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Abstract. The need to evaluate expressions of the form f(A) or f(A)b, where f is a nonlinear
function, A is a large sparse n × n matrix, and b is an n-vector, arises in many applications. This
paper describes how the Faber transform applied to the field of values of A can be used to determine
improved error bounds for popular polynomial approximation methods based on the Arnoldi process.
Applications of the Faber transform to rational approximation methods and, in particular, to the
rational Arnoldi process also are discussed.
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1. Introduction. Many applications in science and engineering require the eval-
uation of expressions of the form

f(A) or f(A)b, where A ∈ Cn×n, b ∈ Cn,(1.1)

and f is a nonlinear function. The expressions (1.1) can be defined in terms of
the Jordan canonical form of A, the minimal polynomial of A, or by a Cauchy-type
integral. The latter definition requires f to be analytic in an open set containing
the spectrum of A, with the path of integration in this set. Detailed discussions on
these definitions and their requirements on f are provided by Golub and Van Loan
[42, Chapter 11], Higham [50], and Horn and Johnson [52, Chapter 6]. Of particular
interest are the entire functions

f(t) = exp(t), f(t) = (1 − exp(t))/t, f(t) = cos(t), f(t) = sin(t),

with applications to the solution of ordinary and partial differential equations [2, 12,
30, 32, 40, 46, 49, 51, 58, 59, 63, 70, 74, 76, 81] as well as to inverse problems [13, 14].
Other functions of interest include Markov functions, such as f(t) =

√
t, which arises

in the solution of systems of stochastic differential equations [3, 9, 29]. The function
f(t) = log(t) is a modification of a Markov function and also can be treated with the
methods of the present paper; see [15, 48, 50] for applications.

When the matrix A is small to medium-sized, the expressions (1.1) can be evalu-
ated by determining a suitable factorization of A, e.g., in combination with a rational
approximation of f ; algorithms that factor A are described and analyzed in several
of the above references as well as in [9, 15, 21, 38, 61, 76].

The present paper is concerned with the approximation of the expressions (1.1)
when f is an entire or Markov function and the matrix A is large, sparse, and nonnor-
mal. The methods described also apply when A is a normal matrix and simplify in
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3850 BERNHARD BECKERMANN AND LOTHAR REICHEL

this case, in particular, when A is Hermitian or skew-Hermitian. A convex compact
set E, which contains the field of values of A, defined by

W(A) :=

{
(Ay, y)

(y, y)
: y ∈ Cn \ {0}

}
is assumed to be explicitly known. Since the field of values is convex, it is natural to
choose E to be convex as well. Here and throughout this paper (·, ·) denotes the usual
inner product in Cn and || · || is the induced Euclidean vector or spectral matrix norm;
however, the results discussed extend to more abstract finite- or infinite-dimensional
Hilbert spaces. For convenience, we sometimes will assume that, besides being convex
and compact, the set E also is symmetric with respect to the real axis. Note that
when A is transformed by multiplication by a scalar or by addition of a scalar multiple
of the identity, the field of values, and thus E, are transformed in a similar fashion.

This paper discusses polynomial and rational approximation methods. The poly-
nomial methods are based on the Arnoldi process, which simplifies to the (Hermitian)
Lanczos process when A is Hermitian. We would like to approximate f(A)b by p(A)b,
where p is a polynomial of fairly low degree, and therefore investigate how well f can
be approximated by polynomials on E. In section 2, we introduce the Faber transform
and show that it often suffices to consider the situation when E is the closed unit disk
D. The Faber transform is in section 3 used to derive new error bounds for polyno-
mial approximants determined via the Arnoldi process. Section 4 applies these results
to the approximation of the exponential function and improves bounds reported by
Druskin and Knizhnerman [26, 27, 28, 54] and Hochbruck and Lubich [51].

It is well known that some functions, such as the logarithm or fractional powers,
can be approximated much better by rational functions than by polynomials on convex
sets E close to the origin. For instance, Kenney and Laub [53] proposed to use Padé
approximants at the origin for the computation of f(A) when f(z) = log(1 − z),
E = {z ∈ C : |z| ≤ ||A||}, and ||A|| < 1; see also Higham [48, 50] and Davies
and Higham [21]. This paper discusses error bounds for rational approximation with
preassigned poles. The Faber transform allows us to consider equivalent rational
approximation problems on the unit disk and obtain error bounds in this manner.
Section 5 considers application of the rational Arnoldi process, first considered by
Ruhe [68], for the determination of rational approximants. Section 6 is concerned
with rational approximation of Markov functions. New upper and lower bounds for
the approximation error are derived. The smallest error bounds are obtained for
rational approximants with carefully chosen distinct poles. Each pole zj requires the
solution of a linear system of equations with the matrix zjI −A. If these systems are
solved by LU-factorization, then the use of rational approximants with few distinct
poles of fairly high multiplicity can be advantageous. We derive error bounds for
this situation. The use of rational approximants with multiple poles at the origin
and infinity has been discussed by Druskin and Knizhnerman [29] for the situation
when the matrix A is symmetric and positive definite, and by Knizhnerman and
Simoncini [55] for more general matrices. Section 7 contains concluding remarks.
Other approaches to derive error bounds for certain functions have recently been
discussed by Diele, Moret, and Ragni [23] and Moret [62]. A careful comparison of
these methods with those of the present paper is presently being carried out.

In the remainder of this section, we introduce notation used throughout the paper.
Thus, E denotes a connected compact set in the complex plane C and is assumed to
contain at least two points. The extended complex plane is denoted by C = C∪{∞},
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and φ is the Riemann mapping that maps C \ E conformally onto C \ D with the
normalization φ(∞) = ∞ and φ′(∞) > 0. The inverse map is denoted by ψ, i.e.,
ψ = φ−1. Both φ and ψ have similar Laurent expansions at infinity

φ(z) = dz + d0 + d−1z
−1 + · · · ,

ψ(w) = cw + c0 + c−1w
−1 + · · · ,(1.2)

with c > 0 and d = 1/c. The coefficient c is commonly referred to as the logarithmic
capacity of E and is denoted by cap (E).

For any ρ ≥ 1, the set Eρ is defined via its complement Ecρ := {z ∈ C\E : |φ(z)| >
ρ}, i.e., Eρ = C \ Ecρ. In particular, E1 = E. The nth Faber polynomial Fn = F E

n for
the set E is defined as the polynomial part of the Laurent expansion at infinity of φn

for n = 0, 1, . . . ; cf. (1.2). Faber polynomials are discussed further below; surveys of
their properties are provided, e.g., by Gaier [39, Chapter 1] and Suetin [78].

Example 1.1. Let E be the closed unit disk. Then φ(z) = z and the Faber poly-
nomials are given by FE

n (z) = zn, n = 0, 1, . . . . Thus, the F E
n ’s are Chebyshev

polynomials for E. More generally, for E = {z ∈ C : |z − z0| ≤ r}, we obtain the
shifted monomials FE

n (z) = (z − z0)
n/rn. �

Example 1.2. Let E = [−1, 1]. The mapping

ψ(w) =
1

2
(w + w−1)

is known as the Joukowski map. The Faber polynomials F
[−1,1]
n , n = 1, 2, . . . , are

twice the Chebyshev polynomials Tn of the first kind, and F
[−1,1]
0 = 1. This follows

from the property

wn − F [−1,1]
n (ψ(w)) = O(1/w), |w| → ∞(1.3)

(see, e.g., Gaier [39, p. 43]) and the fact that

Tn

(
1

2
(w + w−1)

)
=

1

2

(
wn + w−n) .

More generally, when E is an ellipse, the Faber polynomials FE
n are Chebyshev poly-

nomials for E up to a scaling factor. When the foci coalesce, E becomes a disk; cf.
Example 1.1. Details when E is an ellipse, as well as further examples, can be found
in [20, 78]. �

We are interested in polynomial approximation of entire functions and rational
approximation of Markov functions. The latter are functions of the form

f(z) =

∫ β

α

dμ(x)

z − x
,(1.4)

where μ is a positive measure with supp(μ) ⊂ [α, β], −∞ ≤ α < β < ∞. Thus, f is
analytic in C \ supp(μ); in particular, f is analytic in C \ [α, β].

Example 1.3. The function

f(z) =
log(1 + z)

z

has the representation

f(z) =

∫ −1

−∞

(−1/x)dx

z − x
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and therefore is a Markov function. Moreover,

log(1 + z) = zf(z)(1.5)

is a simple modification of a Markov function. �

Example 1.4. Let −1 < γ < 0 and z ∈ C \ R−, where R− = {z ∈ R : z ≤ 0}. Let
C be an integration path in C \R− surrounding z. The principal branch of zγ can be
represented by the Cauchy integral

zγ =
1

2πi

∫
C

tγ

t− z
dt, i =

√−1.

Moving the path C towards R− yields

zγ =
sin(πγ)

π

∫ 0

−∞

|t|γ
t− z

dt,(1.6)

which shows that zγ is a Markov function. The integral in (1.6) exists because the
integrand has a singularity of order γ > −1 at the origin and a zero of order 1+ |γ| > 1
at infinity. Fractional powers zα, for 0 < α < 1, can be represented by multiplying
zγ by z, similarly as in (1.5). �

It is possible to represent certain meromorphic functions as Markov functions
with respect to a discrete measure.

Example 1.5. We obtain from the product representation of the sine function (see,
e.g., [64, section 13.5]) that

1√
z tanh(

√
z)

=

∫
dμ(x)

z − x
, μ = δ0 + 2

∞∑
j=1

δj2π2 ,

with δx the Dirac measure at the point x. The error bounds of section 6, however,
are sharp only if the support of μ is the whole interval [α, β]. �

2. The Faber transform. Let A(E) denote the Banach algebra of functions
analytic in the interior, Int(E), of E and continuous on E, equipped with the uniform
norm || · ||L∞(E) on E. Moreover, let Pk denote the set of polynomials of degree at
most k, and Pk(E) the set of polynomials on E of degree at most k equipped with the
norm || · ||L∞(E).

The Faber transform F maps the polynomial

p(w) = a0w
0 + a1w

1 + · · ·+ akw
k, aj ∈ C,

to the polynomial

F(p)(z) = a0F0(z) + a1F1(z) + · · ·+ akFk(z),

where Fj = F E
j is the Faber polynomial of degree j for E. Thus, for p(w) := wj , we

have F(p)(z) = Fj(z).
The mapping F is a bijection from Pk(D) to Pk(E) with inverse

F−1(p)(w) =
1

2πi

∫
∂D

p(ψ(w′))
dw′

w′ − w
, |w| < 1, p ∈ Pk(E).(2.1)

The representation (2.1) follows from the Cauchy formula and the observation that

Fn(ψ(w)) = wn +O(1/w), |w| → ∞
(see, e.g., [39, p. 43] for a discussion of the latter); equation (1.3) is a special case.
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A set E is said to be a Faber set if there is a constant d such that for all polynomials
p,

‖F(p)‖L∞(E) ≤ d‖p‖L∞(D).(2.2)

For instance, sets E with a piecewise smooth boundary ∂E without cusps are Faber
sets; see, e.g., Gaier [39, Chapter 1] or Ganelius [41]. The constant d depends on the
total rotation of ∂E. Let ∂E be a rectifiable Jordan curve of bounded total rotation
V . Then we may choose

d = 1 + 2
V

π
;(2.3)

see, e.g., Gaier [39, Theorem 2, pp. 48–49]. For convex sets E, we have V = 2π, i.e.,
‖F‖ ≤ 5. In particular, finite intervals are Faber sets.

A Faber set E is said to be an inverse Faber set if there is a constant d′ such that
for all polynomials p,

‖F−1(p)‖L∞(D) ≤ d′‖p‖L∞(E).(2.4)

Since the set of polynomials is dense in A(E), it follows from (2.2) that if E is a
Faber set, then F admits a unique extension that is continuous from A(D) to A(E).
We also denote this extension by F . Analogously, if E is an inverse Faber set, then
the inequality (2.4) shows that F−1 can be extended in a unique way to a continuous
mapping from A(E) to A(D). This extension is also denoted by F−1.

Anderson and Clunie [4, Theorem 2] show that if E is the closure of a Jordan do-
main with nonempty interior, whose boundary ∂E is rectifiable, of bounded boundary
rotation, and has no cusps, then E is an inverse Faber set. Thus, in this situation, F
is a bijection from A(D) to A(E) with bounded inverse F−1, and

‖F‖ ≤ d, ‖F−1‖ ≤ d′,

where d and d′ are the constants in (2.2) and (2.4), respectively.
We note for future reference that for sets E with nonempty interior,

F(p)(z) =
1

2πi

∫
∂E

p(φ(ζ))
dζ

ζ − z
, z ∈ Int(E).(2.5)

Our interest in explicit bounds for the norms of F and F−1 is motivated by our
desire to bound the errors for best uniform polynomial and rational approximation
with fixed poles of functions in A(E). For some polynomial q(z) =

∏m
j=1(z − zj),

zj �∈ E, let

ηqk(f,E) := min

{∥∥∥∥f − p

q

∥∥∥∥
L∞(E)

: p ∈ Pk

}
.(2.6)

The residue theorem and (2.1) show that, for any ŵ ∈ C \D and z ∈ Int(E), we have

F
(

1

w − ŵ

)
(z) =

ψ′(ŵ)
z − ψ(ŵ)

.(2.7)

Let

q̃(w) = (w − w1)(w − w2) . . . (w − wm), wj = φ(zj) �∈ D.(2.8)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3854 BERNHARD BECKERMANN AND LOTHAR REICHEL

Then the operator F is a bijection from Pk/q̃ onto Pk/q for k ≥ m− 1; see Ellacott
[34], Ganelius [41], or Suetin [79, p. 1324]. It follows that, for all f ∈ A(E) and
k ≥ m− 1, we obtain the bounds

1

||F−1|| η
q̃
k(F−1(f),D) ≤ ηqk(f,E) ≤ ‖F‖ ηq̃k(F−1(f),D);(2.9)

see, e.g., [4, Theorem 1] or [35] for details. The above inequalities show that it
generally suffices to consider best uniform polynomial and rational approximation
with fixed poles on D.

In particular cases it is possible to improve the right-hand side bound in (2.9) by
considering, instead of F , the modified Faber operators F±, defined for g ∈ A(D) by

F−(g)(z) := F(g)(z)− g(0), F+(g)(z) := F(g)(z) + g(0).(2.10)

For convex E, it is known that ‖F−‖ ≤ 2. This bound can be established, e.g., by
modifying the proof of [39, Theorem 2, p. 49]. Moreover, it is shown implicitly by
Kővari and Pommerenke [56] that ‖F+‖ ≤ 2. An explicit proof of the latter inequality
is given in Theorem 2.1 below. Thus, for convex E and k ≥ m − 1, we may replace
the quantity ‖F‖ in (2.9) by 2. We remark that no simple explicit bound for ||F−1||
appears to be available.

Theorem 2.1 below generalizes the bound ‖F+(g)‖ ≤ 2‖g‖L∞(D) for the modified
Faber transform to matrix arguments. This enables us to bound the error in matrix
function approximations. This generalization is implicitly contained in the double
layer potential representation of f(A) discussed by Badea, Crouzeix, and Delyon [5,
section 4], but these authors do not establish a connection to the modified Faber
transform. Our proof follows fairly closely the ideas of Crouzeix and his collaborators
on norms of functions of matrices and operators [5, 16, 17, 18, 19, 22]. In particular,
Crouzeix [17] shows that for any set E ⊂ C and any matrix or Hilbert space operator
A with W(A) ⊂ E, the bound

‖f(A)‖ ≤ K‖f‖L∞(E) ∀f ∈ A(E)(2.11)

holds for the universal constant

K = 11.08.(2.12)

Crouzeix conjectures that the bound (2.11) holds for K = 2.
Theorem 2.1. Let the set E be convex and consist of more than one point. Then

the operator F+ defined by (2.10) satisfies

‖F+‖ ≤ 2.(2.13)

Let W(A) ⊂ E. Then, for f̃ ∈ A(D), we have

||F+(f̃)(A)|| ≤ 2 ||f̃ ||L∞(D).(2.14)

Proof. We first show (2.13) under the assumption that Int(E) �= ∅. Let z ∈ Int(E).
Then the function

g(w) := f̃(1/w),
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where the bar denotes complex conjugation, is analytic in C \ D (where, as usual, C

denotes the extended complex plane) and continuous on |w| ≥ 1, with g(w) = f̃(w)
for |w| = 1. Thus,

1

2πi

∫
∂D

f̃(w)
ψ′(w)dw
ψ(w)− z

=
1

2πi

∫
∂D

g(w)
ψ′(w)dw
ψ(w) − z

= g(∞) = f̃(0),

where the second equality follows from the residue theorem applied in the closed
complement of D. Adding the conjugate of the above equation to the relation

F(f̃)(z) =
1

2πi

∫
∂D

f̃(w)
ψ′(w)dw
ψ(w) − z

,

which is obtained by substituting ζ = ψ(w) into (2.5), yields

F+(f̃)(z) =
1

π

∫
∂D

f̃(w)κ(w)|dw|(2.15)

with

κ(w) :=
1

2i

(
ψ′(w)

ψ(w) − z

dw

|dw| −
ψ′(w)

ψ(w)− z

dw

|dw|

)
.(2.16)

Let ζ := ψ(w) ∈ ∂E for |w| = 1. Then α(ζ) := arg(ψ′(w) dw/|dw|) exists for almost
all |w| = 1, with eiα(ζ) being the tangent to ∂E at ζ. The convexity of E yields

1

2i

(
e−iα(ζ)(z − ζ) − e−iα(ζ)(z − ζ)

)
> 0.(2.17)

It follows that κ(w) > 0 for all |w| = 1. We obtain from (2.15) that

|F+(f̃)(z)| ≤ 1

π

∫
∂D

|f̃(w)|κ(w)|dw| ≤ ‖f̃‖L∞(D)
1

π

∫
∂D

κ(w)|dw|

= ‖f̃‖L∞(D)F+(1)(z) = 2‖f̃‖L∞(D).

(2.18)

This establishes (2.13) for z ∈ Int(E). Furthermore, since the boundary can be
neglected in the L∞-norm, the inequality (2.18) holds for all z ∈ E.

Finally, if z ∈ ∂E and E has no interior points, then E is an interval. In this
situation ∂E is traversed twice (once in each direction) as w traverses the unit circle.
The tangent vectors vanish at the endpoints of the interval. The bound (2.18) also
holds in this situation. This completes the proof of (2.13).

We turn to the proof of (2.14) and first assume that W(A) is contained in the
interior of E. In order to derive a matrix-valued analogue of the expression (2.16), we
observe that

F(f̃)(A) =
1

2πi

∫
∂D

f̃(w)(ψ(w)I −A)−1ψ′(w)dw.

Moreover, since the matrix A and its transpose AT have the same eigenvalues, it
follows that

1

2πi

∫
∂D

g(w)(ψ(w)I −AT )−1ψ′(w)dw = f̃(0)I.
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Adding the conjugate of the latter expression to the former yields

F+(f̃)(A) = F(f̃)(A) + f̃(0)I =
1

π

∫
∂D

f̃(w)K(w) |dw|,

where

K(w) :=
1

2i

(
ψ′(w)(ψ(w)I −A)−1 dw

|dw| − ψ′(w)(ψ(w)I −A∗)−1 dw

|dw|
)

and A∗ denotes the conjugate transpose of A.
We would like to show that the Hermitian matrix K(w) is positive definite for all

|w| = 1. This is equivalent to establishing that the matrix

G(w) := (ψ(w)I −A)K(w)(ψ(w)I −A∗)

is positive definite. With ζ and α(ζ) defined as above, we have

G(w) =
1

2i

(
eiα(ζ)(ζI −A∗)− e−iα(ζ)(ζI −A)

)
.

Let v ∈ Cn be a unit vector. Then a := v∗Av lives in W(A), and we obtain

v∗G(w)v =
1

2i

(
eiα(ζ)(ζ − a)− e−iα(ζ)(ζ − a)

)
> 0,

where the inequality follows similarly to (2.17). Application of the Cauchy–Schwarz
inequality now yields

||F+(f̃)(A)|| ≤ sup
||u||,||v||≤1

1

π

∫
∂D

|f̃(w)v∗K(w)u| |dw|

≤ ||f̃ ||L∞(D) sup
||u||,||v||≤1

[
1

π

∫
∂D

u∗K(w)u |dw| 1
π

∫
∂D

v∗K(w′)v |dw′|
]1/2

= ||f̃ ||L∞(D) sup
||u||,||v||≤1

[(F+(1)(A)u, u)(F+(1)(A)v, v)]
1/2

= 2 ||f̃ ||L∞(D)

in agreement with (2.14).
We turn to the situation when W(A) is not contained in the interior of E. If E

has no interior point, then both E and W(A) are intervals. In particular, the matrix
A is normal, and it follows that

||F+(f̃)(A)|| ≤ max
z∈σ(A)

|F+(f̃)(z)| ≤ max
z∈E

|F+(f̃)(z)| = ‖F+(f̃)‖L∞(E) ≤ 2 ||f̃ ||L∞(D)

by (2.13), where σ(A) denotes the spectrum of A. We therefore may assume that E
has an interior point z0, and let ε ∈ (0, 1). Then the field of values of the matrix
Aε := εz0I + (1 − ε)A, given by W(Aε) = z0 + (1 − ε)(W(A) − z0), is in the interior
of E. Hence, for all ε ∈ (0, 1),

||F+(f̃)(Aε)|| ≤ 2 ||f̃ ||L∞(D).

The bound (2.14) follows by letting ε↘ 0.
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Remark 2.2. Let f̃(w) := wn for n = 1, 2, . . . . Then F+(f̃) = F(f̃) = F E
n , n =

1, 2, . . . , are Faber polynomials for E. We obtain from (2.14) that

‖FE
n (A)‖ ≤ 2, n = 1, 2, . . . .(2.19)

This inequality recently has been shown in [7, Theorem 1] in a similar manner. We
note that for a convex set E it follows from [56, Theorem 2] that ||FE

n ||L∞(E) ≤ 2.
Consider the solution of the linear system of equations Ax = b by the GMRES

iterative method described, e.g., in [71, Chapter 6] and [72]. Let x0 be an initial
approximate solution, and let, for k = 1, 2, . . . , xk denote the kth iterate generated
by the method. Define the associated residual errors rk := b−Axk, k = 0, 1, . . . . The
inequality (2.19) can be used to derive bounds for the rk in terms of the field of values
of A when 0 �∈ E. Specifically, one can show that

||rk||
||r0|| ≤ min

{
2

1− |φ(0)|−k−1
, 2 + |φ(0)|−1

}
|φ(0)|−k;

see [7] for details. This inequality improves bounds reported in [8, 31, 33] and [44,
Chapter 3]. �

The following result, which is a consequence of Theorem 2.1, is applied in the
remainder of this paper.

Corollary 2.3. Assume that E and W(A) satisfy the conditions of Theorem 2.1.
Let g ∈ A(E), g̃ := F−1(g), r̃ ∈ A(D), and

r(z) := F+(r̃)(z) + (F − F+)(g̃)(z) = F+(r̃)(z)− g̃(0).

Then

||g(A)− r(A)|| ≤ 2 ||g̃ − r̃||L∞(D).

3. Polynomial approximation via the Arnoldi process. In this section, we
assume that the matrix A ∈ Cn×n in (1.1) is large and sparse, and that the vector
b ∈ Cn is of unit length. The Arnoldi process applied to A with initial vector b yields,
after m steps, the decomposition

AVm = VmHm + hme
T
m,(3.1)

where Vm = [v1, v2, . . . , vm] ∈ Cn×m and hm ∈ Cn satisfy v1 = b, V ∗
mVm = I, and

V ∗
mhm = 0. Throughout this paper ej denotes the jth axis vector of appropriate

dimension. The matrix Hm ∈ Cm×m is of upper Hessenberg form, and

range (Vm) = Km(A, b),

where

Km(A, b) := span {b, Ab, . . . , Am−1b}
is a Krylov subspace. In particular, vj ∈ Kj(A, b); i.e., there is a polynomial pj−1 ∈
Pj−1 such that

vj = pj−1(A)b, j = 1, 2, . . . ,m;(3.2)

see, e.g., [42, Chapter 9] for details on the Arnoldi process. We refer to (3.1) as an
Arnoldi decomposition.
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We remark that if hm = 0, then range (Vm) is an invariant subspace, and it follows
that f(A)b = Vmf(Hm)e1. We therefore henceforth will assume that hm �= 0. When
A is Hermitian, the Arnoldi process simplifies to the Hermitian Lanczos process and
the matrix Hm in the decomposition (3.1) is Hermitian and tridiagonal.

The columns vj of Vm are generated for increasing values of j; the computation
of vj requires the evaluation of j − 1 matrix-vector products with A and orthogo-
nalization against all the already computed columns v1, v2, . . . , vj−1. One would like
to keep m in Arnoldi decompositions (3.1) used in applications fairly small, because
the computational effort and storage required to generate the Arnoldi decomposition
increases with m. Moreover, instead of computing f(A)b, we will evaluate f(Hm)e1,
and the computational effort required for the latter typically grows rapidly with m.

We note for future reference that since Hm = V ∗
mAVm,

W(Hm) =

{
(Ax, x)

(x, x)
: x = Vmy, y ∈ Cm \ {0}

}
⊂ W(A) ⊂ E.(3.3)

One easily verifies by induction that for any p ∈ Pm−1, we have

p(A)b = Vmp(Hm)V ∗
mb = Vmp(Hm)e1;(3.4)

see, e.g., [26, 70]. This motivates the use of the polynomial approximation

Vmf(Hm)e1 ≈ f(A)b,(3.5)

where, in view of (3.2), the left-hand side can be written as p(A)b for some p ∈ Pm−1.
The Crouzeix bound (2.11) with the constant (2.12) yields an immediate bound for
the approximation error in (3.5) in terms of best polynomial approximation of f on
E; cf. (2.6) with q ≡ 1.

Proposition 3.1. Let E be a convex compact set such that W(A) ⊂ E. Assume
that f ∈ A(E). Then, for all m ≥ 1,

‖f(A)b− Vmf(Hm)e1‖ ≤ 23 η1m−1(f,E).(3.6)

Proof. It follows from (3.4) that for any p ∈ Pm−1, we have

‖f(A)b− Vmf(Hm)e1‖ = ‖(f − p)(A)b − Vm(f − p)(Hm)e1‖
≤ ‖(f − p)(A)‖ + ‖(f − p)(Hm)‖,

where we have used that ‖b‖ = 1. The inequality (3.6) now is a consequence of (2.11),
(2.12), (3.3), and the fact that W(A) ⊂ E.

The following theorem connects polynomial approximation of f(A)b with polyno-
mial approximation of F−1(f) on D.

Theorem 3.2. Let E be a convex and compact set such that W(A) ⊂ E. Assume
that f ∈ A(E). Then, for all m ≥ 1,

‖f(A)b− Vmf(Hm)e1‖ ≤ 4 η1m−1(F−1(f),D).(3.7)

More generally, for g(z) = q1(z) + q2(z)f(z) with q1 ∈ Pm+s−1, q2 ∈ Ps, it holds that

‖g(A)b− Vm+sg(Hm+s)e1‖ ≤ 4 ‖q2(A)b‖ η1m−1(F−1(f),D).(3.8)

Finally, we have the bounds

|fm| ≤ η1m−1(F−1(f),D) ≤
∞∑
j=m

|fj |(3.9)
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in terms of the coefficients in the Faber series expansion of f ,

fj :=
1

2πi

∫
∂D

f(ψ(w))
dw

wj+1
, j = 0, 1, . . . .(3.10)

Proof. Since ‖b‖ = 1, the bound (3.7) follows from (3.8) by taking q1(z) = 0,
s = 0, and q2(z) = 1. In order to show the latter bound, we choose an extremal
polynomial p̃ ∈ Pm−1 such that ||F−1(f) − p̃||L∞(D) = η1m−1(F−1(f),D). Similar to
Corollary 2.3, we define

f̃(w) := F−1(f)(w), p(z) := F+(p̃)(z)− f̃(0), q(z) := q1(z) + q2(z)p(z).

Then q ∈ Pm+s−1 and, according to (3.4),

‖g(A)b− Vm+sg(Hm+s)e1‖ = ‖(g − q)(A)b − Vm+s(g − q)(Hm+s)e1‖
≤ ‖(f − p)(A)q2(A)b‖+ ‖Vm+s(f − p)(Hm+s)q2(Hm+s)e1‖
≤ ‖f(A)− p(A)‖ ‖q2(A)b‖+ ‖f(Hm+s)− p(Hm+s)‖ ‖q2(Hm+s)e1‖,

where, again by (3.4), we have ‖q2(Hm+s)e1‖ = ‖q2(A)b‖. Corollary 2.3 yields

‖f(A)− p̂(A)‖ ≤ 2 ‖f̃ − p̃‖L∞(D) = 2 η1m−1(F−1(f),D),

and (3.3) combined with Corollary 2.3 gives

‖f(Hm)− p̂(Hm)‖ ≤ 2 ||f̃ − p̃||L∞(D) = 2 η1m−1(F−1(f),D).

This establishes the inequalities (3.7) and (3.8). Comparing (3.10) to (2.1), we observe
that fm is the mth coefficient in the Taylor expansion of F−1(f) at the origin. Hence,
with the extremal p̃ ∈ Pm−1 as above,

fm =
1

2πi

∫
|w|=1

F−1(f)(w)

wm+1
dw =

1

2πi

∫
|w|=1

F−1(f)(w) − p̃(w)

wm+1
dw,

the absolute value being bounded above by ||F−1(f)− p̃||L∞(D) = η1m−1(F−1(f),D).
Finally, if

∑∞
j=m |fj | <∞, then

f(z) =

∞∑
j=0

fjFj(z), F−1(f)(w) =

∞∑
j=0

fjw
j ,

because both series are absolutely convergent. The upper bound (3.9) now follows by

approximating F−1(f) by its Taylor sum
∑m−1

j=0 fjw
j .

Remark 3.3. Let f ∈ A(Eρ) for some ρ > 1, and change the path of integration
from ∂D to {w ∈ C : |w| = ρ} in the definition of the Faber coefficients (3.10). Then
one easily verifies that

∞∑
j=m

|fj| ≤ ||f ||L∞(Eρ)
ρ−m

(1− ρ−1)
,

where the factor ρ−m corresponds to the classical rate of best polynomial approxima-
tion on E of functions in A(Eρ); see, e.g., [83, Theorem IV.5]. In particular, the lower
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and upper bounds in (3.9) differ only by a term that decreases geometrically, or even
faster when f is an entire function, such as the exponential function; see below.

In order to compare Proposition 3.1 and Theorem 3.2, one may either use (2.9)
or apply the bounds

|fm| ≤ η1m−1(f,E) ≤ 2

∞∑
j=m

|fj |.(3.11)

The lower bound can be shown similarly as in the proof of (3.9), and the upper
bound by using a partial Faber sum as well as the fact that ‖FE

j ‖L∞(E) ≤ 2; see
Remark 2.2.

Remark 3.4. Let us compare Theorem 3.2 with bounds reported by Druskin and
Knizhnerman [26, 27, 28, 54]. Knizhnerman [54, Theorem 1] shows that there are
positive constants C and α, which depend on the shape of E := W(A), such that

||f(A)b− Vmf(Hm)e1|| ≤ C
∞∑
k=m

|fk|kα.

When E = [−1, 1], the Faber polynomials FE
j , for j ≥ 1, are twice the Chebyshev

polynomials of the first kind; cf. Example 1.2. The observation that in this case

||f(A)b− Vmf(Hm)e1|| ≤ 4

∞∑
k=m

|fk|

is (at least implicitly) included in [27, proof of Theorem 1]. For the exponential
function and E = [−1, 1] further improvements and more explicit bounds are derived
in [26, 28] by using the fact that the Faber coefficients are explicitly known in terms
of Bessel functions. �

Remark 3.5. Hochbruck and Lubich [51] derive error bounds for analytic functions
f in terms of integral formulas and exploit the latter to obtain bounds for the error
in polynomial approximations of exp(τA)b, τ > 0, determined by the Arnoldi process
with W(A) contained in various convex compact sets E.

Let E be a convex compact set containing W(A) in its interior, and let E′ be
a bounded set that contains E. The boundary Γ of E′ is assumed to be a piecewise
smooth Jordan curve. Let the function f be analytic in the interior of Γ and continuous
on the closure of E′. Then Hochbruck and Lubich [51, Lemma 1] show that

||f(A)b − Vmf(Hm)e1|| ≤ C · min
p∈Pm−1

1

2π

∫
Γ

|f(z)− p(z)| |dz|
|φ(z)|m(3.12)

for

C :=
length(∂E)

dist(∂E,W(A)) dist(Γ,W(A))
.

We would like to compare this bound to Theorem 3.2 and will use the inequalities

dist(z,E) |φ′(z)|
1− |φ(z)|−1

≤ 1 + |φ(z)| ≤ 2|φ(z)|, z ∈ C \ E,(3.13)

which follow from [80, Theorem 3.1] and its proof. Let p ∈ Pm−1 minimize the
right-hand side of (3.12). Then, for all j ≥ m,

fj =
1

2πi

∫
Γ

f(z)
φ′(z) dz
φ(z)j+1

=
1

2πi

∫
Γ

[f(z)− p(z)]
φ′(z) dz
φ(z)j+1

,
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and, using (3.13), the right-hand side of (3.7) can be bounded according to

4

∞∑
j=m

|fj | ≤ 2

π

∫
Γ

|f(z)− p(z)| |φ′(z)| |dz|
|φ(z)|m+1(1− 1/|φ(z)|)

≤ 4

π

∫
Γ

|f(z)− p(z)| |dz|
dist(z,E) |φ(z)|m

≤ C′ · 1

2π

∫
Γ

|f(z)− p(z)| |dz|
|φ(z)|m , C′ :=

8

dist(Γ,E)
,

where we note that the bound in each step may be quite crude. Nevertheless, the ratio
C′/C can be made arbitrarily small by choosing ∂E close to W(A). We would expect
the bound of Theorem 3.2 to be most accurate in this situation. Thus, Theorem
3.2 may provide useful bounds when (3.12) does not. The next section discusses
applications of Theorem 3.2. �

4. Approximation of the exponential function. The following result pro-
vides bounds for the Faber coefficients of the exponential function, and thereby also
for the approximation error achieved by the Arnoldi process, via Theorem 3.2, and
for best polynomial approximation, via (3.11). The bounds of Corollary 4.1 below
depend only on the logarithmic capacity of E for large values of m, whereas Corol-
lary 4.2 discusses the dependence on the outer angle at the rightmost boundary point
of E for small values of m.

Corollary 4.1. Let f(z) = exp(τz), where τ > 0 is an arbitrary parameter.
Let the set E be compact, convex, and symmetric with respect to the real axis, with
capacity c = cap (E) = ψ′(∞). Then, for r ≥ 1, the Faber coefficients satisfy

|fm| ≤ eτψ(r)

rm
(4.1)

and

η1m−1(F−1(f),D) ≤ eτψ(r)

rm(1 − r−1)
.(4.2)

The minimum of the right-hand side of (4.1) is attained for r = 1 if τψ′(1) ≥ m,
and otherwise at the unique solution of the equation rψ′(r) = m/τ . In particular, if
m ≥ 2cτ , then

|fm| ≤ 7

2
eτψ(1)

(τc)m

m!
, η1m−1(F−1(f),D) ≤ 7eτψ(1)

(τc)m

m!
.(4.3)

Proof. According to (3.10), we obtain for any r ≥ 1 the simple upper bound

|fm| ≤ 1

2π

∫ π

−π

∣∣∣∣∣eτψ(re
it)

rm

∣∣∣∣∣ dt = r−m exp

(
τ max
t∈[−π,π]

�ψ(reit)
)
,

where, by symmetry of E, the maximum of the right-hand side is attained at the
rightmost point of E, i.e., at t = 0. This shows (4.1). The bound (4.2) is obtained by
using the fact that

η1m−1(F−1(f),D) ≤
∞∑
j=m

|fj|.
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It remains to be shown that the equation τrψ′(r) = m has at most one solution.
First notice that (1,+∞) � r �→ ψ′(r) is real by symmetry of E, does not change
sign, and tends to c > 0 as r → ∞. Hence, ψ′(r) is strictly positive in (1,+∞). It

follows from convexity that �(1 + wψ′′(w)
ψ′(w) ) > 0 for all |w| > 1. Therefore, r �→ rψ′(r)

is increasing.
The choice r = m

ct in (4.1) and (4.2) leads to (4.3). However, there is a missing
factor 1/

√
m, which requires refinement of our bounds. We first show that for |w| ≥ 1,

|ψ(w) − ψ(r) − c(w − r)| ≤ c

∣∣∣∣ 1w − 1

r

∣∣∣∣ .(4.4)

By convexity of E, we have the inequality

|ψ′(w) − c| ≤ c

|w|2 , |w| ≥ 1,

due to Grötzsch and Golusin; see [56, section 2]. Hence,

|ψ(w) − ψ(r) − c(w − r)| ≤
∫ w

R

|ψ′(ζ)− c| |dζ| ≤ c

∫ w

R

|dζ|
|ζ|2 ,

and we obtain the inequality (4.4) by taking as path of integration the circular arc
[0, 1] � t �→ 1

1/r+t(1/w−1/r) , staying outside of the unit disk. Notice that (4.4) for

w = 1 implies that

ψ(r) − ψ(1) ≤ c(r − 1) + c

(
1− 1

r

)
= c

(
r − 1

r

)
.(4.5)

Applying our inequality for w = reit, |t| ≤ π, and using again the symmetry of E, we
obtain

�ψ(reit) ≤ � (ψ(r) + c(w − r)) + c

∣∣∣∣ 1w − 1

r

∣∣∣∣
= ψ(r) + cr(cos(t)− 1) +

c

r
|e−it − 1|

= ψ(r) − 2cr sin2
(∣∣∣∣ t2
∣∣∣∣)+

2c

r
sin

(∣∣∣∣ t2
∣∣∣∣)

≤ ψ(r) − 2
cr

π2
t2 +

c

r
|t| = ψ(r) − 2

cr

π2

(
|t| − π2

4r2

)2

+
cπ2

8r3
,

which yields

|fm| ≤ 1

2πrm

∫ π

−π
exp

(
τψ(r) − 2

τcr

π2

(
|t| − π2

4r2

)2

+
τcπ2

8r3

)
dt

≤ eψ(r)+
τcπ2

8r3

πrm

∫ π

0

exp

(
−2

τcr

π2

(
|t| − π2

4r2

)2
)
dt

=
√
π
exp
(
τψ(r) + τcπ2

8r3

)
rm

√
2τcr

≤ π
exp
(
τψ(1) + τcr − τc

r + τcπ2

8r3

)
rm

√
2πτcr

,
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where, in the last inequality, we applied (4.5). Now the choice r = m
τc ≥ 2 gives

− τc
r + τcπ2

8r3 ≤ 0 and

|fm| ≤ π exp(τψ(1))
(τc)m√

2m(m/e)m
≤ 7

2
exp(τψ(1))

(τc)m

m!

as claimed in the first inequality of (4.3). The second inequality of (4.3) follows by
observing that 1/(1− 1/r) ≤ 2.

Let E = {z ∈ C : |z − z0| ≤ c} for some constants z0 ∈ R and c > 0. Then

ψ(w) = cw + z0, and the Faber coefficients are given by fm = eτz0 (τc)m

m! . Hence, the
bound (4.3) for |fm| is sharp up to the factor 7

2 exp(τc), independent of m, whereas

the bound (4.1) with optimal parameter r = m
τc ≥ 1 is sharp up to a factor

√
2πm.

Further, when E is an interval on the real or imaginary axis, explicit formulas for
the Faber coefficients fm can be given in terms of Bessel functions [12, 26]. These
formulas show the bound (4.3) for |fm| to be asymptotically sharp as m → ∞ up to
a constant independent of m.

Hochbruck and Lubich [51, Theorems 2, 4, 5, and 6] apply the bound (3.12) to the
exponential function when W(A) ⊂ E for (i) E = [−4c, 0] an interval on the negative
real axis and ψ(w) = c(w+1/w− 2), (ii) E = [−2ic, 2ic] an interval on the imaginary
axis and ψ(w) = c(w − 1/w), (iii) E a disk such that ψ(w) = cw + c0, and (iv) E

a drop-shaped region, for which ψ(w) = cw(1 − 1/w)α with α > 1. The latter set
has an outer angle απ at the vertex ψ(1) = 0. The bounds for large m given in [51,
Theorems 2, 4, 5, and 6] essentially coincide with (4.1) for r = m

τc , though the absolute
constants in [51] are somewhat larger.

When E is the interval [−4c, 0] or the drop-shaped region, Hochbruck and Lubich
[51] also provide upper bounds for the situation when m ≤ 2τc. These sets E have an
outer angle απ > π at the rightmost boundary point, which is the preimage of w = 1
under ψ. Therefore, ψ′(1) = 0 and inequality (4.1) indicates that |fm| may be smaller
than eτψ(1) also for m ≤ 2τc. It is possible to give a bound depending only on this
outer angle.

Corollary 4.2. Under the assumptions of Corollary 4.1, suppose in addition
that E has an outer angle απ with α > 1 at its rightmost boundary point ψ(1). Then,
for m ≤ 2τc, we have

|fm| ≤ exp

(
τψ(1)− α− 1

7
m
( m
3τc

) 1
α−1

)
,(4.6)

η1m−1(F−1(f),D) ≤ 3
( m
3τc

)− 1
α−1

exp

(
τψ(1) − α− 1

7
m
( m
3τc

) 1
α−1

)
.(4.7)

Proof. In the first part of the proof we show the improvement of (4.5),

ψ(r)− ψ(1) ≤ cr

(
1− 1

r

)α (
1 +

1

r

)2−α
.(4.8)

Our proof of (4.8) is based on the generating function for the Faber polynomials

rψ′(r)
ψ(r)− ψ(1)

= 1 +

∞∑
n=1

Fn(ψ(1))

rn
,
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as well as on the representation of the Faber polynomials for n ≥ 1 from [66, Lemma
1], here for convex E,

Fn(ψ(1)) =
1

π

∫ π

−π
einsds arg

(
ψ(eis)− ψ(1)

)
,

∫ π

−π

∣∣∣ds arg(ψ(eis)− ψ(1)
)∣∣∣ ≤ 2π.

Since the Stieltjes integral has a jump of πα at s = 0 and elsewhere the argument is
increasing, we obtain, by taking out the jump and using the symmetry, that

Fn(ψ(1)) = α+
1

π

∫ π

0+

(eins + e−ins)ds arg
(
ψ(eis)− ψ(1)

)
,

and, therefore,

rψ′(r)
ψ(r) − ψ(1)

− 1− α
1

r − 1
=

2

π

∫ π

0+

�
( eis

r − eis

)
ds arg

(
ψ(eis)− ψ(1)

)
=

2

π

∫ π

0+

r cos(s)− 1

r2 + 1− 2r cos(s)
ds arg

(
ψ(eis)− ψ(1)

)
≥ − 1

r + 1

2

π

∫ π

0+

ds arg
(
ψ(eis)− ψ(1)

)
= −2− α

r + 1
.

Integrating this inequality from r to ∞ gives (4.8).
Since α > 1, we may choose r ≥ 1 such that(

r − 1

r

)α−1

=
m

3τc
≤ 1.(4.9)

Hence, r ≤ r∗ = (1 +
√
5)/2, and we obtain from (4.8) that

τ(ψ(r) − ψ(1))−m log(r) ≤ τc

(
r

r + 1

)α−1(
1− 1

r

)(
r − 1

r

)α−1

(r + 1)2−α

+ m log

(
1

r

)
≤ m

(
1− 1

r + 1

)α−1(
1− 1

r

)
r∗ + 1

3
+m

(
1

r
− 1

)
.

Since y �→ yα−1 is concave, we deduce that

τ(ψ(r) − ψ(1))−m log(r) ≤ m

(
1− α− 1

r + 1

)(
1− 1

r

)
+m

(
1

r
− 1

)
= −m(α− 1)

r − 1
r

(r + 1)2

≤ −m(α− 1)
r − 1

r

(r∗ + 1)2
≤ −m(α− 1)

r − 1
r

7
.

Inserting (4.9) gives (4.6). The bound (4.7) follows by observing that 1/(1− 1/r) ≤
(r∗ + 1)/(r − 1/r).

We conclude this section with three further illustrations/extensions of Corol-
lary 4.1.
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Example 4.1. If the matrix A has a negative semidefinite real part, then a simple
set containing W(A) is given by

E = (ρD) ∩
{
w ∈ C : �(w) ≤ λmax

(
A+A∗

2

)}
,

provided that ρ > 0 is large enough. For instance, ρ can be chosen to be the norm of
A or the numerical radius, max{|z| : z ∈ W(A)}. Define the angle β ∈ [0, π/2) by

cos(β) = −λmax(
A+A∗

2 )

ρ
≥ 0.

In order to apply the bounds (4.3), we require only the value ψ(1) = −ρ cos(β) =
λmax(

A+A∗
2 ) and the capacity of E, which is given by

c = ρ
π

2π − β

sin(β)

cos
(

β
4−2β/π

) .
The latter can be seen by constructing the conformal mapping φ (cf. (1.2)), which
can be expressed as the composition φ := 1

ρT3 ◦ T2 ◦ T1, where

T1(z) := eiβ/2
z + e−iβ

z + eiβ
, T2(z) := z

π
2π−β , T3(z) :=

γ

i

z + γ

z − γ
, γ := exp

(
i

β

4− 2β/π

)
;

see, e.g., [47, 60] for discussions on the construction of conformal mappings. �

The symmetry of E with respect to the real axis is not essential for showing
bounds of the form (4.3). A bound valid for nonsymmetric sets E can be obtained by
replacing ψ(1) by �(ψ(1)) in (4.3). The essential ingredient in the proof is the property
that |f(z)| ≤ exp(τ�(z)). Similar properties hold for hyperbolic and trigonometric
functions.

Example 4.2. Let f(z) = sinh(τz) or f(z) = cosh(τz) with τ > 0. Then |f(z)| ≤
exp(τ |�(z)|) and

max
{
2|fm|, η1m−1(F−1(f),D)

}
≤ 7
(
eτ�ψ(1) + e−τ�ψ(−1)

)(τc)m
m!

, m ≥ 2cτ.

In order to show this bound, it suffices to slightly modify the proof of (4.3): Let
−π ≤ θ1 ≤ θ2 ≤ π be such that �ψ(reit) ≥ 0 if and only if t ∈ [θ1, θ2]. In this
interval, we obtain as above

|�ψ(reit)| ≤ �ψ(1) + c

(
r − 1

r

)
+ cr(cos(t)− 1) +

c

r

∣∣eit − 1
∣∣

as required for our conclusion. For t ∈ [θ2, 2π+θ1] we have from (4.4), with r replaced
by −r, that

|�ψ(reit)| = −�(ψ(reit)) ≤ −ψ(−r)− cr(cos(t) + 1) +
c

r

∣∣eit − 1
∣∣

≤ −�ψ(−1) + c

(
r − 1

r

)
+ cr(cos(t− π)− 1) +

c

r
2 sin

( |t− π|
2

)
,

and the second part of the integral can be bounded as before. In particular, replacing
A by iA yields for f(z) = sin(τz) or f(z) = cos(τz) that

max
{
2|fm|, η1m−1(F−1(f),D)

}
≤ 14 exp

(
τ max
z∈E

|�(z)|
)

(τc)m

m!
, m ≥ 2τc. �
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Example 4.3. Define, for integers � ≥ 1, the functions

φ
(z) :=
1

z


⎛⎝ez − 
−1∑
j=0

zj

j!

⎞⎠ =

∫ 1

0

ez(1−u)
u
−1

(� − 1)!
du,

which are of interest in connection with exponential integrators.
Let f(z) = φ
(τz) for some τ > 0 and fixed integer � ≥ 1, and let E be a subset

of the left half-plane. Then, for m ≥ 2τc,

|fm| ≤
∫ 1

0

1

2π

∫
|w|= m

(1−u)τc

∣∣∣∣eτ(1−u)ψ(w)

wm+1

∣∣∣∣ |dw| u
−1

(�− 1)!
du

≤ 7

2

(τc)m

m!

∫ 1

0

eτ(1−u)�ψ(1)(1− u)m
u
−1

(�− 1)!
du

≤ 7

2

(τc)m

m!

∫ 1

0

(1− u)m
u
−1

(� − 1)!
du =

7

2

(τc)m

(m+ �)!
.

The same upper bound holds for η1m−1(F−1(f),D)/2. �

Druskin, Knizhnerman, and Zaslavsky [30] provide a nice discussion on rational
approximation of the matrix exponential for symmetric matrices. We consider rational
approximation in the following sections.

5. Rational approximation and the rational Arnoldi process. We con-
sider the approximation of f on E by a rational function r, determined by approxi-
mating f̃ := F−1(f) on D by a rational function r̃ = p̃/q̃, where p̃, q̃ ∈ Pm, and the
polynomial q̃ is monic with zeros wj = φ(zj) �∈ D. Let r̃ be such a rational function.
Then

r(z) = F+(p̃/q̃)(z)− f̃(0)(5.1)

is a rational function of the form r = p/q with p, q ∈ Pm. The monic polynomial q
has the zeros zj = ψ(wj) of the same multiplicity as the corresponding zeros wj of q̃;
i.e., q̃ and q are related as in (2.8). It follows from Corollary 2.3 that

‖f(A)− r(A)‖ ≤ 2 ‖f̃ − p̃/q̃‖L∞(D).(5.2)

We therefore are interested in results on the approximation of f̃ on D̃ by rational
functions with prescribed poles. The case when f is a Markov function is discussed in
section 6, where we also consider the choice of suitable poles wj . In this section, we
are concerned with the evaluation of r(A)b, either for a given rational function r̃ or
by using the rational Arnoldi process. The latter approach determines the numerator
p for a user-specified denominator q.

Here and in the remainder of this paper, we assume the set E to be symmetric
with respect to the real axis, and that f satisfies f(z) = f(z). The Faber preimage f̃ of
f also has the latter property. Therefore, it suffices to consider rational approximants
r̃ with real or complex conjugate poles and residues. In order to fix ideas, suppose
that r̃ has m simple finite poles

r̃(w) = r̃(∞) +

m∑
j=1

cj
wj − w

.
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Then by (5.1) and (2.7), we obtain

r(z) = r(∞) +

m∑
j=1

ψ′(wj)cj
zj − z

, r(∞) = r̃(∞) + r̃(0)− f̃(0), zj = ψ(wj).

The evaluation of r(A)b requires the solution of m shifted linear systems of equations

(zjI −A)xj = b.(5.3)

The approximation of f(A)b by r(A)b is meaningful when A is a large sparse
matrix such that the shifted systems (5.3) can be solved efficiently by a sparse direct
method, but solution by Krylov subspace methods or by Schur reduction to triangular
form are impractical. For example, discretization of the two-dimensional Laplace
operator on a square, using the standard 5-point finite difference stencil, gives rise to
such a matrix.

Remark 5.1. The matrices in (5.3) generate the same Krylov subspaces Kj(A, b),
j = 1, 2, . . . ,m. This makes it possible to solve the m linear systems of equations
simultaneously by an iterative method that uses the same Krylov subspace; see, e.g.,
[37, 82]. However, solving these shifted systems in this manner (e.g., by the GMRES
iterative method) implies that we determine a polynomial approximant of f . It may
be possible to compute more accurate polynomial approximants of f for the same
computational effort by using the approach described in section 3. �

There are situations when it suffices to solve fewer than m shifted systems of
equations. For instance, when all poles are distinct and the poles and coefficients cj
appear in complex conjugate pairs, say, zm+1−j = zj , and cm+1−j = cj , we obtain

r(A)b = r(∞) + 2�
⎛⎝m/2∑
j=1

ψ′(wj)cj(zjI −A)−1b

⎞⎠ ,
where we have taken into account that A and b have real entries. Thus, only m/2
shifted systems of equations have to be solved. In case of multiple poles, one has
to solve several linear systems of equations with the same matrix zjI − A but with
different right-hand sides. The number of LU-factorizations required is the number
of distinct poles with nonnegative imaginary part.

For an efficient implementation of our approach, we need to compute the inverse
Faber image of f and the Faber image of a rational function. This poses no difficulty
if ψ is known in closed form or is a Schwarz–Christoffel mapping; see, e.g., Driscoll
and Trefethen [25] or Henrici [47, Chapter 5] for discussions of the latter; software for
computing Schwarz–Christoffel mappings is made available by Driscoll [24].

The above approach requires knowledge of a suitable rational approximant r̃, not
only its poles. The rational Krylov method, introduced by Ruhe [68, 69], requires
only the poles to be specified and gives an error, which, similar to (3.7), is bounded

by 4ηq̃m(f̃ ,D); see Theorem 5.2 below. Thus, in view of (5.2), the rational Krylov
method is quasi-optimal (up to a factor 2). For the sake of completeness, we briefly
describe this method. The introduction of an artificial pole zm+1 := ∞ leads to a
slight simplification compared to the presentation in [68, 69]. Given complex poles
z1, z2, . . . , zm, including the case of a pole zj = ∞, we let q be the product of the linear
factors corresponding to finite poles. Let z0 ∈ C be sufficiently far away from the poles
zj but otherwise arbitrary. We compute by an Arnoldi-type process an orthonormal
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basis {vj}m+1
j=1 of the rational Krylov subspace q(A)−1span{b, Ab, . . . , Amb} in the

following manner. Let v1 = b, and determine vj+1 by orthogonalizing

(zj − z0)(zjI −A)−1(A− z0I)vj

against the available vectors v1, v2, . . . , vj , followed by normalization. If zj = ∞,
then we orthogonalize (A− z0I)vj . The vectors vj satisfy for suitable scalars hk,j the
recursion formula

hj+1,jvj+1 = (zj − z0)(zjI −A)−1(A− z0I)vj −h1,jv1−· · ·−hj,jvj , j = 1, 2, . . . ,m,

with v1 = b.
Let Vm+1 = [v1, v2, . . . , vm+1], and define the upper Hessenberg matrix Hm+1 =

[hj,k]j,k=1,...,m+1. The formula for the projection Am+1 := V ∗
m+1AVm+1 is more com-

plicated than for the standard Arnoldi process. Introduce

Dm+1 = diag

[
1

z1 − z0
, . . . ,

1

zm+1 − z0

]
.

Then, for j ≤ m,

(A− z0I)vj = (A− z0I)Vm+1ej =

(
I − 1

zj − z0
(A− z0I)

) j+1∑
k=1

hk,jvk

= (Vm+1Hm+1 − (A− z0I)Vm+1Hm+1Dm+1)ej .(5.4)

When j = m+ 1, we have to include the additional term

hm+2,m+1

(
I − 1

zm+1 − z0
(A− z0I)

)
vm+2 = hm+2,m+1vm+2

in the right-hand side of (5.4), where the equality follows from the choice zm+1 = ∞.
We obtain from (5.4) that

(A− z0I)Vm+1(I +Hm+1Dm+1) = Vm+1Hm+1 + hm+2,m+1vm+2e
T
m+1.

In view of the fact that V ∗
m+1vm+2 = 0 and V ∗

m+1Vm+1 = I, this leads to the formula

Am+1 = V ∗
m+1AVm+1 = z0I +Hm+1(I +Hm+1Dm+1)

−1.(5.5)

Notice that the choices z0 = 0 and z1 = · · · = zm = ∞ yield the standard Arnoldi
process, with Am+1 = Hm+1 determined by (3.1) with m replaced by m+1. A bound
analogous to (3.7) for the standard Arnoldi method also holds for the rational Arnoldi
method.

Theorem 5.2. Let E be a compact convex set such that W(A) ⊂ E. Assume that
f ∈ A(E), and let z1, z2, . . . , zm �∈ E, zm+1 = ∞. Then, for all m ≥ 1,

‖f(A)b− Vm+1f(Am+1)e1‖ ≤ 4 ηq̃m(F−1(f),D)(5.6)

with q̃ as in (2.8). More generally, for g(z) = q1(z) + q2(z)f(z) with q1 ∈ Pm+s and
q2 ∈ Ps, it holds with zm+1 = zm+2 = · · · = zm+s+1 = ∞ that

‖g(A)b− Vm+s+1g(Am+s+1)e1‖ ≤ 4 ‖q2(A)b‖ ηq̃m(F−1(f),D).(5.7)
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Proof. Since vj ∈ q(A)−1Km+1(A, b), there exists pj ∈ Pm such that

vj = q(A)−1pj(A)b, j = 1, 2, . . . ,m+ 1.

With v1, v2, . . . , vm+1 being a basis of the rational Krylov subspace, the polynomials
p0, p1, . . . , pm form a basis of Pm. Since v1 = b, we have p0 = q. We now show that

ej = ṽj := q(Am+1)
−1pj−1(Am+1)e1, j = 1, 2, . . . ,m+ 1.(5.8)

This is trivially true for j = 1, and the general case follows by induction. By definition
of vj and pj−1, the vectors ṽj satisfy

hj+1,j ṽj+1 = (zj − z0)(zjI −Am+1)
−1(Am+1 − z0I)ṽj − h1,j ṽ1 − · · · − hj,j ṽj .

It remains only to observe that, by (5.5),

(zj − z0)(zjI −Am+1)
−1(Am+1 − z0I)ej

= (zj − z0)(Am+1 − z0I) ((zj − z0)I − (Am+1 − z0I))
−1
ej

= (zj − z0)Hm+1 ((zj − z0)I +Hm+1((zj − z0)Dm+1 − I))
−1
ej

= Hm+1ej ,

since ((zj − z0)Dm+1 − I)ej = 0. This shows (5.8). Any p ∈ Pm may be written as
p = c1p0 + · · ·+ cm+1pm. Therefore, the Arnoldi approximation is exact for g = p/q,

q(A)−1p(A)b =

m+1∑
j=1

cjq(A)
−1pj−1(A)b =

m+1∑
j=1

cjvj = Vm+1

m+1∑
j=1

cjej

=
m+1∑
j=1

cjq(Am+1)
−1pj−1(Am+1)b = Vm+1q(Am+1)

−1p(Am+1)e1.

As a consequence, we obtain similarly as in the proof of Theorem 3.2 that

‖f(A)b− Vm+1f(Am+1)e1‖ ≤ min
p∈Pm

∥∥∥∥(f − p

q

)
(A)b

∥∥∥∥+ ∥∥∥∥(f − p

q

)
(Am+1)e1

∥∥∥∥
≤ 4 min

p̃∈Pm

∥∥∥∥f̃ − p̃

q̃

∥∥∥∥
L∞(D)

= 4ηq̃m(f̃ ,D),

since W(Am+1) ⊂ W(A) ⊂ E. This yields (5.6). The bound (5.7) can be shown in a
similar way as in Theorem 3.2. We therefore omit the details.

A bound similar to (5.6) for the case when the matrix A is symmetric recently has
been shown independently by Druskin, Knizhnerman, and Zaslavsky [30]. Concerning
the implementation of the rational Arnoldi process, we have to solve shifted linear
systems of equations

(zjI −A)xj = vj .

Complex conjugation of zj does not correspond to complex conjugation of vj . In
situations when it is feasible to compute LU-factorizations of the matrices zjI−A, only
factorizations for distinct finite nonnegative zj have to be determined. In particular,
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we just need to compute one LU-factorization of A if z2j−1 = 0 and z2j = ∞, j =
1, 2, . . . . This kind of rational approximant is discussed in [29, 55].

The derivation of an analogue of Theorem 5.2 for the approximation of entire
functions, such as the exponential function, and the application of (5.2) to such func-
tions is beyond the scope of this paper; see, e.g., Ganelius [41] for a discussion on the
rate of convergence of rational approximants of such functions.

6. Rational approximation of Markov functions. This section applies the
error bounds of Theorems 3.2 and 5.2 for the standard and rational Arnoldi processes,
respectively, to Markov functions f , given by (1.4), and to simple modifications of
Markov functions, such as those discussed in Examples 1.3 and 1.4.

As far as we know, only asymptotic results are known for rational interpolants
with free poles (see, e.g., [77, section 6] or [11]), and a posteriori error bounds are
available for rational approximants obtained by balanced truncation and AAK theory;
see, e.g., [10]. The present section derives explicit sharp upper and lower bounds
for the error of best approximation ηq̃m(F−1(f),D) for rational approximants with
prescribed denominator q̃ of degree at most m. These bounds are believed to be
new. We also construct nearly optimal approximants r̃, which can be used for explicit
evaluation as explained in the previous section. Since, by (5.1) and (2.7),

ηqm(f,E) ≤ 2 ηq̃m(F−1(f),D),

we obtain explicit upper bounds for rational approximants of Markov functions on E.
The following theorem establishes our main results for Markov functions. It dis-

cusses properties of the Blaschke product

B(w) =
wmq̃(1/w)

q̃(w)
=

m∏
j=1

1− wjw

w − wj
,(6.1)

whose poles wj are assumed to be real or occur in complex conjugate pairs and satisfy
1 < |wj | ≤ ∞. It follows that B(w) has real coefficients when expressed in terms of
positive and negative powers of w and, moreover, B(1/w) = 1/B(w).

Theorem 6.1. Let the set E be compact, convex, and symmetric with respect to
the real axis. Let f be a Markov function (1.4), and assume that −∞ ≤ α < β < γ :=
min{�(z) : z ∈ E}.

(a) Then f̃ = F−1(f) is a Markov function

f̃(w) =

∫ β

α

φ′(x) dμ(x)
w − φ(x)

=:

∫
dμ̃(x)

w − x
.(6.2)

(b) Let R = P/q̃ with P ∈ Pm−1 be the rational interpolant of f̃ with prescribed
poles wj at the reflected points 1/wj for j = 1, 2, . . . ,m (counting multiplicities), and
let

r̃(w) = R(w) +B(w)

(
f̃(1)−R(1)

2B(1)
+
f̃(−1)−R(−1)

2B(−1)

)
.

Then r̃ ∈ Pm/q̃ and

ηq̃m(F−1(f),D) ≤ ‖f̃ − r̃‖L∞(D) ≤
∫ β

α

1

|B(φ(x))|
|φ′(x)| dμ(x)
|φ(x)|2 − 1

(6.3)

≤ ‖f‖L∞(E)

|φ(β)| max
y∈φ([α,β])

1

|B(y)| .(6.4)
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(c) If, in addition, the poles wj ∈ (φ(α), φ(β)) have even multiplicity, then

ηq̃m(F−1(f),D) ≥
∫ β

α

1

|B(φ(x))|
|φ′(x)| dμ(x)

|φ(x)|2 − 1/|B(φ(x))| ,(6.5)

and for the approximant r̃ of part (b), we also have the a posteriori bound

‖f̃ − r̃‖L∞(D) = |f̃(−1)− r̃(−1)| =
∫ β

α

1

|B(φ(x))|
|φ′(x)| dμ(x)
|φ(x)|2 − 1

.

We comment on the bounds before showing the theorem.
Remark 6.2. For x ∈ [α, β], we have |B(φ(x))| > 1 and

1

|φ(x)|2 − 1
≤ 1

1− |φ(β)|−2

1

|φ(x)|2 − 1/|B(φ(x))| ,

independent of the choice of poles wj and of their number m. Therefore, for all poles
wj and m, the lower bound (6.5) is bounded below by the factor 1 − |φ(β)|−2 times
the upper bound (6.3). The upper and lower bounds give quite a precise idea of the

accuracy of the best approximation of f̃ in Pm/q̃ on the unit circle. Concerning part
(b), we also should mention that our quasi-optimal approximant r̃ is obtained by a
simple modification of the interpolant R, where R is known to be the best approximant
of f̃ in Pm−1/q̃ with respect to the 2-norm on the unit circle. �

Remark 6.3. Consider the polynomial case when w1 = · · · = wm = ∞ and, hence,
B(w) = wm and q̃(w) = 1. From Theorem 6.1(a) and its proof, we see that the Faber
coefficients of f satisfy

|fj | =
∫ β

α

|φ′(x)| dμ(x)
|φ(x)|j+1

.

It is not difficult to verify that for this special case, the two bounds of Theorem 6.1(b)
and (c) take the form

∞∑
j=0

|fm+j(m+1)| ≤ η1m−1(f̃ ,D) ≤
∞∑
j=0

|fm+2j | ≤
‖f‖L∞(E)

|φ(β)|m .(6.6)

These bounds improve on the inequalities (3.9). Moreover, the quantity ρ in Re-
mark 3.3 is at most |φ(β)|; ρ has to be chosen smaller if f is not continuous at β.
Hence, (6.6) also is an improvement of the bound furnished by Remark 3.3. �

The proof of Theorem 6.1 is divided into three parts. Following the proof, we
discuss some configurations of poles obtained by minimizing the bound (6.4). This
enables us to compare our approach with the shifted Arnoldi process (see, e.g., [81])
and the use of Talbot quadrature rules discussed in [45].

Proof of Theorem 6.1(a). The Faber coefficients of the Markov function f of (1.4)
satisfy, by the Fubini theorem and the Cauchy formula,

fj =
1

2πi

∫
∂E

φ′(z)dz
φ(z)j+1

∫ β

α

dμ(x)

z − x

=

∫ β

α

dμ(x)
1

2πi

∫
∂E

φ′(z)dz
φ(z)j+1(z − x)

= −
∫ β

α

φ′(x) dμ(x)
φ(x)j+1

.
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The last identity is obtained by deforming the path of integration ∂E in C \ E in
order to obtain a circle around x with mathematically negative orientation. Recalling
that F−1(f)(w) = f0 + f1w + · · · , we conclude that f̃ = F−1(f) is of the form (6.2).
By the symmetry of E, it follows that the function |φ(x)| = −φ(x) is decreasing for
x ∈ (−∞, γ) and that φ′(x) is positive for x ∈ (−∞, γ). Thus, μ̃ is a positive measure

and f̃ is a Markov function.
Proof of Theorem 6.1(b). We first establish a well-known integral formula for

rational interpolants with prescribed poles of Markov functions; see, e.g., [83, The-

orem VIII.2]. The numerator P is the interpolation polynomial of q̃f̃ at the points
1/w1, 1/w2, . . . , 1/wm, and, therefore,

f̃(w) −R(w) =
(w − 1/w1) . . . (w − 1/wm)

q̃(w)

[
1

w1
,
1

w2
, . . . ,

1

wm
, w

]
(q̃f̃)

=
(w − 1/w1) . . . (w − 1/wm)

q̃(w)

[
1

w1
,
1

w2
, . . . ,

1

wm
, w

]
t

∫
q̃(x)

dμ̃(x)

t − x

=
(w − 1/w1) . . . (w − 1/wm)

q̃(w)

∫
q̃(x)

(x− 1/w1) . . . (x− 1/wm)

dμ̃(x)

w − x

= B(w)

∫
1

B(x)

dμ̃(x)

w − x
.

In particular, we find for the modified approximant that

f̃(w) − r̃(w)

B(w)
=

∫
1

B(x)

(
1

w − x
− 1/2

1− x
− 1/2

−1− x

)
dμ̃(x)

=

∫
1

B(x)

(
1

w − x
+

x

x2 − 1

)
dμ̃(x) = −

∫
1

B(x)

1− wx

w − x

dμ̃(x)

x2 − 1
.

Taking into account that Blaschke factors are of unit modulus on the unit circle and
proceeding similarly as in the proof of (6.2) gives the upper bound (6.3).

It follows from (3.13) that∫ β

α

1

|B(φ(x))|
|φ′(x)| dμ(x)
|φ(x)|2 − 1

≤
∫ β

α

1

|φ(x)| |B(φ(x))|
dμ(x)

dist(x,E)
.

The distance is achieved for γ ∈ E for all x ∈ [α, β], and x �→ 1/|φ(x)| is increasing in
[α, β]. This shows (6.4).

Proof of Theorem 6.1(c). We first recall that φ′(x) > 0 for x ∈ [α, β]. Moreover,

by assumption, B̃(w) := w2B(w) is a rational function with real coefficients, having
all its m + 2 roots in the open unit disk, and its poles in the interval φ([α, β]) have

even multiplicity. Hence, B̃ is of constant sign on φ([α, β]). Thus, εB̃(φ(x)) > 0 for
x ∈ [α, β] with ε2 = 1. Let

Dm+2 = {x0, x1, . . . , xm+1} := {w ∈ C : εB̃(w) = 1},

with the xj ’s being distinct points on the unit circle, ordered according to increasing
argument. Theorem 6.1(c) will follow by showing that

ηq̃m(f̃ ,Dm+2) = min
p∈Pm

∥∥∥∥f̃ − p

q̃

∥∥∥∥
L∞(Dm+2)

=

∫ β

α

φ′(x) dμ(x)

εB̃(φ(x)) − 1
=: δ.(6.7)
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Let R̃ ∈ Pm+1/q̃ be the rational interpolant of f̃ at the points in Dm+2 and with

prescribed denominator q̃. Denote the coefficient for wm+1 of R̃(w)q̃(w) by a. Since
wB(w)q̃(w) − q̃(0)wm+1 ∈ Pm, we obtain that

p∗(w)
q̃(w)

:= R̃(w) − wB(w)

q̃(0)
a ∈ Pm

q̃
.

Elementary computations give, for j = 0, 1, . . . ,m+ 1, that

δj := f̃(xj)− p∗(xj)
q̃(xj)

= R̃(xj)− p∗(xj)
q̃(xj)

=
xjB(xj)

q̃(0)
a =

B̃(xj)

xj q̃(0)
a

=
1

εxj q̃(0)
[x0, x1, . . . , xm+1](f̃ q̃)

= − 1

εxj q̃(0)

∫
q̃(x)dμ̃(x)

(x − x0) . . . (x− xm+1)

= − 1

xj

∫
dμ̃(x)

εB̃(x) − 1
= − δ

xj
,

where [x0, x1, . . . , xm+1] denotes the divided-difference operator defined by the nodes

x0, x1, . . . , xm+1. Thus, ‖f̃ − p∗/q̃‖L∞(Dm+2) = δ. In order to show (6.7), we will
establish that

ηq̃m

(
f̃ ,Dm+2

)
= ‖f̃ − p∗/q̃‖L∞(Dm+2),

i.e., that p∗/q̃ is the best approximant with respect to the uniform norm on Dm+2.
According to the Kolmogorov theorem (see, e.g., [75, Satz 6.2]) it suffices to show the
existence of positive coefficients α0, α1, . . . , αm+1 such that, for all p ∈ Pm,

m+1∑
j=0

αjδj
p(xj)

q̃(xj)
= 0.

We notice that, since p ∈ Pm,

0 = [x0, x1, . . . , xm+1]p =

m+1∑
j=0

p(xj)∏

 	=j(xj − x
)

=

m+1∑
j=0

p(xj)

q̃(xj)

q̃(0)

B̃′(xj)
,

and δj = −xjδ. Hence, for our assertion it is sufficient to show that εxjB̃
′(xj) > 0 for

all j. Since all poles of the Blaschke product B̃ are outside of the closed unit disk, we
may write εB̃(eit) = eiα(t), with α(t) a real-valued and strictly increasing function.

By definition, xj = eitj with eiα(tj) = εB̃(xj) = 1, and, therefore,

εxjB̃
′(xj) =

1

i

d

dt
eiα(t)

∣∣∣∣
t=tj

= α′(tj)eiα(tj) = α′(tj) > 0.

We conclude that (6.7) holds, and this implies (6.5). Finally, the a posteriori estimate
for r̃ of Theorem 6.1(b) is an immediate consequence of the error formula given in
the proof of Theorem 6.1(b) and also of the fact that B does not change sign in the
interval (φ(α), φ(β)).
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6.1. Rational approximation with one or two multiple poles. The up-
per bound (6.4) of Theorem 6.1 suggests that we should choose the poles wj in the
Blaschke product (6.1) such that |B| is as large as possible on the interval [φ(α), φ(β)].
This subsection discusses the cases of a single pole w1 ∈ R ∪ {∞} of multiplicity m,
and of two distinct poles w1, w2 ∈ R ∪ {∞}, each of multiplicity m/2. The follow-
ing results are immediate consequences of (6.4) and of the monotonicity of B. We
therefore omit the proofs.

Corollary 6.4. (a) Let the conditions of Theorem 6.1(b) hold, and let the
prescribed denominator be given by q̃(w) = (w − w1)

m, w1 ∈ R \ [−1, 1]. Then

ηq̃m(F−1(f),D) ≤ ‖f̃ − r̃‖L∞(D) ≤
‖f‖L∞(E)

|φ(β)| max

{∣∣∣∣ w1 − φ(α)

1− w1φ(α)

∣∣∣∣ , ∣∣∣∣ w1 − φ(β)

1− w1φ(β)

∣∣∣∣}m .
The right-hand side is minimal and decreases with the geometric rate |yopt|−m for the
pole

w1 =
1 + φ(α)yopt
φ(α) + yopt

, yopt = − 1

κ
−
√

1

κ2
− 1, κ =

φ(β) − φ(α)

φ(β)φ(α) − 1
∈ (0, 1).

(b) For m even and the poles w1 = φ(α) and w2 = φ(β), each of multiplicity m/2,
we obtain the same geometric rate of decrease of the error bound

ηq̃m(F−1(f),D) ≤ ‖f̃ − r̃‖L∞(D) ≤
‖f‖L∞(E)

|φ(β)| |yopt|−m.

For the polynomial case, i.e., when we have the single pole w1 = ∞, Corol-
lary 6.4(a) yields the same bound as Remark 6.3.

The advantage of using one finite pole of (high) multiplicity m, compared to
the use of m simple poles, is that only one LU-factorization, of ψ(w1)I − A, has
to be computed. This holds for the rational Arnoldi process with pole ψ(w1) or,
equivalently, for the standard Arnoldi process applied to the matrix (ψ(w1)I −A)−1

and vector b as well as for the evaluation of r(A)b with r defined by (5.1). In the latter
case, r(A) is a polynomial in (ψ(w1)I − A)−1, and therefore r(A)b can be evaluated
efficiently by a Horner scheme.

For (α, β] = (−∞, 0], the choice of the poles

z1 = ψ(w1) = α = −∞, z2 = ψ(w2) = β = 0,(6.8)

each of multiplicity m/2, has been discussed by Druskin and Knizhnerman [29] for

symmetric positive definite matrices A and E = [λmin, λmax]. Here φ(z) = ζ+
√
ζ2 − 1

and

ζ =
2z − λmin − λmax

λmax − λmin
, κ =

1

|φ(0)| =
√

λmax

λmin
− 1√

λmax

λmin
+ 1

,
1

|yopt| =
4

√
λmax

λmin
− 1

4

√
λmax

λmin
+ 1

.

Thus, replacing the standard Arnoldi process by the rational Arnoldi process, with
either one optimally allocated multiple pole or with two multiple poles at the endpoints
of the support of the Markov function, the factor

√
λmin/λmax is replaced by its square

root in the convergence bound

1

|φ(0)|m ≈ exp

(
−2m

√
λmin

λmax

)
,

1

|yopt|m ≈ exp

(
−2m 4

√
λmin

λmax

)
.
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Since the matrix A is symmetric positive definite, the quotient λmax/λmin is its con-
dition number. The error bounds are seen to decrease with the condition number.

The use of one distinct pole when the matrix A is nonsymmetric has recently
been considered by Knizhnerman and Simoncini [55], but their error bounds include
nonexplicit constants.

Remark 6.5. The rate of convergence with two distinct multiple poles can be
increased by allocating the finite pole more carefully than (6.8). Let, similar to above,
m be even and the multiplicities of w1 and w2 be m/2. Choose w1 = φ(α) = ∞, and
let d be the unique solution in the interval (0, 1/|φ(β)|) of

−
√

2d2

1 + d4
=

1/φ(β) + d

1 + d/φ(β)
.

The pole w2 := −(d2+1)/(2d), which is slightly smaller than the choice of (6.8), yields
the rate of convergence dm, which is faster than the geometric rate of convergence
achieved with the poles (6.8). �

6.2. Rational approximation with quasi-optimal poles. This subsection
discusses the choice of poles w1, w2, . . . , wm of the Blaschke product B, defined by
(6.1), with the aim of making |B| as large as possible on the interval [φ(α), φ(β)] and,
thereby, obtaining a small bound (6.4) for the approximation error. Since B(w) =
1/B(1/w), we, equivalently, may choose the poles to make |B| as small as possible
on the interval [1/φ(β), 1/φ(α)]. This kind of minimization problem has received
considerable attention in complex approximation theory; see, e.g., [6, 36]. From [73,
Theorem VIII.3.1], we obtain, for any Blaschke product of the form (6.1), that

‖B‖L∞([1/φ(β),1/φ(α)]) ≥ R([α, β],E)−m = exp

(
− m

cap (E,F)

)
,(6.9)

where cap (E,F) denotes the logarithmic capacity of a two-dimensional condenser with
plates E and F; see, e.g., [73, equation (VIII.3.9)]. Theorem 6.6 below shows that the
minimal Blaschke product achieves this bound within a factor 2. Indeed, by the work
of Zolotarev, minimizing Blaschke products are explicitly known and can be expressed
in terms of conformal mappings for doubly connected domains or with Jacobi elliptic
functions; see [1]. We discuss the construction of minimal Blaschke products in the
proof of Theorem 6.6.

Before stating our main result of this subsection, we introduce some notation for
doubly connected domains. For disjoint closed sets E,F ⊂ C with simply connected
complements, there is a conformal invariant R = R(E,F) = R(F,E) > 1, occurring
already in (6.9), and a conformal bijective map

χE,F : {ζ ∈ C : 1 < |ζ| < R} �→ C \ (E ∪ F)

with boundary behavior

χE,F({|ζ| = 1}) = ∂E, χE,F({|ζ| = R}) = ∂F.

This map is uniquely determined by a suitable normalization. For instance, when E is a
real interval, we may fix χE,F(1) to be the right endpoint of this interval. We note that

χ[α,β],E(ζ) = ψ(χ[φ(α),φ(β)],D(ζ)),
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where χ[φ(α),φ(β)],D can be expressed in terms of Jacobi elliptic functions; see [1, section
49, Example 3] or the proof of Theorem 6.6 below. In particular,

R([α, β],E) = R([φ(α), φ(β)],D) = R

([
1

κ
,+∞

)
,D

)
= eν(κ),

where κ :=
φ(α) − φ(β)

1− φ(α)φ(β)
∈ (0, 1), ν(κ) :=

π

2

K ′(κ)
K(κ)

(6.10)

and K(κ) =

∫ 1

0

dt√
(1 − t2)(1− κ2t2)

, K ′(κ) = K
(√

1− κ2
)
.

The following result is based on (6.4).
Theorem 6.6. Let the conditions of Theorem 6.1 hold, and define the poles

wj = χ[φ(α),φ(β)],D

(
exp

(
2πi

2j − 1

4m

))
∈ [φ(α), φ(β)], j = 1, 2, . . . ,m,(6.11)

where we use the normalization χ[φ(α),φ(β)],D(1) = φ(β). Then

ηq̃m(F−1(f),D) ≤ ‖f̃ − r̃‖L∞(D) ≤
2 ‖f‖L∞(E)

|φ(β)| R([α, β],E)−m,

where q̃(w) = (w − w1)(w − w2) . . . (w − wm). Furthermore,

R([α, β],E)−m ≤ exp

(
−m π2/4

log(4/
√
1− κ2)

)
.(6.12)

Proof. We will show that the Blaschke product (6.1) determined by the poles
(6.11) satisfies

‖B‖L∞([1/φ(β),1/φ(α)]) = ‖1/B‖L∞([φ(α),φ(β)]) ≤ 2R([α, β],E)−m(6.13)

and that 1/B is a minimal Blaschke product for the interval [φ(α), φ(β)]. The theorem
then follows from (6.4).

It is useful to recall the third Zolotarev problem for closed sets E0 and F0. It
entails solving

Zm(E0,F0) = min
r∈Qm,m

‖r‖L∞(E0) ‖1/r‖L∞(F0),

where Qm,m denotes the set of rational functions of numerator and denominator
degrees at most m. Following Zolotarev, the extremal rational function can be con-
structed explicitly for the segments

E0 = [−
√
k,
√
k], F0 = [1/

√
k,+∞) ∪ (−∞,−1/

√
k] = 1/E0,

with the aid of the Jacobi elliptic function sn(u; k), 0 < k < 1.
Consider the function ν : (0, 1) �→ (0,+∞) defined in (6.10). This function,

known as the Grötsch modulus, is strictly increasing and bijective. Define km by
ν(km) = mν(k), and let

r(z) =
√
km sn

(
m
K(km)

K(k)
u+ (m+ 1)K(km); km

)
, z =

√
k sn(u; k).
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Then r ∈ Qm,m; see [1, Table XXII]. The symmetry property

1/r(z) = r(1/z)

follows from the identity

k sn(u+ iK ′(k); k) = 1/sn(u; k).

If z runs once through E0 (or F0), then u = u(z) runs once through the segment

[−K(k),K(k)] (or [K(k)+iK ′(k),−K(k)+iK ′(k)]). This implies that v = mK(km)
K(k) u+

(m + 1)K(km) runs once through [K(km), (1 + 2m)K(km)] (or [(1 + 2m)K(km) +
iK ′(km),K(km) + iK ′(km)]). It follows from well-known properties of sn(u, k) (see,
e.g., [1, p. 207]) that

‖r‖L∞(E0) =
√
km = (−1)jr

(√
k sn

(
2j −m

m
K(k), k

))
, j = 0, 1, . . . ,m.

Thus, r attains the values ±‖r‖L∞(E0) at m+1 points in [−√
k,
√
k]. This alternation

property, together with the above symmetry property, allows us to conclude that r is
extremal for the Zolotarev problem

Zm(E0,F0) = ‖r‖2L∞(E0)
= km;

see, e.g., [1, section 50] for details. In addition, since the roots of r are real, the
symmetry property of r implies that (−1)mr is a Blaschke product and, in particular,
the Blaschke product of minimal L∞-norm on E0.

Recall from, e.g., [1, section 49] that

χE0,F0(e
iv) = χE0,{|w|≥1}(eiv) =

√
k sn

(
2K(k)

π
v +K(k); k

)
, χE0,F0(1) =

√
k.

Therefore, R(E0, {|w| ≥ 1}) =
√
R(E0,F0) = eν(k)/2. It follows from the above

explicit formula that the zeros of r are given by

ŵj =
√
k sn

(
K(k)

m+ 1− 2j

m
; k

)
= χE0,{|w|≥1}

(
exp

(
2πi

2j − 1

4m

))
, j = 1, 2, . . . ,m.

Thus, the zeros of r are the images of the first (4m)th roots of unity that are not
(2m)th roots of unity.

In order to relate a minimal Blaschke product on [−√
k,
√
k] to a minimal Blaschke

product on [φ(α), φ(β)] ⊂ [−∞,−1), we introduce the transformation

ζ2 = T (w) = (T2 ◦ T1)(w), ζ1 = T1(w) =
1− φ(β)w

w − φ(β)
, T2(ζ1) =

√
kζ1 − 1

ζ1 −
√
k
,

with

T ([φ(α), φ(β)]) = [−
√
k,
√
k], T (D) = {|w2| ≥ 1}, T (φ(β)) =

√
k,
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where κ ∈ (0, 1) is as in (6.10), and k ∈ (0, 1) satisfies κ = 2
√
k

1+k . Then ±r ◦ T is a
Blaschke product of minimal norm on [φ(α), φ(β)]. It follows from

χ[φ(α),φ(β)],D(u) = T−1
(
χE0,{‖w|≥1}(u)

)
, χ[φ(α),φ(β),D](1) = T−1(

√
k) = φ(β)

that the zeros of r ◦ T , given by T−1(ŵj), can be determined via (6.11). Hence, the
Blaschke product 1/B, with B as defined in the beginning of the proof, indeed, is of
minimal norm on [φ(α), φ(β)]. In order to bound this norm, we use the inequality

ν(ρ) ≤ log(4/ρ),(6.14)

which is asymptotically sharp as ρ approaches zero. We have

2 log

(‖1/B‖L∞([φ(α),φ(β)])

2

)
= 2 log

(‖r‖L∞([−√
k,
√
k])

2

)

= log

(
km
4

)
≤ −ν(km) = −mν(k) = −2mν(κ),

where, for the last equality, we applied the Gauss transform [1, Table XXI]. Compar-
ison with (6.10) gives (6.13).

It remains to establish the bound (6.12). We obtain, in view of (6.10) and (6.14),
that

R([α, β],E)−m= exp(−mν(κ))= exp

(
−m

(π/2)2

ν
(√

1− κ2
)
)
≤ exp

⎛
⎜⎜⎝−m

(π/2)2

log

(
4√

1−κ2

)
⎞
⎟⎟⎠ .

In actual computations, the ordering of the poles can be important. We propose
Leja ordering; see [57, 67], where the latter reference illustrates Leja ordering of a
finite point set.

Consider the case, discussed at the end of section 6.1, when [α, β] = [−∞, 0], E =
[λmin, λmax], and the matrix A is positive definite. Note that the rate of convergence
achieved with the poles of Theorem 6.6 depends on the logarithm of the quotient
λmax/λmin and not on a root of the quotient. We have

4√
1− κ2

≤ 2 4

√
λmax

λmin
,

and it follows from (6.12) that

R([α, β],E)−m ≤ exp

(
−m π2

log(16λmax/λmin)

)
.

Remark 6.7. Theorem 6.6 provides m simple poles on [φ(α), φ(β)]. Therefore,
both for rational Arnoldi and for direct evaluation of r(A)b, we have to solve m
shifted linear systems of equations. Assume this is done by LU-factorization. If we
use each pole � times, then we may determine a rational approximant of order m�
without computing additional LU-factorizations. In this case, q̃(w) = (w − w1)


(w −
w2)


 . . . (w − wm)
, and, according to (6.4) and (6.13), we have the bound

ηq̃
m(F−1(f),D) ≤ ‖f̃ − r̃‖L∞(D) ≤
2
 ‖f‖L∞(E)

|φ(β)| R([α, β],E)−
m;
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i.e., we lose a factor 2
−1 compared to Theorem 6.6. As long as � is modest, this
may be acceptable. Recall that for � even, Theorem 6.1(c) yields an error bound,
which is sharp up to the factor 1 − |φ(β)|−2. In case m = 1, we recover the pole of
Corollary 6.4(a), though the error bound stated there is sharper. �

Gonchar [43] conjectured, and subsequently Parfenov [65] proved, that for a large
class of functions f analytic in C\ [α, β], the error of best rational approximation with
m free poles satisfies

lim sup
m→∞

(
min
q∈Pm

ηqm(f,E)

) 1
m

= R([α, β],E)−2.(6.15)

Stahl and Totik [77, Theorem 6.2.2] show (6.15) for Markov functions (1.4) under
weak regularity assumptions on the measure μ. In view of (2.9), Theorem 6.6 only
gives us the geometric rate R([α, β],E)−1. This is a classical dilemma in rational
approximation with prescribed poles.

We conclude this section by relating our rational approximants to those obtained
by Hale, Higham, and Trefethen [45] via Talbot quadrature formulas. Let F be a
closed set in the complex plane with connected complement, and let f be analytic in
C\F. Let the matrix A satisfy W(A) ⊂ E, where E ⊂ C satisfies E∩F = ∅. Following
Hale, Higham, and Trefethen [45], we seek to approximate f(A) by approximating
the contour integral

f(A) =
1

2πi

∫
C
f(z)(zI −A)−1dz

by a quadrature rule. Here the contour C ⊂ C\(E∪F) encircles E once. Error bounds
for this approach depend on the choice of the contour as well as on the quadrature
rule used. We choose the “central” level curve of the underlying conformal mapping,
namely, the contour z = χF,E(ρe

it), −π ≤ t ≤ π, where ρ =
√
R(F,E), and apply the

composite 2m-point midpoint rule in the variable t. This is a Gauss–Szegő quadrature
rule. We obtain the approximation

r(A) =
1

2m

2m∑
j=1

f(χF,E(ζj))(χF,E(ζj)I −A)−1χ′
F,E(ζj)ζj , ζj := ρeπi

2j−1−2m
2m .

Hale, Higham, and Trefethen [45, Theorem 1] show that for symmetric A and all
ρ̃ ∈ (1, ρ), it holds that 1

‖f(A)− r(A)‖ = ‖f − r‖L∞(E) = O(1/ρ̃2m).

Their proof is based on the observations that, for any z ∈ E, the function ζ �→
f(χF,E(ζ))(χF,E(ζ)−z)−1χ′

F,E(ζ)ζ is analytic in 1/ρ̃ ≤ |ζ| ≤ ρ̃, and that the composite

2m-point midpoint rule integrates
∫ π
−π e

i
t dt exactly for −2m < � < 2m. Computed
examples for nonnormal matrices are presented in [45], but no explicit error bounds
are provided.

Application of this approach to the Faber preimage f̃ = F−1(f) and the pair of
sets {φ(F),D} yields the rational approximant

r̃(w) =
1

2m

2m∑
j=1

f̃(χφ(F),D(ζj))(χφ(F),D(ζj)− w)−1χ′
φ(F),D(ζj)ζj .(6.16)

1[45, Theorem 1] is stated for F = [−∞, 0], but the proof also applies to general F.
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According to (2.7), the Faber image of r̃ is close to f ; we just have to replace f̃◦ψ by f .
If we determine the rational function r via (5.1), then (5.2) allows us to bound ‖f(A)−
r(A)‖ in terms of ‖f̃ − r̃‖L∞(D). The latter quantity can be bounded similarly as in
[45]. This yields a rate of convergence slightly slower than O(ρ−2m) = O(R(F,E)−m).

We finally compare the rational approximant (6.16) to approximants defined ac-
cording to Theorems 6.1 and 6.6 when f is a Markov function f . Let F = [α, β].
The rate of convergence obtained by the approximants of Theorem 6.6 is roughly the
square of the rate for Tablot quadrature rules with 2m distinct real poles. Accord-
ing to Remark 6.7, the same is true for m real poles of multiplicity two, where we
note that the evaluation of the corresponding rational function r(A) requires only the
computation of m LU-factorizations.

However, choosing an optimal rational approximant with the poles in (6.16) gives

an approximation error of about the same order. Let B̂ denote the Blaschke product
(6.1) for the poles of (6.16), and let B be the Blaschke product of Theorem 6.6 with
m poles. One then can show that

B̂(w) =
1 +B(w)2c2

B(w)2 + c2
,

where c = |B(χφ(F),D(ζ1))| ≈ ρm and ‖1/B‖L∞([φ(α),φ(β)]) = km ≈ ρ−2m. It follows

that ‖1/B̂‖L∞([φ(α),φ(β)]) ≈ ρ−2m; i.e., the bound (6.4) of Theorem 6.1 yields an error
of the same order.

7. Conclusion. This paper discusses the approximation of analytic functions
on compact sets in the complex plane by polynomials and rational functions with
preselected poles. New error bounds are derived via the Faber transform, which
allows the approximation problem to be studied on the unit disk. The error bounds
for Markov functions provide insight into the allocation of suitable poles. The error
bounds are applied to the approximation of entire and Markov functions with matrix
argument. In particular, the computation of polynomial and rational approximants
by standard and rational Arnoldi processes is considered. Explicit error bounds for
the approximants with matrix arguments are developed in terms of the field of values
of the matrix. The standard and rational Arnoldi processes are shown to yield near-
optimal approximants.
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descent method for matrix functions, Electron. Trans. Numer. Anal., 28 (2008), pp. 206–222.

[3] E. J. Allen, J. Baglama, and S. K. Boyd, Numerical approximation of the product of the
square root of a matrix with a vector, Linear Algebra Appl., 310 (2000), pp. 167–181.

[4] J. M. Anderson and J. Clunie, Isomorphism of the disk algebra and inverse Faber sets, Math.
Z., 188 (1985), pp. 545–558.

[5] C. Badea, M. Crouzeix, and B. Delyon, Convex domains and K-spectral sets, Math. Z., 252
(2006), pp. 345–365.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATION AND EVALUATION OF MATRIX FUNCTIONS 3881

[6] L. Baratchart, V. A. Prokhorov, and E. B. Saff, On Blaschke products associated with
n-widths, J. Approx. Theory, 126 (2004), pp. 40–51.

[7] B. Beckermann, Image numérique, GMRES et polynômes de Faber, C. R. Acad. Sci. Paris
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