K, y, ω) are G
(
Rd\K

)
-measurable.

3.2. The approximate cell problem: Basic properties. We summarize the
properties of the approximate cell problem

(3.31) δvδ +H(p+Dvδ, y, ω) = 0 in Rd.

Here p ∈ Rd and δ > 0 are given parameters and vδ = vδ(y, ω ; p). We note that
the assertions in this section do not depend in any way on the assumptions (2.8)
or of (2.9), nor do they depend on the random parameter ω, and therefore they
hold (with appropriate changes in the notation) for the Hamiltonians encountered
in Section 8.

We begin with a comparison principle for (3.31), which can be reduced to Propo-
sition 3.11, below, by an argument which perturbs the solutions by adding appro-
priate terms with linear growth (alternatively, a proof can be found in [6, 9]).

Proposition 3.7. Let δ > 0, p ∈ Rd and ω ∈ Ω. Suppose u,−v ∈ USC(Rd) satisfy

(3.32) δu+H(p+Du, y, ω) ≤ 0 ≤ δv +H(p+Dv, y, ω) in Rd,

and v is bounded below on Rd. Then u ≤ v in Rd.

For each δ > 0, p ∈ Rd and ω ∈ Ω, we define

vδ(y, ω ; p)

(3.33)

:= sup
{
w(y) : w ∈ USC(Rd) satisfies δw +H(p+Dw, y, ω) ≤ 0 in Rd

}
,

with the differential inequality in the definition interpreted either in the viscos-
ity or in the almost everywhere sense, as these are equivalent in our situation by
Lemma A.1. It is clear that the constant function

w := −1

δ
ess sup
y∈Rd

H(p, y, ω)

belongs to the admissible class, hence vδ(·, ω ; p) ≥ w. Similarly, the function

v := −1

δ
ess inf
y∈Rd

H(p, y, ω)

is a bounded supersolution of (3.31), and Proposition 3.7 yields vδ(·, ω ; p) ≤ v. We
have shown that, for all y, p ∈ Rd, ω ∈ Ω, and δ > 0,

(3.34) − ess sup
y∈Rd

H(p, y, ω) ≤ δvδ(y, ω ; p) ≤ − ess inf
y∈Rd

H(p, y, ω).

Immediate from (3.33) and (2.2) is that the vδ’s are stationary functions. That
is, for all y, z, p ∈ Rd, ω ∈ Ω and δ > 0,

(3.35) vδ(y, τzω ; p) = vδ(y + z, ω ; p)

We summarize some further properties of the vδ’s in the following proposition.
The proofs, which are standard in the theory of viscosity solutions, are sketched in
Appendix A. For the statements we need to define the constants

(3.36) Kp := sup

{
|p− q| : ω ∈ Ω, inf

y∈Rd
H(q, y, ω) ≤ sup

y∈Rd

H(p, y, ω)

}
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and

(3.37) Πp := max
σ=±1

sup
ω∈Ω

sup
|q|≤Kp

sup
y∈Rd

∣∣H(p+ q, y, ω)−H(p+ (1 + σ)q, y, ω)
∣∣.

Observe that Kp is bounded above for |p| bounded by (2.6). It follows from this
and (2.5) that Πp is also bounded above for bounded |p|.

Proposition 3.8. For every p ∈ Rd, ω ∈ Ω and δ > 0, the following hold:

(i) The function vδ(·, ω ; p) is the unique solution of (3.31) belonging toBUC(Rd).
(ii) For every x, y ∈ Rd,

(3.38)
∣∣vδ(x, ω ; p)− vδ(y, ω ; p)

∣∣ ≤ Kp|x− y|.
(iii) For all q, y ∈ Rd,

(3.39)
∣∣δvδ(y, ω ; p)−δvδ(y, ω ; q)

∣∣ ≤ sup
|z|≤Kp∨Kq

sup
x∈Rd

∣∣H(p+z, x, ω)−H(q+z, x, ω)
∣∣.

(iv) For every η ≥ δ and y ∈ Rd,

(3.40)
∣∣δvδ(y, ω ; p)− ηvη(y, ω ; p)

∣∣ ≤ Πp

(
1− δ

η

)
.

3.3. Identifying H. In this subsection we review how the effective Hamiltonian H
may be identified either via limits of either the maximal subsolutions mμ or alter-
natively of the solutions vδ of the approximate cell problem.

First we do a consistency check to derive a formula for H in terms of the metric
problem. To guess what the formulas should be, it is helpful to use the theatrical
scaling : for each ε > 0, we rescale by defining

mε
μ(x, ω) := εmμ

(x
ε
, 0, ω

)
and observe that mε

μ(·, ω) is a solution of the metric problem for Hε(p, x, ω) :=
H(p, xε , ω), that is,

H
(
Dmε

μ,
x

ε
, ω
)
= μ in Rd\{0}

with 0 = mε
μ(0, ω) ≤ mε

μ(x, ω) in Rd. If the statement of qualitative homogenization
holds for this problem (here we are not being rigorous and are in fact using a circular
argument!), then we have

(3.41) mε
μ(x, ω) −→ mμ(x) as ε → 0, locally uniformly in x ∈ Rd, P-a.s.

wheremμ should be the solution of the metric problem for the effective Hamiltonian

H, that is,

(3.42) H(Dmμ) = μ in Rd\{0}.
Now let us reverse the change of variables to write the limit (3.41) in the original
scaling (we also write in terms of t = 1/ε):

(3.43) lim sup
t→∞

sup
x∈BR

∣∣∣∣mμ(tx, 0, ω)

t
−mμ(x)

∣∣∣∣ = 0 for every R > 0, P-a.s.

It is immediate from the form of this limit thatmμ must be positively homogeneous.
The subadditive property of the mμ’s easily translates into a subadditivity property
for mμ and, therefore, mμ is convex. It follows that mμ may be written as a
maximum of planes x �→ p · x over p belonging to some closed convex set. We
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deduce that, if the Equation (3.42) is to hold, this convex set must be the μ-sublevel
set of H:

mμ(x) = sup
{
p · x : H(p) ≤ μ

}
.

We may invert this formula to write H in terms of mμ as

(3.44) H(p) = inf
{
μ ≥ 0 : mμ(y) ≥ p · y for all y ∈ Rd

}
.

We next see how H may be identified as a limit of the solutions of the approxi-
mate cell problem, by a similar heuristic. As usual, it is helpful to use the theatrical
scaling. With vδ(·, ω ; p) defined by (3.33), we set

vε(x, ω) := εvε
(x
ε
, ω ; p

)
and check that vε(·, ω) satisfies the equation

vε +H
(
p+Dvε,

x

ε
, ω
)
= 0 in Rd.

We expect that

vε(x, ω) −→ v(x) as ε → 0, locally uniformly in x ∈ Rd, P-a.s.,

where v should be the solution of the problem

v +H(p+Dv) = 0 in Rd.

But notice that we have a formula for the latter: v is a constant function, namely,
v ≡ −H(p). So rewriting the limit in terms of the original scaling, we expect that,
for every p ∈ Rd,

(3.45) lim sup
δ→0

sup
y∈BR/δ

∣∣δvδ(y, ω ; p) +H(p)
∣∣ = 0 for every R > 0, P-a.s.

The strategy of the proof of qualitative homogenization from [4] consists of re-
versing the heuristic argument above. Here is an outline of the method, each step
of which is quantified in this paper.

(1) Apply the subadditive ergodic theorem to deduce that the limit (3.43) holds.
The function mμ is produced in the process. In fact, it is necessary to prove
a more general fact which allows the vertex of the metric problem to be
more free, namely

(3.46) P

[
for all y, z ∈ Rd, lim sup

t→∞

∣∣∣∣1t mμ(ty, tz, ·)−mμ(y − z)

∣∣∣∣ = 0

]
= 1.

Then define H by the formula (3.44).
(2) Using the comparison principle, argue that (3.46) implies the limit (3.45),

at least away from the flat spot {p : H(p) = minH}. The basic idea
is to compare mμ(·, ω) to vδ(·, ω ; p) where μ = H(p). If δvδ(0, ω ; p) is
found to be too large or small, then this information is translated in terms
of the metric problem to yield that mμ(y, z, ω) is relatively small or large
compared tomμ(y−z), for some |y|, |z| � δ−1. See (6.4) below, for example,
for a quantitative version of this assertion. Meanwhile, on the flat spot, the
proof is completely different and necessarily indirect: the metric problem
cannot “see” the flat spot. (Indeed, note that the error estimates we obtain
for mμ degenerate as μ ↓ 0, and in fact the convergence rate turns out to
depend in a more delicate way on the law of H.)
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(3) Using that vδ is an approximate corrector, we argue that (3.45) implies the
full statement of qualitative homogenization. This has been well known for
some time and also follows from a (more routine) comparison argument. A
quantitative version appears in Lemma 7.1.

We next give some details about how we select the points y and z in the compari-
son argument in Step (2) of the outline above. These observations will be needed in
Section 6. From elementary convex geometric considerations (we again refer to [4]
for details) we deduce that, for every p ∈ int{q ∈ Rd : H(q) = 0}, we can find a
direction e so that the plane with slope p touches mμ from below at e. Precisely,

setting μ := H(p), there exists e ∈ Rd with |e| = 1 such that

(3.47) mμ(e)− p · e = 0 = min
x∈Rd

(mμ(x)− p · x) .

The points y and z found in the comparison argument are chosen in such a way
that y − z � te for some t � δ−1. Geometrically, the idea is clear: mμ is a cone,
and if we look far from the origin in the direction of the vector e, then mμ starts
to resemble the plane p · x. Since x �→ p · x+ vδ(x, ω; p) should resemble the same
plane, it is natural to compare it with mμ(·, y, ω). This is precisely the idea of the
proof of Theorem 2 in Section 6.

3.4. Other preliminary results. To control the oscillations of solutions of the
metric problem around their means, we use the “martingale method of bounded
differences” based on the Azuma inequality [5]. See McDiarmind [27] and Alon
and Spencer [2] for an overview of this probabilistic method, as well as a proof of
Azuma’s inequality, which is stated as follows.

Proposition 3.9 (Azuma’s inequality). Let {Xk}k∈N be a discrete martingale with
X0 ≡ 0. Assume that there exists a constant A > 0 such that, for each k ∈ N,

ess sup
Ω

|Xk+1 −Xk| ≤ A.

Then, for each λ > 0 and N ≥ 1,

P [|XN | > λ] ≤ exp

(
− λ2

2A2N

)
.

We next state Hammersley’s generalization of Fekete’s lemma on subadditive
functions. For a proof, see [15, Theorem 2].

Lemma 3.10 (Hammersley-Fekete lemma). Suppose that ξ > 0 and f : [ξ,∞) → R

satisfies, for every s, t ≥ ξ,

f(s+ t) ≥ f(s) + f(t)−Δ(s+ t),

where Δ : [ξ,∞) → R is nondecreasing such thatˆ ∞

ξ

Δ(s)

s2
ds < ∞.

Then τ := lims→∞ f(s)/s ∈ (−∞,∞] exists and, for every t > ξ,

τ ≥ f(t)

t
+

Δ(t)

t
− 4

ˆ ∞

2t

Δ(s)

s2
ds.

Several of our arguments rely on the comparison principle for viscosity solutions
of first-order equations, typically in the following form (see [9] or [6] for a proof).
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Proposition 3.11. Let G ∈ C(Rd × Rd), U be a bounded open subset of Rd, and
u,−v ∈ USC(U) and f ∈ C(U) satisfy

G(Du, y) < f(y) < G(Dv, y) in U.

Then

sup
U

(u− v) = max
∂U

(u− v).

4. Estimating the fluctuations of the metric problem

There are essentially two steps in the proof of Theorem 1. The first is to obtain
exponential error estimates controlling the fluctuations of mμ(y, 0, ·) about its mean

Mμ(y) := E [mμ(y, 0, ·)] .
This is the focus of this section. In Section 5, we complete the proof of Theorem 1
by estimating the difference between the deterministic quantities Mμ(y) and mμ(y),
which is more involved.

Throughout this section we assume that H satisfies (2.10), but we do not as-
sume (2.11). We also fix K ≥ 1 and μ such that

(4.1) 0 < μ ≤ K.

We denote by C and c positive constants depending only on K, the underlying
dimension d and the assumptions for H, and which may vary from line to line.
Several of our estimates depend on a lower bound for μ, and since we must keep
track of this dependency, we explicitly display dependence on μ.

The goal of this section is to prove the following exponential estimate for the
fluctuations of mμ(y, 0, ·).

Proposition 4.1. There exists C > 0 such that, for each λ > 0 and |y| > 1,

(4.2) P

[
|mμ(y, 0, ·)−Mμ(y)| > λ

]
≤ exp

(
− μλ2

C|y|

)
.

4.1. A discretization scheme. In the proof of Proposition 4.1 below, it is use-
ful to employ a discretization scheme which allows us to essentially condition on
the identity of the reachable set Rμ,t in order to apply the independence assump-
tion (2.3) in the form of Lemma 4.2 below.

To introduce the discretization, we define, for every r > 0,

Kr :=
{
A ∈ B : A = A ⊆ Br

}
.

Recall that Kr is a compact metric space under the Hausdorff distance (cf.
Munkres [28]), which is defined by

distH(E,F ) := inf
x∈E

sup
y∈F

|x− y| ∨ inf
y∈F

sup
x∈E

|x− y|

= inf {ε > 0 : E ⊆ F +Bε and F ⊆ E +Bε} .
Note that, for every E,F ∈ B,

(4.3) distH(E,F ) ≥ dist
(
E,Rd\F

)
.

Fix a small parameter δ > 0. Then, by the compactness of Kr, there exists � =
�(δ, d, r) ∈ N and a disjoint partition Γ1, . . . ,Γ� ⊆ Kr of Kr into Borel subsets with
diamH(Γi) ≤ δ. Let Ki ∈ B be the closure of the union of the elements of Γi. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



498 S. N. ARMSTRONG, P. CARDALIAGUET, AND P. E. SOUGANIDIS

for each A ∈ Kr, there exists a unique 1 ≤ i ≤ � such that A ∈ Γi, which in turn
implies that A ⊆ Ki. Also define

K̃i := Ki +B1

so that dist(Ki,R
d\K̃i) = 1. We have arranged things so that, for every 1 ≤ i ≤ �,

(4.4) G(Ki) and G
(
Rd\K̃i

)
are independent

and, for each A ∈ Kr and 1 ≤ i ≤ �,

(4.5) if A ∈ Γi , then A ⊆ Ki ⊆ K̃i ⊆ A+ B1+δ.

We remark that �, the partition {Γi} as well as the Ki’s depend on r and δ, but
for convenience we do not explicitly display this dependence.

The following lemma captures the intuitively obvious assertion that the behavior
of the medium inside the set Rω

μ,t, conditioned on the event that Rω
μ,t ∈ Γi (which

implies, in particular, Rω
μ,t ⊆ Ki) is independent of the behavior of mμ(y, K̃i, ω).

Recall that the latter is defined in (3.26) and is independent of G(Ki) by (3.30).
Roughly speaking, this statement is a pre-processed form of the independence as-
sumption which, as we will see, is particularly well adapted to our needs in the
proof of Proposition 4.1.

To state the lemma it is necessary to define, for each μ > 0, the filtration
{Fμ,t}t≥0 by Fμ,0 := {Ω, ∅} and, for every t > 0,

(4.6) Fμ,t := σ–field generated by ω �→ H(p, x, ω)�{ω :x∈Rω
μ,t}, p, x ∈ Rd.

For every 0 < t < s and ω ∈ Ω, we have Rω
μ,t ⊆ Rω

μ,s (see (3.17)), and therefore
Fμ,t ⊆ Fμ,s provided 0 ≤ t ≤ s. Thus {Fμ,t}t≥0 is indeed a filtration. Observe
that, for every y ∈ Rd,

(4.7) ω �→ mμ(y, 0, ω)�{ω : x∈Rω
μ,t}(ω) is Fμ,t–measurable.

Indeed, this is immediate from the formula (3.20). Moreover, we see from this
and (3.18) that, for every y ∈ Rd and t ≥ Lμ|y|,
(4.8) ω �→ mμ(y, 0, ω) is Fμ,t–measurable.

Lemma 4.2. For each 1 ≤ i ≤ �, t > 0 and A ∈ Fμ,t,

(4.9) �A∩{ω :Rω
μ,t∈Γi} is G(Ki)-measurable.

Moreover,

(4.10) E

[
mμ

(
y, K̃i, ·

)
�{ω :Rω

μ,t∈Γi}

∣∣∣Fμ,t

]
= E

[
mμ

(
y, K̃i, ·

)]
�{ω :Rω

μ,t∈Γi}.

Here mμ(y,K, ·) is defined in (3.26).

Proof. It suffices to show (4.9) for A of the form

(4.11) A = {ω ∈ Ω : H(p, x, ω) ≤ α} ∩ {ω ∈ Ω : mμ(x, 0, ω) ≤ t} ,
where p, x ∈ Rd, and α ∈ R, since such events A generate Fμ,t. Recall the definition
of mK

μ in (3.21) for nonempty and closed K ⊆ Rd, the fact that mK
μ is G(K)–

measurable and the fact from (3.25) that, assuming 0 ∈ K, we have

(4.12)

mK
μ (y, 0, ω) ≥ t on ∂K implies that Rω

μ,t =
{
y ∈ Rd : mK

μ (y, 0, ω) ≤ t
}
.
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Due to (4.5) and (4.12),

A ∩
{
ω ∈ Ω : Rω

μ,t ∈ Γi

}
=
{
ω ∈ Ω : H(p, x, ω) ≤ α , {mKi

μ (·, ω) ≤ t} ∈ Γi and mKi
μ (x, ω) ≤ t

}
.

If x ∈ Ki, then this set clearly belongs to G(Ki). If x ∈ Ki, then it is impossible
that x ∈ Rω

μ,t and {y : mKi
μ (y, ω) ≤ t} ∈ Γi, in view of (4.5) and (4.12). Thus the

above set is empty (and in particular belongs to G(Ki)) in the case that x ∈ Ki.
This confirms (4.9).

According to (4.4), (3.30), and (4.9), for every A ∈ Fμ,t, the event A ∩ {ω :

Rω
μ,t ∈ Γi} is independent of the random variable mμ

(
y, K̃i, ·

)
. Hence for every

A ∈ Fμ,t,

E

[
mμ

(
y, K̃i, ·)�A∩{ω :Rω

μ,t∈Γi}

]
= E

[
mμ

(
y, K̃i, ·)

]
P
[
A ∩ {ω : Rω

μ,t ∈ Γi}
]
.

The claim (4.10) now follows. �

4.2. Controlling the fluctuations of mμ(y, 0, ·). We proceed with the demon-
stration that, for large |y|, the probability that mμ(y, 0, ·) is relatively far from its
mean is small. We use an argument inspired by the pioneering work of Kesten [18]
in the theory of first-passage percolation, who introduced a martingale method
based on Azuma’s concentration inequality. We also benefit with some very elegant
simplifications of the argument due recently to Zhang [37].

Notice that, unlike in percolation theory (or its continuum analogue), our Hamil-
tonian is not assumed to be positively homogeneous. In this generality, it is neces-
sary to keep track of the dependence of the estimates on a lower bound for μ. We
recall that, in view of Proposition 3.1(iv) and (4.1), there exist lμ, Lμ > 0 such that

(4.13) 0 < cμ ≤ lμ ≤ Lμ ≤ C

and, for every x, y ∈ Rd,

(4.14) lμ|y − x| ≤ mμ(y, x, ω) ≤ Lμ|y − x|.
In the control theory interpretation (see Remark 3.2), this important estimate,
which we use many times below, provides upper and lower bounds on the lengths
of optimal paths connecting two points x, y ∈ Rd.

Proof of Proposition 4.1. To setup the argument, we fix y ∈ Rd with |y| > 1 and
define

(4.15) T := Lμ|y| and r := T/lμ = Lμ|y|/lμ
so that (see (3.18)), for every ω ∈ Ω,

(4.16) Rω
μ,T ⊆ Br.

We employ the discretization scheme, for fixed δ > 0, as described in Subsection 4.1,
with the notation introduced there, and we define a continuous-time martingale
{Xt}t≥0 adapted to {Fμ,t}t≥0 by setting, for each t ≥ 0,

(4.17) Xt := E
[
mμ(y, 0, ·) |Fμ,t

]
−Mμ(y).

Here Fμ,t is the filtration defined in (4.6). Due to Fμ,0 = {∅,Ω}, T = Lμ|y| and
(4.8),

(4.18) X0 ≡ 0 and Xt(ω) ≡ mμ(y, 0, ω)−Mμ(y) for every t ≥ T.
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Our goal is to apply Azuma’s inequality in order to estimate the oscillations of XT .
We must first obtain an estimate of the form

(4.19) ess sup
ω∈Ω

|Xs(ω)−Xt(ω)| ≤ A+B|s− t|.

Step 1. We derive an inequality of the form (4.19). Owing to (4.8), for every
0 < t ≤ s,

(4.20) E
[
mμ(y, 0, ·)�{ω : y∈Rω

μ,t} |Fμ,s

]
= mμ(y, 0, ·)�{ω : y∈Rω

μ,t}

and hence

(4.21)

Xs −Xt = E
[
mμ(y, 0, ·)�{ω : y �∈Rμ,t} |Fμ,s

]
− E

[
mμ(y, 0, ·)�{ω : y �∈Rμ,t} |Fμ,t

]
.

Using (3.16), we find that

mμ(y, 0, ω)�{ω : y �∈Rμ,t}(ω) =
(
mμ(y,R

ω
μ,t, ω) + t

)
�{ω : y �∈Rμ,t}(ω)

= mμ(y,R
ω
μ,t, ω) + t�{ω : y �∈Rμ,t}(ω)

and, since {ω : y ∈ Rμ,t} ∈ Fμ,t, we may simplify (4.21) to write

(4.22) Xs −Xt = E
[
mμ(y,Rμ,t, ·) |Fμ,s

]
− E

[
mμ(y,Rμ,t, ·) |Fμ,t

]
.

According to (3.10), for every 0 < t ≤ s,

mμ(y,R
ω
μ,s, ω) ≤ mμ(y,R

ω
μ,t, ω) ≤ (s− t) +mμ(y,R

ω
μ,s, ω).

Combining the last two lines, we obtain

|Xs −Xt| ≤ (s− t) +
∣∣E [mμ(y,Rμ,s, ·) |Fμ,s]− E [mμ(y,Rμ,t, ·) |Fμ,t]

∣∣.(4.23)

We next use the discretization scheme to estimate E [mμ(y,Rμ,t, ·) |Fμ,t] by ap-
proximating the integral represented by the expectation as a sum of characteristic

functions. With Ki, K̃i , and Γi as described there, observe that, by (3.6), (4.5),
and (4.14),

(4.24) mμ(y, K̃i, ·)�{ω :Rμ,t∈Γi} ≤ mμ(y,Rμ,t, ·)�{ω :Rμ,t∈Γi}

≤
(
Lμ(1 + δ) +mμ(y, K̃i, ·)

)
�{ω :Rμ,t∈Γi}.

Taking the conditional expectation of (4.24) with respect to Fμ,t and applying (4.10),
we get

E

[
mμ(y, K̃i, ·)

]
�{ω :Rμ,t∈Γi} ≤ E

[
mμ(y,Rμ,t, ·)�{ω :Rμ,t∈Γi}

∣∣∣Fμ,t

](4.25)

≤
(
Lμ(1 + δ) + E

[
mμ(y, K̃i, ·)

])
�{ω :Rμ,t∈Γi}.

Since {Γi} is a disjoint partition of Kr, we also have, in view of (4.16), for every
1 ≤ t ≤ s ≤ T ,

(4.26)

E

[
mμ(y,Rμ,t, ·)

∣∣∣Fμ,t

]
=

�∑
i,j=1

E

[
mμ(y,Rμ,t, ·)�{ω :Rμ,t∈Γi}

∣∣∣Fμ,t

]
�{ω :Rμ,s∈Γj}.
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Multiplying (4.25) by �{ω :Rμ,s∈Γj} and summing over the indices i and j yields, in
light of (4.26),

0 ≤ E

[
mμ(y,Rμ,t, ·)

∣∣∣Fμ,t

]
(4.27)

−
�∑

i,j=1

E

[
mμ(y, K̃i, ·)

]
�{ω :Rμ,t∈Γi}�{ω :Rμ,s∈Γj} ≤ Lμ(1 + δ).

In the same way, after interchanging s for t and j for i, we also obtain

0 ≤ E

[
mμ(y,Rμ,s, ·)

∣∣∣Fμ,s

]
(4.28)

−
�∑

i,j=1

E

[
mμ(y, K̃j , ·)

]
�{ω :Rμ,t∈Γi}�{ω :Rμ,s∈Γj} ≤ Lμ(1 + δ).

It follows that

∣∣E[mμ(y,Rμ,s, ·) |Fμ,s

]
− E

[
mμ(y,Rμ,t, ·) |Fμ,t

]∣∣
(4.29)

≤Lμ(1 + δ) +

�∑
i,j=1

∣∣∣E [mμ(y, K̃i, ·)−mμ(y, K̃j , ·)
]∣∣∣�{ω :Rμ,t∈Γi}�{ω :Rμ,s∈Γj}.

If, for some i, j = 1, . . . , �, there exists ω belonging to the event that Rω
μ,t ∈ Γi and

Rω
μ,s ∈ Γj , then

distH

(
K̃i, K̃j

)
≤ distH (Ki,Kj) ≤ distH

(
Rω

μ,t,R
ω
μ,s

)
+ 2δ ≤ (s− t)

lμ
+ 2δ.

Using (3.9), we conclude that, for every i, j = 1, . . . , �,∣∣∣E [mμ(y, K̃i, ·)
]
− E

[
mμ(y, K̃j , ·)

]∣∣∣�{ω :Rμ,t∈Γi}�{ω :Rμ,s∈Γj}

≤
(
Lμ

lμ
(s− t) + 2Lμδ

)
�{ω :Rμ,t∈Γi}�{ω :Rμ,s∈Γj}.

Combining this with (4.29) and sending δ → 0 yields

(4.30)
∣∣E[mμ(y,Rμ,s, ·) |Fμ,s

]
− E

[
mμ(y,Rμ,t, ·) |Fμ,t

]∣∣ ≤ Lμ +
Lμ

lμ
(s− t).

Finally, from (4.23), we finally get, for every 0 < s < t ≤ T ,

(4.31) |Xt −Xs| ≤ Lμ +

(
Lμ

lμ
+ 1

)
(s− t).

This also holds for 0 < s < t without further restriction by the second assertion
of (4.18).

Step 2. We finish the argument by applying Azuma’s inequality, using (4.31). De-

fine a discrete martingale sequence X̃k := Xhk with h := lμLμ/(lμ+Lμ) and observe
that, according to (4.31), for all k ∈ N,∣∣X̃k+1 − X̃k

∣∣ ≤ 2Lμ.
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An application of Azuma’s inequality (Proposition 3.9) yields, for every λ > 0 and
N ∈ N,

(4.32) P

[∣∣X̃N

∣∣ > λ
]
≤ exp

(
−λ2

8L2
μN

)
.

Let N be the smallest integer larger than T/h so that X̃N = XT = mμ(y, 0, ·) −
Mμ(y). It follows that, since |y| > 1 and T = Lμ|y|,

(4.33) N ≤ T

h
+ 1 ≤ Lμ(lμ + Lμ)|y|

lμLμ
+ 1 ≤ (2lμ + Lμ)|y|

lμ
.

From (4.18), (4.32), and (4.33) we deduce

P

[
|mμ(y, 0, ·)−Mμ(y)| > λ

]
= P

[∣∣X̃N

∣∣ > λ
]
≤ exp

(
−λ2lμ

8L2
μ(2lμ + Lμ)|y|

)
. �

Remark 4.3. Integrating (4.2) yields

var (mμ(y, 0, ·)) =
ˆ ∞

0

P

[
|mμ(y, 0, ·)−Mμ(y)| > λ

1
2

]
dλ

≤
ˆ ∞

0

exp

(
− μλ

C|y|

)
dλ =

C

μ
|y|,

which mirrors the bound on the variance of the time constant obtained by Kesten
[18] for first passage percolation. Obtaining an optimal estimate for the fluctuations
of the latter is a well-known open problem. It is conjectured that the variance of the
time constant should behave, in dimension d = 2, like O

(
|y| 23

)
for large |y|, and it

is believed that the oscillations should decrease in higher dimensions. Nevertheless,
it is still open in every dimension d ≥ 2 whether, for some α < 1, this quantity is
bounded by O (|y|α) as |y| → ∞. We expect that it will be similarly challenging to
prove such a bound for our quantity var(mμ(y, 0, ·)), and still more difficult to find
the optimal exponent for the algebraic rate of homogenization of (1.1).

In analogy with the best-known variance bound in first-passage percolation, due
to Benjamini, Kalai, and Schramm [7], we expect that an estimate of the form

(4.34) var (mμ(y, 0, ·)) ≤
C

μ

(
|y|

log |y|

)
can be proved, in dimensions d ≥ 2, by an application of Talagrand’s concentration
inequality [35]. In fact, as we were completing the writing of this paper, we received
a new preprint by Matic and Nolen [26] who have obtained, in a slightly different
setting, a bound like (4.34) for a certain class of Hamilton-Jacobi equations in
special i.i.d. environments.

5. Estimating the statistical bias of the metric problem

Having estimated the oscillations of mμ(y, 0, ·) about its mean Mμ(y) in Propo-
sition 4.1, in order to prove Theorem 1 it remains to estimate the rate at which the
means t−1Mμ(ty) converge, as t → ∞, to their limit mμ(y). On one side our task
is trivial. Indeed, by (3.2) and (3.6), we have

Mμ(y + z) = E [mμ(y + z, 0, ·)] ≤ E [mμ(y, 0, ·)] + E [mμ(y + z, y, ·)](5.1)

= Mμ(y) +Mμ(z).
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It follows from Fekete’s lemma (Lemma 3.10 in the special case that Δ ≡ 0)
and (3.46) that, for every y ∈ Rd,

(5.2) Mμ(y) ≥ inf
t≥1

t−1Mμ(ty) = lim
t→∞

t−1Mμ(ty) = mμ(y).

The estimate (2.12) is then immediate.
In order to prove (2.14) we are confronted with the more difficult task of finding

good upper bounds forMμ(y)−mμ(y), which are stated in the following proposition.

Proposition 5.1. There exists C > 0 such that, for every |y| > 1,

(5.3) Mμ(y) ≤ mμ(y) + C

(
|y| 12
μ

3
2

+
|y| 23
μ

)(
log

(
1 +

|y|
μ

)) 1
2

.

The previous proposition provides the desired estimate for the difference between
t−1Mμ(ty) and mμ(y) for large t > 0, and now the proof of Theorem 1 follows.

Proof of Theorem 1. The first inequality follows from (5.2) and (4.2) and second
from (5.3) and (4.2). �

Proving Proposition 5.1 is the focus of the rest of this section. A typical argument
for obtaining such an estimate and the strategy we use here involves approximat-
ing Mμ(y) by another quantity which is superadditive (see also the discussion in
Hammersley [16]). Fekete’s lemma may then be applied “from the other side” to ob-
tain an estimate on the deviation of this approximate quantity from its asymptotic
limit. The desired estimate in terms of the original quantity then follows, depend-
ing on the quality of the approximation. This strategy was used by Alexander [1]
in the context of first-passage percolation to obtain estimates on the deviation of
the expected passage time from the limiting time constant.

In our context, it turns out to be more convenient to first obtain estimates for
the difference between the quantities

E [mμ(Ht, 0, ·)] := E

[
min
z∈Ht

mμ(z, 0, ·)
]

and mμ(Ht) := min
z∈Ht

mμ(z),

where Ht is a given plane at a distance t from the origin. We then argue that the
value of E [mμ(Ht, 0, ·)] must be close to

Mμ(Ht) := min
z∈Ht

Mμ(z),

which yields good estimates for the deviation of the latter quantity from mμ(Ht).
This is then transformed, using a simple geometric argument, into an estimate for
Mμ(y)−mμ(y) for large |y|.

Here is an illustration of the outline of key steps in the proof of Proposition 5.1:

Mμ(Ht)−mμ(Ht) = Mμ(Ht)− E [mμ(Ht, 0, ·)]︸ ︷︷ ︸
estimated by Lemma 5.6

+E [mμ(Ht, 0, ·)]−mμ(Ht)︸ ︷︷ ︸
estimated by Lemma 5.5

estimate for Mμ(Ht)−mμ(Ht) −−−−−−−−−→
Lemma 5.8

estimate for Mμ(y)−mμ(y).

As in Section 4, we fix K > 0 and μ satisfying (4.1). The symbols C and c
denote positive constants which may depend on K and H and may vary in each
occurrence.
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5.1. Introduction of the approximating quantity. It is difficult to work di-
rectly with statistical properties of the quantity mμ(Ht, 0, ·). We consider instead
an approximating quantity to which the independence assumption is easier to ap-
ply. Fix a unit direction e ∈ Rd which for notational convenience we take to be
e = ed = (0, . . . , 0, 1). For each t > 0, define the plane

(5.4) Ht := te+ {e}⊥ =
{
(x′, t) : x′ ∈ Rd−1

}
and its discrete analog

(5.5) Ĥt :=
{
(n, t) : n ∈ Zd−1

}
.

We also denote, for t > 0, the half-spaces

(5.6)

H+
t =

{
(x′, xd) ∈ Rd : xd ≥ t

}
and H−

t =
{
(x′, xd) ∈ Rd : xd ≤ t

}
.

Define, for each σ, t > 0, the quantities

(5.7)

Gμ,σ(t) :=
∑
y∈ ̂Ht

E [exp (−σmμ(y, 0, ·))] and gμ,σ(t) := − 1

σ
logGμ,σ(t).

Below we will see that gμ,σ(t) is a good approximation of E [mμ(Ht, 0, ·)] for appro-
priate choices of the parameter σ > 0. Since gμ,σ is a logarithm of the expectation of
the sum of exponentials, it can be used naturally with the independence assumption
(see the proof of Lemma 5.4, below).

We begin with a technical lemma, also used many times below, which asserts
that a substantial portion of the quantity Gμ,σ(t) is contributed by lattice points

(n, t) ∈ Ĥt with |n| ≤ O(t). This implies in particular that Gμ,σ and gμ,σ are finite.

Lemma 5.2. There exists C > 0 such that, for every t > 0, 0 < σ ≤ 1 and
R ≥ 2(Lμ/lμ)t,

(5.8) Gμ,σ(t) ≤ C1(lμσ)
1−d

∑
y∈ ̂Ht∩BR

E [exp (−σmμ(y, 0, ·))] .

Proof. According to (4.14), for every ω ∈ Ω and y ∈ Rd,

(5.9) exp (−Lμσ|y|) ≤ exp (−σmμ(y, 0, ω)) ≤ exp (−lμσ|y|) .
Thus,∑

y∈ ̂Ht\BR

exp (−σmμ(y, 0, ω)) ≤
∑

y∈ ̂Ht\BR

exp (−lμσ|y|) ≤
∑

y∈Zd−1\BR

exp (−lμσ|y|)

≤ C

ˆ ∞

R

rd−2 exp (−lμσr) dr = C(lμσ)
1−d

ˆ ∞

lμσR

rd−2 exp (−r) dr

and, using the inequality rd−2 ≤ C exp(r/2) to estimate the last integral on the
right side, we obtain

(5.10)
∑

y∈ ̂Ht\BR

exp (−σmμ(y, 0, ω)) ≤ C(lμσ)
1−d

ˆ ∞

lμσR

exp (−r/2) dr.
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On the other hand,

(5.11) exp (−σmμ(te, 0, ω)) ≥ exp (−Lμσt) =

ˆ ∞

2Lμσt

exp (−r/2) dr.

Since 2R ≥ (Lμ/lμ)t, it follows from (5.10) and (5.11) that, for every ω ∈ Ω,∑
y∈ ̂Ht\BR

exp (−σmμ(y, 0, ω)) ≤ C(lμσ)
1−d exp (−σmμ(te, 0, ω))

≤ C(lμσ)
1−d

∑
y∈ ̂Ht∩BR

exp (−σmμ(y, 0, ω)) .

Taking expectations yields

Gμ,σ(t) =
∑

y∈ ̂Ht∩BR

E [exp (−σmμ(y, 0, ·))] +
∑

y∈ ̂Ht\BR

E [exp (−σmμ(y, 0, ·))]

≤
(
1 + C(lμσ)

1−d
) ∑
y∈ ̂Ht∩BR

E [exp (−σmμ(y, 0, ·))] .

We now obtain (5.8), since σ ≤ 1 implies lμσ ≤ C and hence 1 + C(lμσ)
1−d ≤

(1 + C)(lμσ)
1−d. �

Next we show that gμ,σ(t) gives a good upper bound for E [mμ(Ht, 0, ·)] for large
t and appropriate choices of σ > 0.

Lemma 5.3. There exists C > 0 such that, for every t > 1 and 0 < σ ≤ 1,

(5.12)

E [mμ(Ht, 0, ·)]− C

(
σt

μ2
+

1

σ
log

(
1 +

t

σμ

))
≤ gμ,σ(t) ≤ E [mμ(Ht, 0, ·)] + C.

Proof. The upper bound in (5.12) is easy. Using (3.9), we have

Gμ,σ(t) ≥ E

[
sup
y∈ ̂Ht

exp (−σmμ(y, 0, ·))
]
= E

[
exp

(
−σ inf

y∈ ̂Ht

mμ(y, 0, ·)
)]

≥ E

[
exp

(
−σ

(
mμ(Ht, 0, ·) + Lμ(d− 1)

1
2

))]
= exp

(
−σLμ(d− 1)

1
2

)
E [exp (−σmμ(Ht, 0, ·))] .

After taking the logarithm of both sides of this inequality, an application of Jensen’s
inequality and a rearrangement yield the second inequality of (5.12) with C =

(d− 1)
1
2Lμ.

To obtain the lower bound, we use both (4.2) and (5.8). For every |y| > 1, we
have

E [exp (−σmμ(y, 0, ·))] =
ˆ ∞

0

σ exp(−σs)P [mμ(y, 0, ·) ≤ s] ds

≤ exp (−σMμ(y)) +

ˆ Mμ(y)

0

σ exp(−σs)P [mμ(y, 0, ·) ≤ s] ds

=

(
1 + σ

ˆ Mμ(y)

0

exp(σλ)P [mμ(y, 0, ·)−Mμ(y) ≤ −λ] dλ

)
× exp (−σMμ(y)) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



506 S. N. ARMSTRONG, P. CARDALIAGUET, AND P. E. SOUGANIDIS

Applying (4.2), we obtain

E [exp (−σmμ(y, 0, ·))] ≤
(
1 + σ

ˆ Mμ(y)

0

exp

(
σλ− μλ2

C|y|

)
dλ

)
exp (−σMμ(y)) .

We estimate the integrand above by completing the square, i.e.,

σλ− μλ2

C|y| = − μ

C|y|

(
λ− σC|y|

2μ

)2

+
1

4μ
σ2C|y| ≤ 1

4μ
σ2C|y|,

and thus obtain

(5.13)

E [exp (−σmμ(y, 0, ·))] ≤
(
1 + σMμ(y) exp

(
1

4μ
σ2C|y|

))
exp (−σMμ(y)) .

Summing (5.13) over y ∈ Ĥt∩BR, with R := 2(Lμ/lμ)t, and applying (5.8), we get

Gμ,σ(t) ≤ Cl1−d
μ σ1−d

∑
y∈ ̂Ht∩BR

(
1 + σMμ(y) exp

(
1

4μ
σ2C|y|

))
exp (−σMμ(y))

≤ Cl1−d
μ σ1−d

∑
y∈ ̂Ht∩BR

(
1 + σMμ(y) exp

(
1

4μ
σ2C|y|

))
× exp (−σE [mμ(Ht, 0, ·)])

≤ Cl1−d
μ σ1−dRd−1 exp (−σE [mμ(Ht, 0, ·)])

(
1 + σLμt exp

(
1

4μ
σ2CR

))
In view of (4.13), we have l1−d

μ ≤ Cμ1−d and R ≤ Ct/μ. Using these with σ ≤ 1,
t > 1, we obtain

Gμ,σ(t) ≤ Ctdσ1−dμ2−2d exp

(
−σE [mμ(Ht, 0, ·)] +

Cσ2t

μ2

)
.

Taking logarithms, dividing by −σ and rearranging this expression yields:

gμ,σ(t) = − 1

σ
logGμ,σ(t) ≥ E [mμ(Ht, 0, ·)]−

Cσt

μ2
− 1

σ
log

(
Ctd

σd−1μ2d−2

)
.

We can estimate the logarithm factor in the last term on the right side as follows:

log

(
Ctd

σd−1μ2d−2

)
≤ C log

(
1 +

t

σμ

)
.

This completes the proof of the lower bound of (5.12) and hence of the lemma. �
5.2. The (almost) superadditivity of gμ,σ and estimates for E [mμ(Ht, 0, ω)]−
mμ(Ht). The next step is to prove that gμ,σ is essentially superadditive, which is
summarized in the following lemma. Unlike the approach taken in [1], we do not use
an abstract result like the van den Berg-Kesten inequality, which does not seem to
easily apply in the continuous setting. We opt instead for a simpler “splitting tech-
nique” to apply the independence assumption more directly. A similar technique
was employed by Sznitman [33].

The critical property of the mμ’s needed here, which allows us to exploit the
independence of the random medium, is the dynamic programming principle. It
asserts that, if every path from x to y passes through a surface, then, for some z
on the surface, the cost of moving from x to y is equal to the sum of the cost of
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moving from x to z and from z to y. Precisely, for every open U ⊆ Rd with x ∈ U
and every y ∈ Rd\U and ω ∈ Ω,

(5.14) mμ(y, x, ω) = min
z∈∂U

(
mμ(y, z, ω) +mμ(z, x, ω)

)
.

See Proposition 3.1(vi).

Lemma 5.4. There exists C > 0 such that, for every s, t > 1 and 0 < σ ≤ 1,

(5.15) gμ,σ(t+ s) ≥ gμ,σ(t) + gμ,σ(s)−
C

σ

(
1 + log

(
1 +

s+ t

σμ

))
.

Proof. Fix s, t > 1, y ∈ Hs+t such that |y| ≤ R := 2(Lμ/lμ)(s + t) and ω ∈ Ω.
Observe that, in view of (5.14),

mμ(y, 0, ω) = min
z∈Ht

(mμ(z, 0, ω) +mμ(y, z, ω)) ≥ mμ(Ht, 0, ω) +mμ(y,Ht, ω).

Thus, using (3.9),

mμ(y, 0, ω) ≥ mμ(Ht, 0, ω) +mμ(y,Ht+1, ω)− Lμ.

Since 0 ∈ H−
t and y ∈ H+

t+1, we have

mμ(Ht, 0, ω) = mμ(H
+
t , 0, ω) and mμ(y,Ht+1, ω) = mμ(y,H

−
t+1, ω),

which is immediate from Ht ⊆ H±
t , (3.26) and (4.14). Applying (3.30), we conclude

that

(5.16)

mμ(H
+
t , 0, ·) is G(H−

t )-measurable and mμ(y,H
−
t+1, ·) is G(H+

t+1)-measurable.

In light of (2.3), these random variables are independent and thus

E [exp (−σmμ(y, 0, ·))]
≤ exp (σLμ)E

[
exp

(
−σmμ(H

+
t , 0, ·)

)]
E
[
exp

(
−σmμ(y,H

−
t+1, ·)

)]
.

Returning to the discrete setting, we next claim that

(5.17) mμ(H
+
t , 0, ω) = mμ(Ht, 0, ω) ≥ min

z∈ ̂Ht∩BR

mμ(z, 0, ω)− Lμ(d− 1)
1
2 .

Indeed, it is clear from (4.14) that any z ∈ Ĥt attaining the (implicit) minimum on
the left side of (5.17) must belong to BR, and (5.17) then follows from (3.9). In a
similar way, since |y| ≤ R,

mμ(y,H
−
t+1, ω) ≥ min

z∈ ̂Ht∩B2R

mμ(y, z, ω)− Lμ

(
1 + (d− 1)

1
2

)
.

Combining these inequalities, we obtain

E [exp (−σmμ(y, 0, ·))]

≤ exp (Cσ)
∑

z,z′∈ ̂Ht∩B2R

E [exp (−σmμ(z, 0, ·))]E [exp (−σmμ(y, z
′, ·))] .

Note that, if z′ ∈ Ĥt, then y − z′ ∈ Ĥs. So, in view of the definition of Gμ,σ

and (3.2), we have∑
z′∈ ̂Ht

E [exp (−σmμ(y, z
′, ·))] =

∑
z′∈ ̂Ht

E [exp (−σmμ(y − z′, 0, ·))] = Gμ,σ(s).
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Therefore,

E [exp (−σmμ(y, 0, ·))] ≤ exp (Cσ)Gμ,σ(t)Gμ,σ(s).

Summing over all y ∈ Ĥt+s ∩ BR, and using Lemma 5.2 yields, in view of the
definition of R,

Gμ,σ(s+ t) ≤ CRd−1l1−d
μ σ1−d exp (Cσ)Gμ,σ(t)Gμ,σ(s)

≤ C(s+ t)d−1μ2−2dσ1−d exp(Cσ)Gμ,σ(t)Gμ,σ(s).

We obtain the lemma after taking the logarithm of both sides of this expression,
dividing by −σ, rearranging the resulting the expression and then estimating a
logarithm term in a similar way as near the end of the proof of Lemma 5.3. �

We next use Lemma 3.10 to obtain a rate of convergence for the means
t−1E [mμ(Ht, 0, ·)] to their limit mμ(Ht).

Lemma 5.5. There exists C > 0 such that, for every t > 1,

(5.18) E [mμ(Ht, 0, ·)] ≤ mμ(Ht) + C

(
t

μ2
log

(
1 +

t

μ

)) 1
2

.

Proof. According to Lemma 5.4, the quantity gμ,σ is almost superadditive. More
precisely, for all s, t > 0, we have

(5.19) gμ,σ(s+ t) ≥ gμ,σ(s) + gμ,σ(t)−Δμ,σ(s+ t),

where taking k to be the constant C in (5.15) and

Δμ,σ(t) :=
k

σ

(
1 + log

(
1 +

t

σμ

))
.

Since Δμ,σ is increasing on [1,∞) andˆ ∞

1

Δμ,σ(t)

t2
dt < ∞,

we may apply Lemma 3.10 to deduce that gμ,σ := limt→∞ gμ,σ(t)/t exists and, for
every t > 1,

(5.20)
1

t
gμ,σ(t)− 4

ˆ ∞

2t

Δμ,σ(s)

s2
ds ≤ gμ,σ.

An easy integration by parts yields

(5.21) 4

ˆ ∞

2t

Δμ,σ(s)

s2
ds ≤ C

σt

(
1 + log

(
1 +

t

σμ

))
.

In view of the second inequality in (5.12), we also have

(5.22) gμ,σ ≤ lim inf
t→∞

1

t
(E [mμ(Ht, 0, ·)] + C) = lim inf

t→∞

1

t
E [mμ(Ht, 0, ·)] .

We next claim that

(5.23) lim
t→∞

1

t
E [mμ(Ht, 0, ·)] = mμ(H1).

To see this, note that

1

t
mμ(Ht, 0, ω) =

1

t
inf

z∈H1

mμ(tz, 0, ω) = inf
z∈H1∩B(Lμ/lμ)

mμ(tz, 0, ω)

t
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and, in view of (3.46) and the fact that z �→ t−1mμ(tz, 0, ω) is Lipschitz uniformly
in t > 0, we deduce that

P

[
lim sup
t→∞

sup
z∈H1∩B(Lμ/lμ)

∣∣∣∣mμ(tz, 0, ω)

t
−mμ(z)

∣∣∣∣ = 0

]
= 1.

We now obtain (5.23) from these two lines and the dominated convergence theorem
(which applies since t−1mμ(Ht) ≤ Lμ).

Combining (5.20), (5.21), (5.22), and (5.23), we obtain

1

t
gμ,σ(t) ≤ mμ(H1) +

C

σt

(
1 + log

(
1 +

t

σμ

))
.

Multiplying by t, applying the first inequality in (5.12) and using the homogeneity
of mμ yields

E [mμ(Ht, 0, ·)] ≤ mμ(Ht) + C

(
σt

μ2
+

1

σ
+

1

σ
log

(
1 +

t

σμ

))
,

and choosing σ := μt−
1
2 (log(1 + t/μ))

1
2 completes the proof. �

5.3. Error estimates for Mμ(y) − mμ(y) and the proof of (2.14). It is the
rate of convergence of t−1Mμ(ty) to mμ(y) that we wish to estimate, not that of
t−1E [mμ(Ht, 0, ·)] to mμ(H1). In order to reach our desired goal, we must compare
the quantities t−1Mμ(ty) and t−1E [mμ(Ht, 0, ·)]. This is accomplished in two steps.
The first is to show that E [mμ(Ht, 0, ·)] is very close to

Mμ(Ht) := min
y∈Ht

Mμ(y).

This yields an estimate for the difference between Mμ(Ht) and mμ(Ht). The second
step is to use elementary convex geometry to relate Mμ(y) to the values of Mμ(H)
for all the possible planes H passing through y.

Lemma 5.6. There exists C > 0 such that, for every t > 1,

(5.24) Mμ(Ht) ≤ E [mμ(Ht, 0, ·)] + C

(
t

μ2
log

(
1 +

t

μ

)) 1
2

.

Proof. Let R := (Lμ/lμ)t. For every ω ∈ Ω, there exists z ∈ Ht ∩ BR such that

mμ(z, 0, ω) = mμ(Ht, 0, ω). Hence, there exists ẑ ∈ Ĥt ∩BR such that

mμ(ẑ, 0, ω) ≤ mμ(Ht, 0, ω) + Lμ(d− 1)
1
2 .

For every z ∈ Ht we have E [mμ(z, 0, ·)] = Mμ(z) ≥ Mμ(Ht) and thus, for every
λ > 0,

(5.25)
{
ω ∈ Ω : Mμ(Ht)−mμ(Ht, 0, ω) ≥ λ+ Lμ(d− 1)

1
2

}
⊆

⋃
z∈ ̂Ht∩BR

{ω ∈ Ω : mμ(z, 0, ω) ≤ Mμ(z)− λ} .
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Applying (4.2) and using R = (Lμ/lμ)t ≤ Ct/μ, we find

P

[
Mμ(Ht)−mμ(Ht, 0, ·) ≥ λ+ Lμ(d− 1)

1
2

]
(5.26)

≤CRd−1 max
z∈Ht

P [mμ(z, 0, ·)−Mμ(z) ≤ −λ]

≤CRd−1 exp

(
−μλ2

CR

)
≤ Cμ1−dtd−1 exp

(
−μ2λ2

Ct

)
.

We wish to use the expression

(5.27) Mμ(Ht)− E [mμ(Ht, 0, ·)] ≤
ˆ ∞

0

P [Mμ(Ht)−mμ(Ht, 0, ·) ≥ λ] dλ

and then apply (5.26) to the right side of (5.27), but due to the factor td−1 on the
right side of (5.26), this bound is not very helpful unless λ is large relative to t.
With this in mind we fix A > 1, to be selected below, define

λ1 :=

(
At

μ2
log

(
1 +

t

μ

)) 1
2

and then estimate the right side of (5.27) byˆ ∞

0

P [Mμ(Ht)−mμ(Ht, 0, ·) ≥ λ] dλ

≤λ1 + Lμ(d− 1)
1
2 +

ˆ ∞

λ1

P

[
Mμ(Ht)−mμ(Ht, 0, ·) ≥ λ+ Lμ(d− 1)

1
2

]
dλ

≤λ1 + Lμ(d− 1)
1
2 + Cμ1−dtd−1

ˆ ∞

λ1

exp

(
−μ2λ2

Ct

)
dλ.

Observe that

μ1−dtd−1

ˆ ∞

λ1

exp

(
−μ2λ2

Ct

)
dλ ≤ μ1−dtd−1

ˆ ∞

λ1

exp

(
−μ2λ1λ

Ct

)
dλ

= Cμ1−dtd−1 t

μ2λ1
exp

(
−μ2λ2

1

Ct

)
≤ C

td

μd+1

(
1 +

t

μ2

)−A
C

.

By selecting A to be a large enough constant, the last expression on the right is at
most C. Combining the last two sets of inequalities with (5.27), we obtain

(5.28) Mμ(Ht)− E [mμ(Ht, 0, ·)] ≤ λ1 + Lμ(d− 1)
1
2 + C ≤ λ1 + C,

which implies (5.24). �

Lemmas 5.5 and 5.6 give an estimate on the difference of Mμ(Ht) and mμ(Ht).

Corollary 5.7. There exists C > 0 such that, for every t > 1,

(5.29) Mμ(Ht) ≤ mμ(Ht) + C

(
t

μ2
log

(
1 +

t

μ

)) 1
2

.

The relationship betweenMμ(Ht) andMμ(y) depends on the following geometric
lemma.

Lemma 5.8. There exists C > 0 such that, for every N ∈ N∗ and α > 0,

(5.30) conv
{
y ∈ Rd : Mμ(y) ≤ α

}
⊆
{
y ∈ Rd : Mμ(Ny) ≤ (N + C/μ)α

}
.
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Proof. Let α > 0, N ∈ N∗ and select y ∈ conv{y ∈ Rd : Mμ(y) ≤ α}. Accord-
ing to Carathéodory’s theorem (see for example [14]), there exist y1, . . . , yd+1 and
λ1, . . . , λd+1 ∈ [0, 1] such that

y =

d+1∑
j=1

λjyj , 1 =

d+1∑
j=1

λj and Mμ(yj) ≤ α for every 1 ≤ j ≤ d+ 1.

For each 1 ≤ j ≤ d+ 1, select σj ∈ Q such that σjN ∈ N and 0 ≤ λj − σj ≤ 1/N ,

define z :=
∑d+1

j=1 σjyj and observe that, by (4.14),

|y − z| ≤ d+ 1

N
max

1≤j≤N
|yj | ≤

(d+ 1)α

Nlμ

and, by (3.6), (4.14), and (4.13),

Mμ(Ny) ≤ Mμ(Nz) + LμN |z − y|(5.31)

≤ Mμ(Nz) +

(
(d+ 1)Lμ

lμ

)
α ≤ Mμ(Nz) +

Cα

μ
.

Notice that, since Nσj ∈ N and Nz =
∑d+1

j=1(Nσj)yj , we may apply (5.1) to deduce
that

(5.32) Mμ(Nz) ≤
d+1∑
j=1

(Nσj)Mμ(yj) ≤ Nα

d+1∑
j=1

σj ≤ Nα

d+1∑
j=1

λj = Nα.

Combining (5.31) and (5.32) yields the lemma. �

The previous lemma and (5.29) yield a rate of convergence for Mμ(y) to mμ(y).

Proof of Proposition 5.1. The first step is to show that, for every z ∈ Rd such that
|z| > 1,

(5.33) z ∈ conv

{
y ∈ Rd : Mμ(y) ≤ mμ(z) + k

(
|z|
μ2

log

(
1 +

|z|
μ

)) 1
2

}
,

where k > C where C is as in (5.29). Suppose on the contrary that (5.33) fails for
some z ∈ Rd with t := |z| > 1. By elementary convex separation, there exists a
plane H with z ∈ H such that

Mμ(H) > mμ(z) +A where A := k

(
t

μ2
log

(
1 +

t

μ

)) 1
2

.

Since H is at most a distance of |z| = t from the origin, we may assume with no
loss of generality that H = Hs for some s ≤ t. We deduce that

(5.34) Mμ(Hs) > mμ(z) +A ≥ mμ(Hs) + k

(
s

μ2
log

(
1 +

s

μ

)) 1
2

.

Using mμ(Hs) ≥ 0, Mμ(Hs) ≤ Lμs and μ ≤ K, we see that by making k larger,
if necessary, we may deduce that s > 1. Now (5.34) contradicts (5.29). We have
proved (5.33).

We now fix |y| > 1 and proceed with the demonstration of (5.3). Note that we
may assume |y| ≥ 1 + μ−1, since otherwise (5.3) follows for a suitable C > 0 from
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|y| > 1, Mμ(y) ≤ Lμ|y| and mμ(y) ≥ 0. Now apply (5.33) to z := y/N , where
N ∈ N∗ is chosen below such that N ≤ |y|, to obtain

y/N ∈ conv

{
x ∈ Rd : Mμ(x) ≤ mμ(y/N) + C

(
|y|
Nμ2

log

(
1 +

|y|
Nμ

)) 1
2

}
and, after an application of (5.30),

Mμ(y) ≤
(
N +

C

μ

)(
mμ(y/N) + C

(
|y|
Nμ2

log

(
1 +

|y|
Nμ

)) 1
2

)

≤ mμ(y) + CLμ
|y|
Nμ

+ C

(
N |y|
μ2

log

(
1 +

|y|
Nμ

)) 1
2

+C

(
|y|
Nμ4

log

(
1 +

|y|
Nμ

)) 1
2

.

Now we optimize N to obtain (5.3). In the case that |y|−1 ≤ μ3, then we let N be

the smallest integer larger than |y| 13 to get, after using that |y| > 1 and μ ≤ K,
that

(5.35) Mμ(y) ≤ mμ(y) + C
|y| 23
μ

(
log

(
1 +

|y|
μ

)) 1
2

.

If, on the other hand, 0 < μ3 < |y|−1, then we take N be the smallest integer larger
than μ−1 and find that

(5.36) Mμ(y) ≤ mμ(y) + C
|y| 12
μ

3
2

(log (1 + |y|))
1
2 .

Note that in either case we have (5.3) and we have chosen N so that N ≤ (1 +
μ−1) ∨ |y| ≤ |y|, as required. �

5.4. Some further error estimates. We conclude this section with versions
of (2.12) and (2.14) which hold uniformly for y ∈ BR. These estimates, which
are needed in the next section, follow from Theorem 1 and a simple covering argu-
ment.

Lemma 5.9. There exists C > 0 such that, for every λ ≥ 4Lμ and R ≥ 3,

(5.37) P

[
inf

y∈BR

(mμ(y, 0, ·)−mμ(y)) ≤ −λ

]
≤ CRd exp

(
−μλ2

CR

)
,

and, if

(5.38) λ ≥ C

(
R

1
2

μ
3
2

+
R

2
3

μ

)(
log

(
1 +

R

μ

)) 1
2

,

then

(5.39) P

[
sup
y∈BR

(mμ(y, 0, ·)−mμ(y)) ≥ λ

]
≤ CRd exp

(
−μλ2

CR

)
.
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Proof. We may select y1, . . . , yN ∈ BR\B1 with N ≤ CRd such that BR is covered
by the balls B(yj , 2). Then by (3.9) we have, for any λ > 0,

P

[
inf

y∈BR

(mμ(y, 0, ·)−mμ(y)) ≤ −λ

2
− 2Lμ

]
≤

N∑
j=1

P

[
mμ(yj , 0, ·)−mμ(yj) ≤ −λ

2

]
.

According to (2.12), for each 1 ≤ j ≤ N ,

P

[
mμ(yj , 0, ·)−mμ(yj) ≤ −λ

2

]
≤ exp

(
− μλ2

C|yj |

)
≤ exp

(
−μλ2

CR

)
.

Since N ≤ CRd, we obtain, for every λ ≥ 4Lμ,

P

[
inf

y∈BR

(mμ(y, 0, ·)−mμ(y)) ≤ −λ

]
≤ CRd exp

(
−μλ2

CR

)
.

The estimate (5.39) is obtained in a very similar way from Theorem 1 and a
covering argument. We omit the proof. �

6. Error estimates for the approximate cell problem

Here we obtain estimates on the difference between −δvδ(y, ω ; p) and H(p),
study the rate for the almost sure convergence

(6.1) lim
δ→0

sup
y∈BR/δ

∣∣δvδ(y, ω ; p) +H(p)
∣∣ = 0

and prove Theorems 2 and 3. One difficulty arises from the fact that the rate for
the approximate cell problem may be very different depending on whether or not p
belongs to the interior of the flat spot {H = 0}. Recall that the flat spot is never
empty since, e.g., H(0) = 0 (see Appendix A). Moreover, the flat spot {H = 0} is
not in general equal to {0} and may indeed have nonempty interior (see, e.g., [3]).
We use the metric problem to control the −δvδ’s from above, and from below for
p’s away from the flat spot {H = 0}. To obtain the upper bound on the flat spot
we study directly the behavior of the δvδ’s.

We recall here two important deterministic (i.e., uniform in ω ∈ Ω) estimates
from Section 3.2:

(6.2) − sup
Rd×Ω

H(p, ·) ≤ δvδ(y, ω ; p) ≤ − ess inf
Rd×Ω

H(p, ·)

and

(6.3)
∣∣vδ(y, ω ; p)− vδ(z, ω ; p)

∣∣ ≤ Kp|y − z|,
where Kp > 0 depends only on the assumptions for H and an upper bound for |p|.
Note that the left and right of (6.2) are bounded for bounded |p| by (2.4).

6.1. The ballistic regime. We combine the exponential error estimates for the
metric problem obtained in the previous section with a comparison argument to
obtain estimates on the difference between −δvδ(y, ω ; p) andH(p). The comparison
argument, which was introduced in [4] to prove homogenization, yields an estimate
from below for δvδ + H(p) for all p ∈ Rd and from above only for p’s away from
the flat spot.

In the next two proofs, we work with a fixed p ∈ Rd and denote by C and c
positive constants which may vary in each occurrence and depend only on an upper
bound for |p| and the assumptions for H.
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Proof of Theorem 2(i). We actually prove a more general, deterministic statement:
namely that, for every 0 < δ ≤ λ ≤ 1, there exists a fixed constant R ≤ C/δ and a
finite set K ⊆ Rd consisting of at most Cδ−2d elements (which will be identified in
the argument) such that

(6.4)
{
ω ∈ Ω : −δvδ(0, ω ; p) ≥ H(p) + λ

}
⊆

⋃
z∈K

{
ω ∈ Ω : inf

y∈B(z,R)
(mμ(z, y, ω)−mμ(z − y)) ≤ − λ

8δ

}
,

where μ := H(p) + λ/4. Admitting (6.4) for the moment, let us see how to de-
rive (2.15) as a consequence of it and Theorem 1 (or more precisely, its corollary,
Lemma 5.9). We simply use (2.1), (3.2), a union bound, and (5.37) to estimate
the probability of right side of (6.4), keeping in mind that μ = λ/4, R ≤ C/δ and
|K| ≤ δ−2d. We have:

P
[
−δvδ(0, · ; p) ≥ H(p) + λ

]
≤ Cδ−2d P

[
inf

y∈BR

(mμ(y, 0, ·)−mμ(y)) ≤ − λ

8δ

]
≤ Cδ−2dRd exp

(
− μλ2

Cδ2R

)
≤ Cδ−3d exp

(
− λ3

Cδ

)
.

The proof of (6.4) is by a simple comparison argument. We argue that, if
−δvδ(0, ω; p) is too large, then we can find some translation of mμ which is much
too small– otherwise vδ(·, ω; p) and y �→ mμ(y, z, ω)− p · y would touch somewhere,
in violation of the comparison principle.

For the rest of the argument, we fix ω ∈ Ω for which −δvδ(0, ω ; p) ≥ H(p) + λ.

Step 1. We prepare vδ and mμ for the comparison: we subtract a plane of slope
p from mμ and, since we need to introduce some strictness in order to ensure that
the two functions touch each other, we bend vδ by a negligible amount. Consider

w(y) := vδ(y, ω ; p)− vδ(0, ω ; p) + cλ
(
1 + |y|2

) 1
2 − cλ,

By (2.5) and (6.3), if 0 < c < 1 sufficiently small, then w satisfies

(6.5) H(p+Dw, y, ω) ≥ −δvδ(y, ω ; p)− 1

4
λ in Rd.

Define U :=
{
y ∈ Rd : w(y) < λ/4δ

}
and notice that, for every y ∈ U ,

−δvδ(y, ω ; p) ≥ −δvδ(0, ω ; p)− 1

4
λ ≥ H(p) +

3

4
λ.

In particular,

(6.6) H(p+Dw, y, ω) ≥ H(p) +
1

2
λ in U.

According to (6.2), there exists y1 ∈ Rd such that |y1| ≤ C/λδ and

(6.7) w(y1) = inf
y∈Rd

w(y) ≤ w(0) = 0.
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Next, we denote ŵ(y) := w(y)−w(y1) + cλ
(
1 + |y − y1|2

) 1
2 − cλ and observe that,

by |Dw| ≤ Kp + 1 and (2.5), if c > 0 is small enough, then we obtain from (6.6)
that

(6.8) H(p+Dŵ, y, ω) ≥ H(p) +
1

3
λ in U.

Also notice that ŵ ≥ w, ŵ(y1) = 0 and ŵ(y) ≥ cλ
(
1 + |y − y1|2

) 1
2 − cλ. Therefore,

if we define V :=
{
y ∈ Rd : ŵ(y) < λ/4δ

}
, then, for some 0 < R ≤ C/δ, we have

(6.9) V ⊆ U ∩B(y1, R).

To prepare mμ for the comparison, recall that μ = H(p) + λ/4, define

m̂(y) := −mμ(y1, y, ω)− p · (y − y1)

and observe that, according to (3.12),

(6.10) H(p+Dm̂, y, ω) ≤ μ = H(p) +
1

4
λ in Rd.

Step 4. We compare ŵ and m̂ in V and then unwind the consequences. Since
y1 ∈ V , an application of Proposition 3.11 gives

max
y∈∂V

(−mμ(y1, y, ω) + p · (y1 − y)) = max
∂V

(m̂− ŵ) +
λ

4δ
(6.11)

≥ m̂(y1)− ŵ(y1) +
λ

4δ
=

λ

4δ
.

Since μ > H(p) we see from (3.44) that p ∈ ∂mμ(0), in particular, for every z ∈ Rd,

(6.12) mμ(z) ≥ p · z.
Using (6.11), (6.12), and the fact that ∂V ⊆ B(y1, R), we obtain

inf
y∈B(y1,R)

(mμ(y1, y, ω)−mμ(y1 − y)) ≤ − λ

4δ
.

In view of (3.9) and |y1| ≤ C/λδ, we deduce that, for some c > 0 small enough, we
may “snap to a grid” to deduce that there exists

z ∈ K := {cλk/δ : k ∈ Zd} ∩BC/λδ,

such that

inf
y∈B(z,R)

(mμ(z, y, ω)−mμ(z − y)) ≤ − λ

8δ
.

Note that K has Cλ−2d ≤ Cδ−2d elements. This completes the proof of (6.4). �
Proof of Theorem 2(ii). The argument is similar to the proof of Theorem 2(i)
above, but the two are not completely analogous and the details here are a bit
more complicated. In particular, it is here that we need the existence of |e| = 1
satisfying (3.47).

To setup the argument, let 0 < δ ≤ 1 and λ > 0 such that (2.16) holds. Set
μ := H(p). Since μ > 0 by assumption, there exists e ∈ Rd with |e| = 1 such
that (3.47) holds.

The deterministic statement we prove is this: there exists R ≤ C/δ and a finite
set K ⊆ Rd with at most Cλ−2d elements such that

(6.13)
{
ω ∈ Ω : −δvδ(0, ω ; p) ≤ H(p)− λ

}
⊆
⋃
z∈K

(E1(z) ∪ E2(z))
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where we define the events E1(z), E2(z) ∈ F for each z ∈ Rd by

E1(z) :=

{
ω ∈ Ω : mμ(z, z −Re, ω)−mμ(Re) ≥ λ

10δ

}
and

E2(z) :=

{
ω ∈ Ω : sup

y∈B(z,R)

(−mμ(y, z −Re, ω) +mμ(y − z +Re)) ≥ λ

10δ

}
.

Postponing the demonstration of (6.13), let us finish the proof of the theorem.
Using (2.1), (3.2), a union bound, and |K| ≤ Cλ−2d ≤ Cδ−2d, we find that

(6.14) P
[
−δvδ(0, · ; p) ≥ H(p) + λ

]
≤ Cδ−2d (P [E1(Re)] + P [E2(Re)]) .

Applying (5.37), we get

P [E2(Re)] = P

[
inf

y∈BR

(mμ(y, 0, ω)−mμ(y)) ≤ − λ

8δ

]
≤ CRd exp

(
− μλ2

Cδ2R

)
≤ Cδ−d exp

(
−μλ2

Cδ

)
and, using the assumption (2.16), we apply (2.14) to get

P [E1(Re)] = P

[
mμ(Re, 0, ·)−mμ(Re) ≥ λ

8δ

]
≤ exp

(
− μλ2

Cδ2R

)
≤ exp

(
−μλ2

Cδ

)
.

Combining the last two sets of inequalities with (6.14) yields (2.17).
We have left to prove (6.13), for which we make a comparison argument. Fix

ω ∈ Ω for which −δvδ(0, ω ; p) ≤ H(p)− λ.

Step 1. We prepare vδ and mμ for the comparison. According to (2.5), (6.3), and
Lemma A.1, if c > 0 is chosen sufficiently small, then

w(y) := vδ(y, ω ; p)− vδ(0, ω ; p)− cλ|y|

satisfies

(6.15) H(p+Dw, y, ω) ≤ −δvδ(y, ω ; p) +
1

4
λ in Rd.

(Note that, in contrast to Step 1 in the proof of Theorem 2(i) above, we have
perturbed vδ by a nonsmooth function. Thus, unlike the derivation of (6.5), the
inequality (6.15) does not immediately hold in the viscosity sense. This relies on
the level-set convexity of H and explains the appeal to Lemma A.1.)

Define U :=
{
y ∈ Rd : w(y) > −λ/4δ

}
and observe that, for every y ∈ U ,

−δvδ(y, ω ; p) ≤ −δvδ(0, ω ; p) +
1

4
λ ≤ H(p)− 3

4
λ

and, therefore,

H(p+Dw, y, ω) ≤ H(p)− 1

2
λ in U.

According to (6.2), there exists y2 ∈ Rd such that |y2| ≤ C/λδ and

(6.16) w(y2) = sup
y∈Rd

w(y) ≥ w(0) = 0.
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By |Dw| ≤ Kp + 1 and (2.5), there exists c > 0 such that ŵ(y) := w(y)− w(y2)−
cλ|y − y2| satisfies

H(p+Dŵ, y, ω) ≤ H(p)− 1

3
λ in U.

Let V :=
{
y ∈ Rd : ŵ(y) > −λ/4δ

}
and note that, in light of the fact that ŵ ≤ w,

ŵ(y2) = 0 and ŵ(y) ≤ −cλ|y − y2|, there exists 0 < R ≤ C/δ such that

(6.17) V ⊆ U ∩B(y2, R).

Define m̂(y) := mμ(y, y2 −Re, ω)− p · y and observe that, in view of (3.4),

H(p+Dm̂, y, ω) = μ = H(p) in Rd\{y2 −Re} ⊇ V.

Step 2. We apply the comparison principle: comparing ŵ to m̂ in V yields the
inequality

ŵ(y2)− m̂(y2) ≤ sup
y∈V

(ŵ(y)− m̂(y)) = max
y∈∂V

(ŵ(y)− m̂(y)) .

Using (6.16) and that ŵ(y2) = 0 and ŵ ≡ −λ/4δ on ∂V , we obtain

max
y∈∂V

(mμ(y2, y2 −Re, ω)−mμ(y, y2 −Re, ω)− p · (y2 − y))

= max
y∈∂V

(m̂(y2)− m̂(y)) ≥ λ

4δ
.

We next split the left side of the above inequality into two pieces, one of which must
be at least half of the right side. Recalling that e has been chosen so that (3.47)
holds, we deduce that either

(6.18)
λ

8δ
≤ mμ(y2, y2 −Re, ω)− p · (Re) = mμ(y2, y2 −Re, ω)−mμ(Re)

or else

λ

8δ
≤ max

y∈∂V
(−mμ(y, y2 −Re, ω) + p · (y − y2 +Re))(6.19)

≤ max
y∈∂V

(−mμ(y, y2 −Re, ω) +mμ(y − y2 +Re)) .

Using (3.9), (6.17), and that |y2| ≤ C/λδ, we may “snap to a grid” to obtain that
there exists

z ∈ K := {cλk/δ : k ∈ Zd} ∩BC/λδ,

such that either

(6.20) mμ(z, z −Re, ω)−mμ(Re) ≥ λ

10δ

or else

(6.21) sup
y∈B(z,R)

(−mμ(y, z −Re, ω) +mμ(y − z +Re)) ≥ λ

10δ
.

That is, either ω ∈ E1(z) or else ω ∈ E2(z) for some z ∈ K. Note that |K| =
Cλ−2d ≤ Cδ−2d. �

A covering argument now yields explicit error estimates for (6.1) in balls of
radius O

(
δ−1

)
.
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Lemma 6.1. For each K > 0, there exist C, c > 0, depending on K and H, such
that, for each p ∈ BK , R > 0 and 0 < δ ≤ c,

(6.22) P

[
sup

y∈BR/δ

−δvδ(y, · ; p) ≥ H(p) + C| log δ| 13 δ 1
3

]
≤ Rdδ2,

and, if H(p) > 0, then

P

[
inf

y∈BR/δ

−δvδ(y, · ; p) ≤ H(p)(6.23)

−C
(
H(p)−

3
2 δ

1
2 +H(p)−1δ

1
3

) (
1 + | log δ|+ | logH(p)|

) 1
2

]
≤ Rdδ2.

Proof. Since both of the estimates are obtained from the first two statements of
Theorem 2 using a similar argument, we prove only (6.22). To do so, we apply (2.15)

with λ := A| log δ| 13 δ 1
3 , for A > 0 chosen sufficiently large, and use a simple covering

argument. Notice that if 0 < δ < 1
2 is sufficiently small, depending on A, then

δ ≤ λ. There exist points y1, . . . , yN ∈ BR/δ such that N ≤ CRdλ−d and the balls
B(yj , λ/2δKp) cover BR/δ. According to (3.35), (6.3) and (2.15),

P

[
sup

y∈BR/δ

−δvδ(y, · ; p) ≥ H(p) + λ

]
≤ P

[
max

1≤j≤N
−δvδ(yj , · ; p) ≥ H(p) +

λ

2

]
≤ CNP

[
−δvδ(0, · ; p) ≥ H(p) +

λ

2

]
≤ CRdλ−dδ−3d exp

(
− λ3

Cδ

)
≤ CRdδ−4d exp

(
−A3| log δ|

C

)
.

We therefore obtain (6.22) if we choose A > 0 so that A3 ≥ C(4d+ 2). �

We next apply Lemma 6.1 along a certain subsequence δn → 0 to prove, with the
help of (3.40) and the Borel-Cantelli lemma, the first two statements of Theorem 3.

Proof of Theorem 3(i) and Theorem 3(ii). The arguments for the two statements
are almost identical, so we prove only (2.20). Let R > 0, δn = n−1 and apply (6.22)
to obtain

∞∑
n=1

P

[
sup

y∈BR/δn

−δnv
δn(y, · ; p) ≥ H(p) + C| log δn|

1
3 δ

1
3
n

]
≤ C +Rd

∑
n>1/c2

δ2n

≤ C +Rd
∞∑

n=1

1

n2
< ∞.

By the Borel-Cantelli lemma, we deduce that, there exists C > 0 such that, for
every R > 0,

P

[
lim sup
n→∞

sup
y∈BR/δn

−δnv
δn(y, · ; p)−H(p)

C| log δn|
1
3 δ

1
3
n

≤ 1

]
= 1.
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Intersecting these events for each R = 1, 2, 3, . . ., we find an event Ω1 of full prob-
ability such that, for every R > 0 and ω ∈ Ω1,

lim sup
n→∞

sup
y∈BR/δn

−δnv
δn(y, · ; p)−H(p)

C| log δn|
1
3 δ

1
3
n

≤ 1.

Notice that δn+1/δn = 1− δn+1 and so, according to (3.40), for any δn+1 ≤ η < δn
and ω ∈ Ω,

sup
y∈Rd

∣∣δnvδn(y, ω ; p)− ηvη(y, ω ; p)
∣∣ ≤ Cδn+1 ≤ Cδn.

Hence, for every ω ∈ Ω1 we have

lim sup
δ→0

sup
y∈BR/δ

−δvδ(y, ω ; p)−H(p)

C| log δ| 13 δ 1
3

= lim sup
n→∞

sup
δn≤η<δn−1

sup
y∈BR/η

−ηvη(y, ω ; p)−H(p)

C| log η| 13 η 1
3

≤ lim sup
n→∞

sup
y∈B2R/δn

−δnv
δn(y, ω ; p)−H(p) + Cδn

C| log δn|
1
3 δ

1
3
n

≤ 1. �

6.2. The sub-ballistic regime. We show that the behavior of δvδ(0, · ; p) for p’s
on the flat spot {H = 0} is determined by the distribution of H(0, 0, ·) near its
maximum and that with further (quite reasonable) assumptions on this distribution,
we obtain exponential error estimates and an algebraic rate of convergence for
−δvδ(0, ω ; p) to H(p).

We begin with the simple observation, which is probably well known and es-
sentially taken from [3], that −δvδ(·, ω ; p) is controlled pointwise from below by
H(0, ·, ω).
Lemma 6.2. For every p ∈ Rd and ω ∈ Ω,

(6.24) −δvδ(0, ω ; p) ≥ sup
R>0

(
sup
y∈BR

H(0, y, ω)−KpRδ

)
,

where the constant Kp > 0 is defined in (3.36).

Proof. Fix p, y ∈ Rd and ω ∈ Ω. Due to (1.4) and (2.9), vδ(·, ω ; p) satisfies

(6.25) δvδ +H(0, y, ω) ≤ δvδ +H(p+Dvδ, y, ω) = 0 in Rd.

While this holds in the viscosity sense, there are no derivatives in the expression
on the left of (6.25), and we deduce that

(6.26) −δvδ(y, ω ; p) ≥ H(0, y, ω).

Combining (6.26) and (6.3) yields (6.24). �
For p’s on the flat spot, the rate of convergence for −δvδ(0, ω ; p) to 0 = H(p)

given by (6.24) is essentially optimal (see Lemma 6.5 below). We next exhibit
exponential error estimates for −δvδ(0, · ; p) under the additional hypothesis (2.11).
Proposition 6.3. Assume (2.11). There exist C, c > 0 such that, for all δ > 0
and 0 < λ ≤ c,

(6.27) P
[
−δvδ(0, · ; p) ≤ −λ

]
≤ exp

(
−λd+θ

Cδd

)
.
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Proof. Fix p ∈ Rd and apply (6.24) with R := λ/(2Kpδ) to discover that

P
[
−δvδ(0, · ; p) ≤ −λ

]
≤ P

[
sup
y∈BR

H(0, y, ·) ≤ KpRδ − λ

]
= P

[
sup
y∈BR

H(0, y, ·) ≤ −λ

2

]
.

Select y1, . . . , yN ∈ BR such that N ≥ cRd and, for every i = j, |yi − yj | > 1.
Then (2.2) and (2.3) yield

P

[
sup
y∈BR

H(0, y, ·) ≤ −λ

2

]
≤ P

[
sup

1≤j≤N
H(0, yj , ·) ≤ −λ

2

]
=

∏
1≤j≤N

P

[
H(0, yj , ·) ≤ −λ

2

]
.

Using (2.11), we find∏
1≤j≤N

P

[
H(0, yj , ·) ≤ −λ

2

]
=

(
P

[
H(0, 0, ·) ≤ −λ

2

])N

≤
(
1− cλθ

)N
≤ exp

(
−cNλθ

)
≤ exp

(
−cλd+θδ−d

)
.

Combining the lines above yields (6.27). �

We now obtain, under assumption (2.11), exponential error estimates and a rate
of convergence, from below, for −δvδ for all p ∈ Rd. First, we combine (2.17)
and (6.27) to obtain error estimates independent of H(p).

Proof of Theorem 2(iii). We begin with the observation that there exists c > 0
such that, for every 0 < δ < c is sufficiently small, then

(6.28) δ
1
6 | log δ| 14 ≥ c sup

0<σ≤1

(
σ ∧

(
σ− 3

2 δ
1
2 + σ−1δ

1
3

)
(1 + | log δ|+ | log σ|)

1
2

)
.

To see this, fix σ > 0 such that δ
1
6 | log δ| 14 ≤ σ and observe that if c > 0 is

sufficiently small, then

σ− 3
2 δ

1
2 (1 + | log δ|+ | log σ|)

1
2 ≤ Cδ

1
4 |log δ|

1
8 < δ

1
6 |log δ|

1
4

and

σ−1δ
1
3 (1 + | log δ|+ | log σ|)

1
2 ≤ Cδ

1
6 |log δ|

1
4 .

This completes the proof of (6.28).
We deduce that, for any 0 < δ < c and λ > 0 satisfying (2.18) for sufficiently

large C > 0,

(6.29) λ ≥ sup
σ>0

(
σ ∧ C

(
σ− 3

2 δ
1
2 + σ−1δ

1
3

)
(1 + | log δ|+ | log σ|)

1
2

)
.

Now, (6.29) ensures that (2.17) and (6.27) overlap in an appropriate way to yield the
theorem. Indeed, we may apply (6.27) in case λ ≥ 2H(p), while in the case that λ <
2H(p), we may apply (2.17), since (6.29) ensures that λ < 2H(p) implies (2.16). �

Arguing in a similar way as in the proof of Lemma 6.1, we obtain the following
result as an application (2.19). The details are left to the reader.
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Lemma 6.4. Assume (2.11) and let α and β be defined as in (2.22). Then there
exist C, c > 0 such that, for each R > 0 and 0 < δ ≤ c,

(6.30) P

[
inf

y∈BR/δ

−δvδ(y, · ; p) ≤ H(p)− C| log δ|βδα
]
≤ Rdδ2.

Using (6.30) we complete the proof of Theorem 3.

Proof of Theorem 3(iii). The statement follows from (6.30) by an argument very
similar to the proof of Theorem 3(i) given above. �

6.3. The rate may be arbitrarily slow on the flat spot. As explained in
Appendix A, the vector p = 0 belongs to the flat spot: that is, H(0) = 0. We
can also see this from (3.45) by observing that (2.9) implies that vδ(·, ω ; 0) ≡ 0.
We show here that (2.11) is necessary for the existence of an algebraic rate of
convergence like (6.30) for the limit (6.1) at p = 0. Furthermore, without some
assumption on the distribution of the random variable H(0, 0, ·) near its maximum,
there is no restraint on how slowly the limit (6.1) may converge for p = 0.

We begin by exhibiting an upper bound for −δvδ(0, ω ; 0) to match (6.24), which
shows that, for p’s on the flat spot, the rate given in Lemma 6.2 is essentially
optimal.

Lemma 6.5. There exists C ≥ 1 such that, for every ω ∈ Ω and R, δ > 0,

(6.31) −δvδ(0, ω ; 0) ≤ (−δR) ∨ δR

C + δR
sup
y∈BR

H(0, y, ω).

Proof. Fix ω ∈ Ω, R, δ > 0 and define, for every 0 ≤ α ≤ 1,

hR := − sup
y∈BR

H(0, y, ω) and hα,R := − sup
(p,y)∈Bα×BR

H(p, y, ω),

where we set hα,R := hR in the case that α = 0. Observe that hR ≥ 0 and, due
to (2.5), for any 0 ≤ α ≤ 1,

(6.32) |hR − hα,R| ≤ Cα.

Next fix 0 ≤ α ≤ 1 to be selected below, define u(x) := α(R− |x|)+ and note that
u ∈ L, |Du| ≤ α in Rd and u ≡ 0 in Rd\BR. We conclude that

δu+H(Du, y, ω) ≤ (δαR− hα,R) ∨ 0 in Rd.

Choose 0 ≤ α ≤ 1 to be the largest number for which αδR ≤ hα,R ∧ δR. The
comparison principle (Proposition 3.7) yields that δαR = δu(0) ≤ δvδ(0, ω ; 0).
According to (6.32),

α ≥ hR

C + δR
∧ 1.

which concludes the proof. �

The previous lemma states that the rate −δvδ(0, ω ; 0) converges to 0 is controlled
from below, up to a factor of 2, by the maximum of H(0, ·, ω) in the ball BC/δ.
Using the independence assumption and an easy covering argument, we relate the
latter to the distribution of H(0, 0, ω) near its maximum to recover the following
estimate.
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Lemma 6.6. There exists C > 0 such that, for every δ > 0 and 0 < λ ≤ 1,

(6.33) logP
[
−δvδ(0, · ; 0) ≤ −λ

]
≥ Cδ−d log

(
1− Cλ−d P [H(0, 0, ·) > −4λ]

)
,

where the inequality is vacuous if the argument in the logarithm on the right side
is negative.

Proof. Fix 0 < λ ≤ 1. There exists a finite collection of points {yij : 1 ≤ i ≤
N, 1 ≤ j ≤ M} ⊆ BR such that N ≤ CRd, M ≤ Cλ−d, BR is covered by the balls
B(yij , cλ) and |yij −ykj | > D if i = k. According to (2.2), (2.3), and (2.5), we have

P

[
sup
y∈BR

H(0, y, ·) ≤ −2λ

]
≥ P

[
sup

1≤i≤N
sup

1≤j≤M
H(0, yij , ·) ≤ −4λ

]
= P

[
sup

1≤j≤M
H(0, y1j , ·) ≤ −4λ

]N
≥
(
1−MP [H(0, 0, ·) > −4λ]

)N
.

Setting R := C/δ, with C ≥ 1 as in Lemma 6.5, applying (6.31) and taking the
logarithm of the resulting expression yields (6.33). �

We next show that the assumption (2.11) is essentially necessarily for (6.1) to
have an algebraic rate of convergence at p = 0.

Proposition 6.7. Assume, contrary to (2.11), that there exists C > 0 and θ > d
such that, for every 0 < λ ≤ 1/C,

(6.34) P [H(0, 0, ·) > −λ] ≤ Cλθ.

Then there exists c > 0 such that, for every 0 < δ ≤ c,

(6.35) P
[
−δvδ(0, · ; 0) ≤ −δγ

]
≥ c for γ := d/(θ − d).

Moreover, for ω belonging to an event of full probability, we have, for every η > γ,

(6.36) lim inf
δ→0

δvδ(0, ω ; 0)

δη
= +∞.

Proof. Let λ > 0. Using the elementary inequality −2t ≤ log(1− t) for 0 ≤ t ≤ 1
2 ,

we apply (6.33) and (6.34) to obtain, for sufficiently small δ, λ > 0,

logP
[
−δvδ(0, · ; 0) ≤ −λ

]
≥ Cδ−d log

(
1− Cλθ−d

)
≥ −Cδ−dλθ−d.

Setting λ := δβ yields (6.35) for sufficiently small δ > 0, while on the other hand
setting λ = δα for α > β, applying the Borel-Cantelli lemma along a subsequence
and arguing as in the proof of Theorem 3 yields (6.36). �

It is clear from (6.33) that, if P [H(0, 0, ·) > −λ] decays to 0 very quickly as
λ → 0, then −δvδ(0, ω ; 0) will converge to zero very slowly. We conclude this
section by exhibiting an example demonstrating an arbitrarily slow rate.

Example 6.8. Let ρ : [0, 1] → [0,∞) be a given increasing continuous function
with ρ(0) = 0. We will construct a Hamiltonian H, satisfying (2.10), such that

(6.37) lim inf
δ→0

δvδ(0, ω ; p)

ρ(δ)
≥ 1 almost surely.

According to (6.33), it suffices to exhibit an H for which

(6.38) C log
(
1− Cρ(δ)−d P [H(0, 0, ·) > −4ρ(δ)]

)
≥ −δd+2.
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Indeed, (6.33) and (6.38) yield

P
[
δvδ(0, · ; 0) ≥ ρ(δ)

]
≥ exp(−Cδ2) ≥ 1− Cδ2

for δ > 0 sufficiently small. Then the Borel-Cantelli lemma and an argument similar
to the proof of Theorem 3, using (3.40), give (6.37).

It is easy to check that for (6.38), it suffices to have

(6.39) P [H(0, 0, ·) > −σ] ≤ cσd
(
ρ−1(σ)

)d+2
=: ρ̂(σ),

and so we need to construct a Hamiltonian with a very thin distribution near its
maximum. This is quite simple. We may take, for example,

H(p, y, ω) :=
1

2
|p|2 − φ(V (y, ω))

where V is a Poissonian potential (see, for example, [34]) and φ : [0,∞) → (0,∞) is
a continuous, decreasing function such that φ(t) decays very slowly to 0 as t → ∞
(the precise rate of decay required can be explicitly calculated in terms of ρ̂). We
leave it to the interested reader to fill in the details.

6.4. Uniform error estimates for the approximate cell problem. The proofs
of Theorems 4 and 5, given in the next section, depend on the following extensions
of Theorems 2 and 3 which hold uniformly for bounded |p| and for y in balls of
radius O

(
δ−N

)
, for any N ≥ 1. We omit the arguments, since the error estimates

follow easily from an application of Theorem 2 combined with (3.35) and a routine
covering argument, and then the convergence rates from the latter using the nearly
same argument as in the proof of Theorem 3.

Proposition 6.9. For each K > 0, there exist constants C, c > 0, depending on K
and H, such that, for each R > 0, the following hold:

(i) For every 0 < λ ≤ 1 and 0 < δ ≤ cλ,

(6.40) P

[
sup

(y,p)∈BR×BK

(
−δvδ(y, · ; p)−H(p)

)
≥ λ

]
≤ CRdδ−5d exp

(
− λ3

Cδ

)
.

(ii) If (2.11) holds and λ, δ > 0 satisfy 0 < δ ≤ cλ and

(6.41) λ ≥ Cδ
1
6 | log δ| 14 ,

then

P

[
inf

(y,p)∈BR×BK

(
−δvδ(y, · ; p)−H(p)

)
≤ −λ

]
(6.42)

≤ CRdδ−5d exp

(
− 1

C

(
λ3

δ
∧ λd+θ

δd

))
.

Proposition 6.10. There exists an event Ω3 ∈ F of full probability such that, for
every ω ∈ Ω3, the following hold:

(i) For every R,K > 0 and N ≥ 1,

(6.43) lim sup
δ→0

sup
y∈B(R/δ)N

sup
p∈BK

−δvδ(y, ω ; p)−H(p)

δ
1
3 | log δ| 13

< ∞.
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(ii) If (2.11) holds and we define α and β as in (2.22), then, for every R,K > 0
and N ≥ 1,

(6.44) lim inf
δ→0

inf
y∈B(R/δ)N

sup
p∈BK

−δvδ(y, ω ; p)−H(p)

δα| log δ|β > −∞.

7. Error estimates for homogenization

We now present the proofs of Theorems 4 and 5. The main step is to precisely
quantify how the δvδ’s control the uε’s, so that we may apply the results of the
previous section to obtain error estimates and a rate of convergence for the latter.

For each ε, T > 0, let uε = uε(·, ·, ω), u = u(·, ·) ∈ BUC(Rd×[0, T ]) be the unique
solutions of ⎧⎨⎩ uε

t +H
(
Duε,

x

ε
, ω
)
= 0 in Rd × (0,∞),

uε(·, 0, ω) = u0,
and

{
ut +H (Du) = 0 in Rd × (0,∞),

u(·, 0) = u0,

where u0 ∈ C0,1(Rd) is the given initial data with ‖u0‖C0,1(Rd) ≤ K.
It turns out (see, e.g., [6]) that there exists a constant L > 0, depending on K

and the assumptions for H, such that, for all ε > 0, x, y ∈ Rd, s, t ≥ 0 and ω ∈ Ω,

(7.1) |uε(x, t, ω)− uε(y, s, ω)| ≤ L (|x− y|+ |s− t|) .
and

(7.2) |u(x, t)− u(y, s)| ≤ L (|x− y|+ |s− t|) .
These estimates are derived principally from the coercivity of H. Recall that, due
to (6.2) and (3.45), the effective Hamiltonian shares the same rate of coercivity
assumed in (2.6). It also follows easily from this that for each ε > 0, x ∈ Rd,
0 ≤ t ≤ T and ω ∈ Ω,

(7.3) |u(x, t)|+ |uε(x, t, ω)| ≤ K + LT ≤ C(1 + T ).

The important link between the δvδ’s and the uε’s is summarized in the following
lemma. Then Theorems 4 and 5 follow relatively easily from it and Propositions 6.9
and 6.10. The basic idea is that the event that |uε(x, t, ω)− u(x, t)| is large should
only be observed if |δvδ +H(p)| is also large. The proof, which is rather technical
and lengthy, follows along the lines of [8] with necessary modifications to deal with
to the lack of uniform estimates on the difference between −δvδ and H(p). It
essentially consists of quantifying the perturbed test function method [13] to argue
that, if −δvδ is close to H(p), then, up to an appropriate error, it properly captures
the oscillations of uε, that is,

(7.4) u(x, t) ≈ uε(x, t, ω)− εvδ
(x
ε
, ω ;Du(x, t)

)
, ε � δ.

Rather than apply the comparison principle, we must use the proof of it, fol-
lowing [8]. The difficulty is that, since u is not in general C1, we cannot in-
sert p = Du(x, t) into vδ(x, ω ; p). There are other technical difficulties (the pres-
ence of three nonsmooth functions, the fact that vδ is not smooth in p) which we
handle by the standard viscosity theoretic technique of doubling (or rather tripling)
the variables.
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Throughout this section, we fix K > 0, assume H satisfies (2.10), and let C and
c denote positive constants which may vary in each occurrence and depend only on
K and H.

Lemma 7.1. There exists C > 1 such that, for every λ, T, ε, δ > 0 satisfying

(7.5) λ ≤ 1, T ≥ 1, ε ≤ λT and
Cε

Tλ2
≤ δ

and each initial datum u0 ∈ C0,1(Rd) with ‖u0‖C0,1(Rd) ≤ K, we have{
ω ∈ Ω : inf

x∈BT

inf
0<t≤T

(uε(x, t, ω)− u(x, t)) < −CλT

}
(7.6)

⊆
{
ω ∈ Ω : sup

|y|≤CδλT 2/ε2
sup
|p|≤C

(
−δvδ(y, ω ; p)−H(p)

)
≥ λ

}
,

and {
ω ∈ Ω : sup

x∈BT

sup
0≤t≤T

(uε(x, t, ω)− u(x, t)) > CλT

}
(7.7)

⊆
{
ω ∈ Ω : inf

|y|≤CδλT 2/ε2
inf

|p|≤C

(
−δvδ(y, ω ; p)−H(p)

)
≤ −λ

}
.

Proof. Since the arguments for (7.6) and (7.7) are nearly identical, we prove
only (7.7).

Step 1. We set up the argument. With L > 0 as in (7.1) and (7.2), define ζ : Rd →
Rd by

ζ(x) :=
L ∧ |x|
|x| x,

and notice that ζ(x) has the same direction as x and

(7.8) |ζ(x)| = L ∧ |x| and |ζ(x)− ζ(y)| ≤ |x− y|.

Fix T, λ, ε, δ > 0 satisfying

(7.9) λ ≤ 1, T ≥ 1, ε ≤ λT and
Aε

Tλ2
≤ δ

where the constant A ≥ 2 is selected below. Also fix parameters α, γ > 0 to be
chosen below and consider the auxiliary function Φ : Rd×Rd×[0, T ]×[0, T ]×Ω → R

given by

Φ(x, y, t, s, ω) := uε(x, t, ω)− u(y, s)− εvδ
(
x

ε
, ω ; ζ

(
x− y

α

))
(7.10)

− 1

2α
|x− y|2 − 1

2ε
(t− s)2

− λs− γ
(
1 + |x|2

) 1
2 + γ.

Using (6.2), (7.3), and (7.8), we have, for each (x, y, t, s, ω) ∈ Rd × Rd × [0, T ] ×
[0, T ]× Ω,
(7.11)

|Φ(x, y, t, s, ω)| ≤ C(1+T )+Cεδ−1− 1

2α
|x−y|2− 1

2ε
(t−s)2−λs−γ

(
1 + |x|2

) 1
2 +γ.
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It follows that, for each ω ∈ Ω, the function Φ(·, ω) attains its global maximum at
some point of Rd × Rd × [0, T ]× [0, T ]. Set

M(ω) := max
Rd×Rd×[0,T ]×[0,T ]

Φ(·, ω)

and denote by E ∈ F the event that the global maximum of Φ(·, ω) is attained by
some point (x, y, t, s) with either t = 0 or s = 0; that is,

E :=

{
ω ∈ Ω : M(ω) = sup

(x,y,t,s)∈Rd×Rd×[0,T ]×[0,T ]

Φ(x, y, 0, s, ω) ∨ Φ(x, y, t, 0, ω)

}
Note that, for notational simplicity, we omit the dependence of E on α and ε.

The lemma follows from the fact that, under an appropriate choice of the pa-
rameters,

(7.12) sup
ω∈E

sup
x∈BT

sup
0<t≤T

(uε(x, t, ω)− u(x, t)) ≤ CλT

and, for some R ≤ CδλT 2/ε2,

(7.13) Ω\E ⊆
{
ω ∈ Ω : inf

(y,p)∈BR×BL

(
−δvδ(y, ω ; p)−H(p)

)
≤ −λ

2

}
.

Proving (7.12) is relatively easy, while (7.13) involves a more involved comparison
argument.

Step 2. We prepare for the proof of (7.13) by recording two elementary estimates
that necessarily hold at any global maximum point of Φ(·, ω) and for any ω ∈ Ω.
For the moment, we fix ω ∈ Ω and a point (x0, y0, t0, s0) ∈ Rd ×Rd × [0, T ]× [0, T ]
satisfying

(7.14) Φ(x0, y0, t0, s0, ω) = M(ω).

By (7.14) and (7.11), we have

Φ(x0, y0, t0, s0, ω) ≥ Φ(0, 0, 0, 0, ω) ≥ −C(1 + T )− Cε

δ
.

Substituting the definition of Φ and rearranging, using that 1+εδ−1 ≤ 2T by (7.9),
we get

(7.15) γ|x0|+
1

2ε
(t0 − s0)

2 ≤ C(1 + T ) +
Cε

δ
≤ CT.

Recall that a Lipschitz function with Lipschitz constant k cannot be touched from
below (or above) by a C1 function ϕ unless |Dϕ| ≤ k at the touching point. We
use this observation to deduce that, if s0 = 0, then by (7.2) and the fact that
s �→ u(y, s) + λs+ (s− t)2/2ε has a local minimum at s = s0, we have

(7.16) |s0 − t0| ≤ (L+ λ)ε ≤ (L+ 1)ε.

The inequality (7.16) is also satisfied for a similar reason if t0 = 0, and trivially if
s0 = t0 = 0, so it holds without restriction. We also use a similar idea to get that

(7.17) |x0 − y0| ≤ Lα.

If not, then y �→ ζ((x0 − y)/α) is constant in a neighborhood of y0 and we obtain
from (7.14) that

(7.18) y �→ u(y, s0) +
1

2α
|x0 − y|2 has a local minimum at y = y0.
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In view of (7.2), we deduce from (7.18) that α−1|x0 − y0| ≤ L. So we see that
|x0 − y0| ≤ Lα holds anyway, in contradiction to the assumption that it did not.
Thus we obtain (7.17) and, in particular,

(7.19) ζ

(
x0 − y0

α

)
=

x0 − y0
α

.

We now begin the argument for (7.13), following the classical proof of the com-
parison principle for viscosity solutions and [8]. For the next several steps, we work
with fixed ω ∈ Ω\E and (x0, y0, t0, s0) ∈ Rd × Rd × (0, T ]× (0, T ] such that (7.14)
holds.

Step 3. We give the first part of the proof of (7.13). Here we fix (x, t) = (x0, t0),
allow (y, s) to vary and use the equation for u. The goal is to derive (7.24) below.

From (7.14), we see that

(7.20)

(y, s) �→ u(y, s) + εvδ
(
x0

ε
, ω ; ζ

(
x0 − y

α

))
+

1

2α
|x0 − y|2 + 1

2ε
(t0 − s)2 + λs

has a local minimum at (y, s) = (y0, s0).

According to (3.39) and (7.8),

εvδ
(
x0

ε
, ω ; ζ

(
x0 − y

α

))
− εvδ

(
x0

ε
, ω ; ζ

(
x0 − y0

α

))
(7.21)

≤ Cε

δ

∣∣∣∣ζ (x0 − y

α

)
− ζ

(
x0 − y0

α

)∣∣∣∣ ≤ Cε|y − y0|
δα

.

Using (7.20), (7.21), the fact that equality holds in (7.21) at y = y0, and by enlarging
C > 0 slightly, we obtain that

(7.22) (y, s) �→ u(y, s) +
1

2α
|x0 − y|2 + 1

2ε
(t0 − s)2 + λs+ C

ε

δα
|y − y0|

has a strict local minimum at (y, s) = (y0, s0).

It follows that, for all sufficiently small β > 0, there exist (yβ , sβ) ∈ Rd× [0, T ] such
that (yβ , sβ) → (y0, s0) as β → 0 and

(7.23) (y, s) �→ u(y, s) +
1

2α
|x0 − y|2 + 1

2ε
(t0 − s)2 + λs+ C

ε

δα

(
β + |y − y0|2

) 1
2

has a local minimum at (y, s) = (yβ, sβ).

Using the equation for u, we obtain

−λ+
1

ε
(t0 − sβ) +H

(
x0 − yβ

α
−Qβ

)
≥ 0,

where Qβ := C ε
δα

(
β + |yβ − y0|2

)− 1
2 (yβ − y0). Since |Qβ | ≤ Cε/δα, the Lipschitz

continuity of H yields

−λ+
1

ε
(t0 − sβ) +H

(
x0 − yβ

α

)
≥ −C

ε

δα
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



528 S. N. ARMSTRONG, P. CARDALIAGUET, AND P. E. SOUGANIDIS

and, after letting β → 0, we find

(7.24) −λ+
1

ε
(t0 − s0) +H

(
x0 − y0

α

)
≥ −C

ε

δα
.

Step 4. We give the second step in the proof of (7.13). Here we fix (y, s) = (y0, s0)
and let (x, t) vary, in order to use the equations for uε and vδ. The intermediate goal
is to prove (7.29), below, to complement (7.24). This leads to some analysis that is a
little more complicated that what we have just performed above to produce (7.24),
due to the fact that we have two (in general, nonsmooth) functions uε and vδ

which depend on the variable x. This sort of technical difficulty is typically handled
using an “iterated” perturbed test function argument (an idea introduced in [13]).
We need to quantify this idea, and so, following [8], we fix another parameter
σ > 0 (which will be sent to zero shortly) and introduce a second auxiliary function
Ψ : Rd × Rd × [0, T ] → R defined by

Ψ(x, z, t) := uε(x, t, ω)− εvδ
(
z

ε
, ω ; ζ

(
z − y0

α

))
− 1

2α
|x− y0|2 −

1

2ε
(t− s0)

2

(7.25)

− γ
(
1 + |x|2

) 1
2 − 1

2σ
|z − x|2 − γ

(
1 + |x− x0|2

) 1
2 − γ

2
(t− t0)

2.

The last two terms in (7.25) provide some strictness and therefore, by (7.14), there
exist points (xσ, zσ, tσ) ∈ Rd × Rd × [0, T ] such that (xσ, zσ, tσ) → (x0, x0, t0) as
σ → 0 and

Ψ(xσ, zσ, tσ) = sup
Rd×Rd×[0,T ]

Ψ.

Freezing z = zσ and letting (x, t) vary, we have

(x, t) �→ uε(x, t)− 1

2α
|x− y0|2 −

1

2ε
(t− s0)

2 − γ
(
1 + |x|2

) 1
2 − 1

2σ
|zσ − x|2

− γ
(
1 + |x− x0|2

) 1
2 − γ

2
(t− t0)

2

has a local maximum at (x, t) = (xσ, tσ).

It follows from the equation for uε that

1

ε
(tσ − s0) + γ(tσ − t0) +H

(
xσ − y0

α
+

xσ − zσ
σ

+ Pσ,
xσ

ε
, ω

)
≤ 0,

where Pσ := γ
(
1 + |xσ|2

)− 1
2 xσ + γ

(
1 + |xσ − x0|2

)− 1
2 (xσ − x0). Since |Pσ| ≤ Cγ,

we use (2.5) to obtain

(7.26)
1

ε
(tσ − s0) + γ(tσ − t0) +H

(
xσ − y0

α
+

xσ − zσ
σ

,
xσ

ε
, ω

)
≤ Cγ.

On the other hand, freezing (x, t) = (xσ, tσ) and letting z vary, we get

z �→ εvδ
(
z

ε
, ω ; ζ

(
z − y0

α

))
+

1

2σ
|z − xσ|2 has a local minimum at z = zσ.

According to (7.8),

(7.27)

∣∣∣∣ζ (z − y0
α

)
− ζ

(
zσ − y0

α

)∣∣∣∣ ≤ C

α
|z − zσ|
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with equality at z = zσ. Hence by using (3.39) again and enlarging C slightly, we
obtain

z �→ εvδ
(
z

ε
, ω ; ζ

(
zσ − y0

α

))
+

1

2σ
|z − xσ|2 + C

ε

δα
|z − zσ|

has a strict local minimum at z = zσ.

Thus, we can find points zσ,κ → zσ as κ → 0, such that

z �→ εvδ
(
z

ε
, ω ; ζ

(
zσ − y0

α

))
+

1

2σ
|z − xσ|2 + C

ε

δα

(
κ+ |z − zσ|2

) 1
2

has a local minimum at z = zσ,κ.

Using the equation for vδ, we discover that

δvδ
(
zσ,κ
ε

, ω ; ζ

(
zσ − y0

α

))
+H

(
ζ

(
zσ − y0

α

)
+

xσ − zσ,κ
σ

− Pσ,κ,
zσ,κ
ε

, ω

)
≥ 0,

where Pσ,κ := C ε
δα

(
κ+ |zσ,κ − zσ|2

)− 1
2 (zσ,κ − zσ). Since |Pσ,κ| ≤ Cε/δα, we

use (2.5) to get

δvδ
(
zσ,κ
ε

, ω ; ζ

(
zσ − y0

α

))
+H

(
ζ

(
zσ − y0

α

)
+

xσ − zσ,κ
σ

,
zσ,κ
ε

, ω

)
≥ −C

ε

δα
.

Letting κ → 0 yields
(7.28)

δvδ
(
zσ
ε
, ω ; ζ

(
zσ − y0

α

))
+H

(
ζ

(
zσ − y0

α

)
+

xσ − zσ
σ

,
zσ
ε
, ω

)
≥ −C

ε

δα
.

Comparing (7.26) and (7.28), using (2.5), (3.39), and (7.27) and then sending σ → 0
yields

(7.29) δvδ
(
x0

ε
, ω ;

x0 − y0
α

)
≥ 1

ε
(t0 − s0)− C

ε

δα
− Cγ.

Step 5. We complete the proof of (7.13). By combining (7.24) and (7.29) and
setting γ := ε/(δα), we deduce that

−δvδ
(
x0

ε
, ω ;

x0 − y0
α

)
≤ H

(
x0 − y0

α

)
+ C

ε

δα
− λ.

Select α := λT to deduce that, for every δ ≥ Aε/Tλ2 = Aε/(αλ), we have Aε/δα ≤
λ, and hence

−δvδ
(
x0

ε
, ω ;

x0 − y0
α

)
≤ H

(
x0 − y0

α

)
− 1

2
λ

provided that A ≥ 2 is chosen sufficiently large. In light of (7.15) and (7.17), we
have shown that

(7.30) Ω\E ⊆
{
ω ∈ Ω : inf

y∈BR

inf
p∈BL

(
−δvδ(y, ω ; p)−H(p)

)
≤ −1

2
λ

}
,

where

R :=
|x0|
ε

≤ CT

γε
=

CδλT 2

ε2
.

This completes the proof of (7.13).
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Step 6. We give the argument for (7.12). Note that δ ≥ Aε/Tλ2 ≥ Aε/Tλ and
2γ ≤ λ since A ≥ 2. Therefore, for any ω ∈ Ω, x ∈ BT and 0 ≤ t ≤ T ,

uε(x, t, ω)− u(x, t) = Φ(x, x, t, t, ω) + εvδ(x, ω ; 0) + λt+ γ(1 + |x|2) 1
2 − γ(7.31)

≤ M(ω) + Cεδ−1 + λT + γT ≤ M(ω) + 3λT.

Fix ω ∈ E and let (x0, y0, t0, s0) ∈ Rd × Rd × [0, T ] × [0, T ] be a point which
satisfies (7.14) and such that either t0 = 0 or s0 = 0. If t0 = 0, then us-
ing (7.16), (7.17), (7.9) and the assumption that 0 < ε ≤ λT ,

M(ω) = Φ(x0, y0, t0, s0, ω) ≤ u0(x0)− u(y0, s0)− εvδ
(
x0

ε
, ω ;

x0 − y0
α

)
≤ L|x0 − y0|+ Ls0 + Cεδ−1

≤ L2α+ C(L+ 1)ε+ Cεδ−1 ≤ CλT.

If s0 = 0, we also get the bound M(ω) ≤ CλT via a similar observation. Combining
this with (7.31), we obtain

sup
x∈BT

sup
0<t≤T

(uε(x, t, ω)− u(x, t)) ≤ CλT.

This completes the proof of (7.12) and thus that of (7.7). �

We are now ready to complete the proofs of our main results.

Proof of Theorem 4. The theorem is obtained in a straightforward way from the
combination of Lemma 7.1 and Proposition 6.9.

We first give the proof of (i). Fix 0 < ε ≤ 1 and T ≥ 1, set δ := Aε/Tλ2, where
A > 0 is the constant C > 0 from Lemma 7.1, and let 0 < λ ≤ 1. Observe that

λ ≥ Cε
1
3 for large enough C > 0 implies that

δ =
Aε

Tλ2
≤ A

Tλ2

(
λ

C

)3

≤ cλ,

and thus for such λ the hypothesis of Proposition 6.9(i) is in force. We apply
first (7.6) and then second (6.40) to discover that

P

[
inf

x∈BT

inf
0≤t≤T

(uε(x, t, ·)− u(x, t)) ≤ −λT

]
≤ P

[
sup

|y|≤CδλT 2/ε2
sup
|p|≤C

(
−δvδ(y, ω ; p)−H(p)

)
≥ cλ

]

≤ C
(
δλT 2ε−2

)d
δ−5d exp

(
− λ3

Cδ

)
= CT 6dλ9dε−6d exp

(
−Tλ5

Cε

)
.

We move along to the argument for (ii). Just as above, we fix 0 < ε, λ ≤ 1
and T ≥ 1 and set δ := Aε/Tλ2, where A > 0 is the constant C > 0 from
Lemma 7.1. We need check that, with this choice of δ, the hypothesis (2.27) with

C > 0 sufficiently large implies (6.41). Indeed, if λ ≥ Cε
1
8 |log ε|

3
16 , then

|log δ| ≤ C |log ε|
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and hence

λ ≥ Cε
1
8 |log ε|

3
16 ≥ C

(
Tλ2δ

A

) 1
8

|log ε|
3
16 ≥

(
CA− 1

8

)
λ

1
4 δ

1
8 |log δ|

3
16 .

A rearrangement produces

λ ≥ C
4
3A− 1

6 δ
1
6 |log δ|

1
4

which implies (6.41), as desired, if we take C sufficiently large. Now combine (6.42)
and (7.7):

P

[
sup
x∈BT

sup
0≤t≤T

(uε(x, t, ·)− u(x, t)) ≥ λT

]
≤ P

[
inf

|y|≤CδλT 2/ε2
inf

|p|≤C

(
−δvδ(y, ω ; p)−H(p)

)
≤ −cλ

]
≤ C

(
δλT 2ε−2

)d
δ−5d exp

(
− 1

C

(
λ3

δ
∧ λd+θ

δd

))
= CT 6dλ9dε−6d exp

(
− 1

C

(
Tλ5

ε
∧ T dλ3d+θ

εd

))
.

This completes the proof. �
Proof of Theorem 5. The result follows from a combination of Lemma 7.1 and
Proposition 6.10. We first prove (i). Define, for each ε > 0,

λ(ε) := Aε
1
5 | log ε| 15 and δ(ε) :=

Aε

Tλ(ε)2
,

where A ≥ 1 will be selected below. It is straightforward to check that

λ(ε) ≥ A
4
3 δ(ε)

1
3 |log δ(ε)|

1
3 .

According to (7.6),⋂
η>0

⋃
0<ε≤η

{
ω ∈ Ω : inf

x∈BT

inf
0<t≤T

(uε(x, t, ω)− u(x, t)) ≤ −CTλ(ε)

}

⊆
⋂
η>0

⋃
0<ε≤η

{
ω ∈ Ω : sup

|y|≤Cδ(ε)λ(ε)T 2/ε2
sup
|p|≤C

(
−δ(ε)vδ(ε)(y, ω ; p)−H(p)

)
≥ λ(ε)

}

⊆
⋂
η>0

⋃
0<ε≤η

{
ω ∈ Ω : sup

|y|≤CT/ελ(ε)

sup
|p|≤C

(
−δ(ε)vδ(ε)(y, ω ; p)−H(p)

)
≥ Aδ(ε)

1
3 |log δ(ε)|

1
3

}
.

If we choose A large enough, then (6.43) yields that the last event is of probability
zero, where we have used N = 2 in (6.43) and the fact that ελ(ε) ≤ δ(ε)2 for small
enough ε. We deduce that

P

[
lim inf
ε→0

inf
x∈BT

inf
0<t≤T

uε(x, t, ·)− u(x, t)

λ(ε)
≥ −T

]
= 1.

This completes the proof of (i).
To prove (ii), we define instead

λ(ε) := Aεa| log ε|b,
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with δ(ε) the same as above and A ≥ 1 to be selected. With α and β as defined
in (2.22), and recalling that a = α(1 + 2α)−1 and b = β(1 + 2α)−1, we see that

α =
a

1− 2a
and β =

b

1− 2a
.

Thus, for sufficiently large A, we find

λ(ε) ≥ A

(
Tδ(ε)λ(ε)2

C

)a

|log ε|b ≥ A

(
Tδ(ε)λ(ε)2

A

)a

|log δ(ε)|b

and a rearrangement produces

λ(ε) ≥ c
(
A1−aδ(ε)a |log δ(ε)|b

)1/(1−2a)

= cA(1−a)/(1−2a)δ(ε)α |log δ(ε)|β ≥ Cδ(ε)α |log δ(ε)|β .
We proceed similarly as above, using (7.7) to obtain⋂

η>0

⋃
0<ε≤η

{
ω ∈ Ω : sup

x∈BT

sup
0<t≤T

(uε(x, t, ω)− u(x, t)) ≥ CTλ(ε)

}

⊆
⋂
η>0

⋃
0<ε≤η

{
ω ∈ Ω : inf

|y|≤Cδ(ε)λ(ε)T 2/ε2
inf

|p|≤C

(
−δ(ε)vδ(ε)(y, ω ; p)−H(p)

)
≤ −λ(ε)

}
⊆
⋂
η>0

⋃
0<ε≤η

{
ω ∈ Ω : inf

|y|≤CT/ελ(ε)
inf

|p|≤C

(
−δ(ε)vδ(ε)(y, ω ; p)−H(p)

)
≤ −Cδ(ε)α |log δ(ε)|β

}
.

According to (6.44), the last set on the right has probability zero. It follows that

P

[
lim sup

ε→0
sup
x∈BT

sup
0<t≤T

uε(x, t, ·)− u(x, t)

λ(ε)
≤ T

]
= 1,

which completes the proof of (ii). �

8. Convergence rates in almost periodic environments

We conclude by showing that the techniques in the previous section may be used
to obtain convergence rate for the homogenization of (1.1) in almost periodic (and
in particular periodic) media. Since it is necessary to reproduce the qualitative ho-
mogenization theory from scratch, we take the opportunity to efficiently reorganize
and quantify the argument.

Departing from the hypotheses in the rest of this paper, here we consider H ∈
C(Rd × Rd) satisfying, for each K > 0, the regularity assumption

H is uniformly continuous on BK × Rd and(8.1) {
H(·, y) : y ∈ Rd

}
is bounded in C0,1(BK)

and the coercivity condition

(8.2) lim
|p|→∞

inf
y∈Rd

H(p, y) = +∞.
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The assumption of almost periodicity is that the family of translations of H in the
y-variable is precompact in the uniform topology of BK ×Rd. Precisely, we assume
that, for all K > 0,

(8.3)
{
H(·, ·+ y) : y ∈ Rd

}
is precompact in C(BK × Rd).

We remark that, in this section, we make no convexity assumption on H, nor do
we assume any analog of (2.9) or (2.11).

The homogenization of coercive Hamilton-Jacobi equations in almost periodic
environments was proved in [17]. The key observation was an elegant proof of the
following fact.

Proposition 8.1 (Ishii [17]). Assume that H ∈ C(Rd × Rd) satisfies (8.1), (8.2)
and (8.3). Then there exists H ∈ C(Rd) such that, for every p ∈ Rd,

(8.4) lim
δ→0

sup
y∈Rd

∣∣δvδ(y ; p) +H(p)
∣∣ = 0.

The rate of convergence in almost periodic environments follows from Lemma 7.1
once a rate for the limit (8.4) is obtained. For the latter, it is necessary to quantify
the almost periodicity of H, which leads us to introduce, for each K > 0 and R > 0,

ρK(R) := sup
y∈Rd

inf
z∈BR

sup
(p,x)∈BK×Rd

|H(p, x+ y)−H(p, x+ z)| .

It is immediate from (8.1) that, for each K > 0, ρK is continuous and we see
from its definition that it is decreasing. The assumption (8.3) is equivalent to the
statement that, for each K > 0,

lim
R→∞

ρK(R) = 0.

We next define, for each K > 0 and 0 < δ < 1,

(8.5) ηK(δ) := 4 inf
{
s > 0 : ρK

( s

Kδ

)
≤ s

}
.

The properties of ρK yield that ηK is a modulus, i.e., for each K > 0,

(8.6) ηK : (0, 1) → [0,∞) is continuous, increasing and lim
δ→0

ηK(δ) = 0.

Observe that if y �→ H(p, y) is 1-periodic, then ρK
(
1
2

)
= 0 for all K > 0 and, hence,

ηK(δ) ≤ 1
2δ.

We also define, for each K > 0, the quantity

(8.7) L = L(K) := sup

{
|q| : inf

y∈Rd
H(q, y) ≤ sup

(p,y)∈BR×Rd

H(p, y)

}
,

which has the property (this is not difficult to check using similar arguments as in
Appendix A) that, for every p ∈ Rd,

(8.8) |Dvδ(· ; p)| ≤ L(|p|).
We prove next a quantitative version of Proposition 8.1. The argument is inspired

from [17, 21]. Here we simply reorganize and quantify it.

Proposition 8.2. Assume that H ∈ C(Rd × Rd) satisfies (8.1), (8.2) and (8.3).
Then there exists H ∈ C(Rd) such that, for every K > 0, δ, γ ∈ (0, 1] and p ∈ BK ,

(8.9) sup
yRd

∣∣δvδ(y ; p) +H(p)
∣∣ ≤ ηL(δ),

where L = L(K) is given by (8.7).
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Proof. The result follows from two facts. The first is that, for every δ > 0,

(8.10) osc
Rd

δvδ(· ; p) ≤ ηL(δ),

and the second is that, for every δ, γ ∈ (0, 1],

(8.11) inf
Rd

γvγ(· ; p) ≤ sup
Rd

δvδ(· ; p).

Indeed, it is immediate from (8.10) and (8.11) that, if we define

H(p) := lim inf
δ→0

−δvδ(0 ; p),

then (8.9) holds. The continuity of H is then immediate from Proposition 3.39.

Step 1. We prove (8.10). Fix ŷ ∈ Rd. Let R > 0 be selected below, and choose
z ∈ BR such that

(8.12) sup
(q,y)∈BL×Rd

|H(q, y + ŷ)−H(q, y + z)| ≤ ρL(R).

It follows from Proposition 3.7, by comparing vδ(·+ ŷ ; p) to vδ(·+ z ; p)±ρL(R)/δ,
that

sup
y∈Rd

∣∣δvδ(y + ŷ ; p)− δvδ(y + z ; p)
∣∣ ≤ ρL(R).

In particular, and in view of (8.8), we have

sup
y∈Rd

∣∣δvδ(ŷ ; p)− δvδ(0 ; p)
∣∣ ≤ ρL(R) + δL|z| ≤ ρL(R) + δLR.

Optimizing overR leads to the choiceR := ηL(δ)/4δL, which yields, in light of (8.5),∣∣δvδ(ŷ ; p)− δvδ(0 ; p)
∣∣ ≤ 1

2
ηL(δ).

Since ŷ ∈ Rd was arbitrary, we obtain (8.10).

Step 2. We give the proof of (8.11), which is essentially taken from [21]. Suppose,
for some δ, γ ∈ (0, 1], that (8.11) is false. For 0 < α ≤ 1 to be selected, consider
the function

w(y) := vδ(y ; p)− α
(
1 + |y|2

) 1
2 .

Using (8.1), we see that, if α > 0 is chosen suitable small, then

H(p+Dw, y) ≤ − sup
Rd

δvδ(· ; p) + Cα < − inf
Rd

γvγ(· ; p) ≤ H(p+Dvγ , y) in Rd.

The comparison principle (Proposition 3.11), (6.2), and (8.1) imply that, for every
R > 0,

w(0)− vγ(0) ≤ max
∂BR

(w − vγ) ≤ C

(
1

γ
+

1

δ

)
− αR.

Send R → +∞ to obtain the desired contradiction. �

The combination of Proposition 8.2 and Lemma 7.1 yields the following conver-
gence rate for the homogenization of (1.1) in almost periodic media. In order to
apply Lemma 7.1, we note that its proof did not depend in any way on the random
environment or the structural assumptions, such as level-set convexity or (2.9),
which are not in force in this section.
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Proposition 8.3. Assume that H ∈ C(Rd × Rd) satisfies (8.1), (8.2), and (8.3).
Consider the unique solutions uε, u ∈ C0,1(Rd × [0, T ]) of

uε
t +H

(
Duε,

x

ε

)
= 0 and ut +H(Du) = 0 in Rd × (0, T )

subject to the initial condition uε(0, t) = u(0, t) = u0(x) ∈ C0,1(Rd), and let K > 0
be such that

|uε(x, t)− uε(y, s)| ∨ |u(x, t)− u(y, s)| ≤ K(|x− y|+ |t− s|) .
Then there exists a constant C1 > 0 such that, for all T ≥ 1 and ε > 0,

(8.13) sup
(x,t)∈Rd×[0,T ]

|uε(x, t)− u(x, t)| ≤ C1T
(
ε

1
3 + ηL

(
ε

1
3

))
,

where L = L(K) is given by (8.7) and the modulus ηL(·) by (8.5).

Proof. For ε, α > 0, we define δ(ε) := ε
1
3 and

λ(ε, α) :=
(
(C/T )

1
2 δ(ε)

)
∨ ηL(δ) + α

and observe that (7.5) holds for α, ε > 0 small enough. An application of Lemma 7.1
yields

sup
(x,t)∈Rd×[0,T ]

|uε(x, t)− u(x, t)| ≤ CTλ(ε, α).

Let α → 0 to get (8.13). �

Observe that for a periodic Hamiltonian satisfying (8.1) and (8.2), Proposi-

tion 8.3 gives a rate of convergence of O
(
ε

1
3

)
for homogenization.

Appendix A. Sketches of the proofs of Propositions 3.1, 3.6, and 3.8

Throughout this section, we assume that H satisfies (2.10).
We begin with the following helpful lemma, which is due to the level set convexity

of H and is useful for checking whether u ∈ L is a subsolution of the equation
H(Du, y, ω) ≤ μ for μ ∈ R. A simple proof can be found in [4].

Lemma A.1. Let μ ∈ R, ω ∈ Ω and U ⊆ Rd be open. Then u ∈ USC(U) is a
viscosity solution of

(A.1) H(Du, y, ω) ≤ μ in U

if and only if u is locally Lipschitz in U and satisfies (A.1) almost everywhere in
U .

Obvious analogs of Lemma A.1 hold for equations with zero order terms, and so
forth. We leave these to the reader.

A commonly used fact in the theory of viscosity solutions is that the supremum
(infimum) of a family of subsolutions (supersolutions) is a subsolution (supersolu-
tion), see [9]. Observe that, in light of Lemma A.1, the infimum of a family of
subsolutions of (A.1) is a subsolution and, in particular, the infimum of a family of
solutions of (A.1) is a solution.

We next give details for some elementary facts concerning the functions mμ

defined in (3.1). Most of what follows is well known and can be found, for example,
in [20] or [4], but we give sketches of the arguments for completeness and the
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convenience of the reader. Here μ > H∗, where H∗ is a critical parameter defined
as the infimum of all μ for which the equation

(A.2) H(Du, y, ω) = μ

admits a global subsolution u ∈ C(Rd) in Rd. It turns out (see [4]) thatH∗ = minH
and the assumption (2.9) implies that H∗ = H(0) = 0.

We begin by stating a comparison principle, which makes minimal assumptions
on the growth of the subsolution and supersolution at infinity.

Proposition A.2 ([4, Proposition 3.1]). Let μ > 0, K ⊆ Rd be compact and
u,−v ∈ USC(Rd\K) satisfy
(A.3)

H(Du, y, ω) ≤ μ ≤ H(Dv, y, ω) in Rd\K and lim sup
y→K

(u(y)− v(y)) ≤ 0

and

lim inf
|y|→∞

v(y)

|y| ≥ 0.

Then u ≤ v in Rd\K.

Proof of Proposition 3.1. (i) Perron’s method yields that mμ(·, x, ω) is a solution
of (3.4) in Rd\{x}. Recall from (3.3) that it is also a subsolution in Rd. The
uniqueness for μ > 0 follows from Proposition A.2.

(ii) Assume that (3.5) fails and, by adding a constant to u, that the right side
of (3.5) is negative while the left side is positive at some point y0 ∈ U . Define

v(y) :=

{
mμ(y, x, ω) if y ∈ Rd\U,
u(y) ∨mμ(y, x, ω) if y ∈ U,

and observe that v(x) = 0, mμ(·, x, ω) ≤ v in Rd and mμ(y0, x, ω) < v(y0). More-
over, it is clear from its definition that v is a subsolution of (A.2) in Rd. This
contradicts (3.1).

(iii) Follows from (ii). Indeed, by Lemma A.1, the map y �→ mμ(y, x, ω) −
mμ(z, x, ω) is a subsolution of (A.2) in Rd. The maximality of mμ(·, z, ω) (i.e.,
property (ii) with U = Rd\{z}) then implies (3.6).

(iv) The lower bound of (3.8) follows from the observation that, if μ ≤ K,
then (2.5) and (2.9) imply the existence of some c > 0, depending on K, such
that, for every x ∈ Rd, the function y �→ cμ|y − x| is a subsolution of (A.2) in Rd.
The upper bound is immediate from Proposition (A.2) and the fact that, for large
enough C > 0 and any x ∈ Rd, the map y �→ C|y−x| is a supersolution in Rd\{x}.

(v) The Lipschitz estimate (3.9) is immediate from (3.6) and (3.8).
(vi) One direction of (3.10) is obvious from (3.6) and holds without restriction

on x, y ∈ Rd, and ω ∈ Ω. For the other direction, we first assume that U is bounded
and note that, due to Lemma A.1,

φ(y) := min
z∈∂U

(mμ(y, z, ω) +mμ(z, x, ω))

is a solution of H(Dφ, y, ω) ≤ μ in Rd\U . For y ∈ ∂U we may take z = y in
the minimum to obtain φ(y) ≤ mμ(y, x, ω). The maximality of mμ(·, x, ω) yields
φ ≤ mμ(·, x, ω) in Rd\U , which is the other side of (3.10). If U is not bounded,
then we approximate U by bounded sets and use (3.8), which implies that points
z ∈ ∂U which are very far away from x and y are irrelevant.
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(vii) Follows from Lemma A.1 and (3.1). Indeed, it is immediate from the defini-
tions that mμ(y, x, ω) = nμ(x, y, ω), where nμ is the function corresponding to mμ

for the Hamiltonian H(−p, y, ω). Thus (3.11) holds and we can apply Lemma A.1
to obtain (3.12).

(viii) Follows from (2.5) and (ii). We observe that, as a function of y, the left
side of (3.13) is a subsolution of (A.2), provided that we take c > 0 small enough.
Both sides of (3.13) vanish at y = x, and so the result follows from the maximality
of mμ(·, x, ω). �

Proof of Proposition 3.6. That mμ(·,K, ω) and mμ(K, ·, ω) satisfy (3.27) is a fact
which is immediate from (3.4) and (3.11) and the fact that, in light of Lemma A.1,
the infimum of a family of solutions is a solution. Uniqueness follows from Propo-
sition A.2.

It is easy to check from the standard Perron argument, using again the fact that
a minimum of solutions is a solution, that the right side of (3.28), as a function of
z, is a solution of the first equation in (3.27). Clearly, it vanishes on K by taking
x = z in the minimum and the zero function in the supremum. Therefore it must be
equal to mμ(·,K, ω) by the uniqueness of the latter. This proves (3.28), and (3.29)
is obtained similarly. �

We conclude with a sketch the proof of Proposition 3.8. Recall that vδ is defined
in (3.33).

Proof of Proposition 3.8. (i) The boundedness of vδ was proved in (3.34). That
(3.33) gives a solution of (3.31) in BUC(Rd) follows from the classical Perron ar-
gument adapted to viscosity solutions (see [9]). The uniqueness of vδ is immediate
from Proposition 3.7.

(ii) According to (3.34), vδ(·, ω ; p) is a solution of the inequality

(A.4) H(p+Dvδ, y, ω) ≤ ess sup
z∈Rd

H(p, z, ω).

According to Lemma A.1, vδ(·, ω ; p) is locally Lipschitz, hence differentiable almost
everywhere with |Dvδ| ∈ L∞

loc(R
d) and satisfies (A.4) in the almost everywhere

sense. This implies that, for Lebesgue-almost every x ∈ Rd,

Dvδ(x, ω ; p) ∈
{
q ∈ Rd : inf

y∈Rd
H(p+ q, y, ω) ≤ sup

y∈Rd

H(p, y, ω)

}

=

{
q − p : q ∈ Rd and inf

y∈Rd
H(q, y, ω) ≤ sup

y∈Rd

H(p, y, ω)

}
.

Hence, for Lebesgue-almost every x ∈ Rd,∣∣Dvδ(x, ω ; p)
∣∣ ≤ sup

{
|q − p| : q ∈ Rd and inf

y∈Rd
H(q, y, ω) ≤ sup

y∈Rd

H(p, y, ω)

}
≤ Kp.

It follows that vδ(·, ω ; p) is Lipschitz with constant Kp.
(iii) The dependence of δvδ on p can be controlled using the comparison principle

together with (2.5) and (3.38). The argument is routine, so we merely sketch it.
One inserts vδ(·, ω ; q) into (3.31), adds or subtracts a constant until the resulting
function is a supersolution or subsolution, and applies Proposition 3.7. The estimate
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produced by this argument is (3.38). We remark that, due to (2.5) and (2.6), the
right side of (3.39) is controlled by C|p− q| for a constant C > 0 depending on an
upper bound for |p| ∨ |q|.

(iv) The dependence of δvδ on δ is also controlled with a simple comparison
argument and the help of (2.5) and (3.38). Set λ := δ/η and w(y) := λvδ(y, ω ; p)
and check that

ηw +H(p+Dw, y, ω) ≤ δvδ +H(p+ λDvδ, y, ω) ≤ C(1− λ) in Rd,

where C = Πp defined in (3.37). An application of Proposition 3.7 yields

(A.5) δvδ(·, ω ; p) = ηw ≤ ηvη(·, ω ; p)− C(1− λ),

which is half of (3.40). The other inequality is obtained via a similar argument. �
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