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Error Estimates for a Finite Element Approximation

of a Minimal Surface

By Claes Johnson and Vidar Thomée

Abstract.   A finite element approximation of the minimal surface problem for a strictly

convex bounded plane domain il is considered.   The approximating functions are con-

tinuous and piecewise linear on a triangulation of ii.   Error estimates of the form 0(ti)
1 2

in the H   norm and 0(h  ) in the L -norm (p < 2) are proved, where h denotes the max-

imal side in the triangulation.

1. Introduction.   Let Í2 be a strictly convex bounded domain in the plane R2 with

smooth (two times continuously differentiable, say) boundary T, and let ^bea given

function defined on T.  Consider the following minimal surface problem: Find a func-

tion u which minimizes the integral

Jn \A + IVul2 dx,     Vu = grad v,

over all Lipschitz functions v in £2 such that v = tp on T.  It is known (see, e.g., [2,

Theorem 4.2.1]) that if xp is the restriction to T of a function in the Sobolev space

W3(£2) for some q > 2, and if xp satisfies the bounded slope condition (see [2]), then

there is a unique minimizing function u G W^QH).

For the purpose of the approximate solution of this problem, for each h with

0 < h < 1, let Th = {Tj) be a finite collection of closed triangles T¡ such that £2 C

U;- Tj, and such that any 7 with 7- n Í2 + 0 is either contained in Í2 or has two

vertices on T.  It is also assumed that the triangles have disjoint interiors, that no ver-

tex of any triangle is on the interior of an edge of another triangle, and that there is a

constant c, with 0 < c < 1 independent of h, such that the edges of the triangles have

length between eh and h, and all angles of the triangles are bounded below by c. De-

noting the union of the triangles contained in Í2 by Q,n, we let Sn be the set of con-

tinuous functions defined on Q.n which are linear on each 7- and assume the same

values as <p on the vertices of the triangulation on T.  Consider now the following finite

element method for the approximate solution of the given problem:   Find a function

un which minimizes the integral /n   \Jl + |Vu„ I2 dx over all functions vn&Sh. To see

that there exists a unique minimizing function un, we notice that the function

f(y) = \/l + \y\2,     v = (v1,v2)ei?2,      \y\2=y2+y22,
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is strictly convex since, with/^- = 3 f/dy^y,,

f,ij(yMi = (1 + W2r3/2[(1 + y\)%\ - 2yxy2%.%2 + (1 +y2)k2]

(L1) >(l + W2)-3/2m2    for ISA2.

Here and below, we use the summation convention; repetition of an index / indicates

summation over í = 1,2.  Since /is strictly convex, the mapping F: vn —> fn f£jvh)dx,

vh £Sh, is also strictly convex. Furthermore, it is clear that F\vh) tends to infinity with

maxn \vh \. Since F is continuous and Sn is finite dimensional, it then follows easily that

there exists a unique minimizing function un.

In this note, we shall prove some convergence estimates for the finite element

method described above.  In order to express our results, we introduce for k an integer,

1 < p < °°, the following (semi) norms:

Mk.P u^^*)1* "*"=(£K*r
with the usual modification if p = °°.  We shall also need corresponding norms with £2

replaced by £2ft, and we shall then use the notation | • \k    n and || • ||fc    n. We intro-

duce the Sobolev space ^(£2), the closure of C°°(£2) in the norm || • \\k „, and the

Sobolev space W*(T), the closure of C°°(r) in the norm

14,,,r = H
/<*-r

d'v

ds>
ds,

where d/ds denotes differentiation with respect to arc length. If k = 0, we omit this

index.  For example, ||* ||   n will thus denote the L -norm over £2„.

We can now state our convergence results.

Theorem 1. Let u G Wf (£2) n W¿(£2). Then, there is a constant C such that

forO<h<l,

l"-"ftll,2^<CA-

Theorem 2. Let u G W2(£2) for some q > 2 and xp G W2(T). Then, for any p

with 1 < p < 2, there is a constant C such that, for 0 < h < 1,

H"-"*llp,*<C/i2.

The proofs of these estimates are given in Sections 2 and 3, respectively. For

linear equations, such results are well known (cf.,e.g., [3]); the latter then holds for

p = q = 2.

2. Proof of Theorem 1. Since uh minimizes the functional F over Sh, we find,

taking first variations, denoting by v ¡ the derivative of v with respect to the /th vari-

able, that
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r r V"í,Vx o
(2.1) Jn fj(yuh)X¡idx = J      -==dx = 0    forxGV

o

where Sn is the set of continuous functions defined on £2ft which are linear on each 7
o '

and vanish on the boundary of £2„.  Let us extend the functions in Sh to be zero out-

side £2ft. Then the functions in Sn are Lipschitz continuous and vanish on the boundary

of £2 so that, taking first variations in the continuous problem,

(2-2> U^uXidx=L     ,VMVX   2dx = 0    for x G S„.
Jn ' ' Jnh Vi + |Vm|2

Theorem 1 will be an obvious consequence of Lemmas 1 and 2 below.

Lemma 1. Let u G W|(£2) n ^¿(£2).  Then, there is a constant C such that for

0<h<l,

I        . dx       < Ch.
\Jn» Vl + Nuh\2     j

Proof.   Let wn be any function in Sn, and set x = wh - uh.  Then x e Sn and,

using (2.1) and (2.2), we find

-»'-Jo
IV« - Vw„

* \A + ivk„2
fix

/■    (Vk-V«,,)Vx r    (V»-Vm„)(Vk-Vh-„)

~J"* Vl + IVW,l2    ^ + J"*       Vi + IV«,l2
dix

= kW* h==i -^=f * + Jn
! \ ,        f     (V«-V^XVm-VwJ

2« Wl + IVwJ2   Vl + IV«l2/   '      Jn*        Vl + IVwJ2

= £>1+Z>2.

For the second term, we find by Cauchy's inequality, \D2\ <¡A\u - wh\l 2 n.

For the first term, we obtain with y = maxjj |V«l/vl + IVm|2,

f IVu-VkJ(|Vi!! +iVííJ)
\D. | < J     | Vu| IVxl    , ,    ,-^     ,-—~-, „dx

Jn" VI + IVul2 VI + IV«„|2 (VI + |Vw|2 + VI + Nuh\2)

r   ivxiiv«- VM/,1 , ^    /f        ivxi2      A1'2
< 7  I     —, — fix < y A I I = fix )

Jn* vi + ivuj2        v^vi + iv«,!2 ;

< 7,404 + \u-wh\iah).

Thus

i/X
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A2 < yA(A + \u - wh\u2f.) + A\u - wh\U2 „,

so that, since 7 < 1,

A<il+y)\u-Wh\12tJil-y).

Now let wn agree with u at the nodes.  By a well-known estimate (cf.,e.g., [3]), we

then have

I" ~wh\\,2,n < Ch\u\2<2,

which completes the proof of the lemma.

As a consequence of Lemma 1, we find

/,    Nu-yuh\2\i2/r     -_ V/2
(2.3)    \m-Vuh\\Uh< j J     Vl + IVW/J2rfx       <Ot,

\ n*Vl + |V«A|2/    \* i

since, clearly, /n  VI + IV«„|2fix is bounded as a result of the minimizing property of

uh.  In fact, Lemma 1 and (2.3) hold without the assumption that the edges of the

triangles have length bounded below by eh.   This assumption, however, will enter in

the proof of the following lemma.

Lemma 2. Let u G W|(£2) n W¿,(£2).   Then, there is a constant C such that for

anyO<h<l, ||VaAIL>ft <C

Proof.   By Lemma 1, we have, in particular, for any 7- C £2ft,

(I",\/l + IVm„

so that

¡Vw-VuJ2     V/2
dx       < Ch,

r     mh\2     y/2 r    \1'2
[)    —===dx)      <Ch + C\u\la, [      dx)      <Ch.
V7/Vi + mh\2   } u \jTi  )

Since S7uh is constant on 7-, and the area of 7- is bounded from below by a constant

times ft2, it follows that

IV",'2
7 < C   on Tj,

vi + iv«„i2

and thus max^ Nun \ < C, which proves the lemma.

Together with Lemma 1, this also completes the proof of Theorem 1.

3. Proof of Theorem 2. We shall now prove Theorem 2 using an adaptation of a

duality argument employed previously for linear problems by, e.g^Nitsche [3].

For technical reasons, we shall need to extend un to a piecewise linear function

defined on the polygonal domain £2,, D £2 consisting of the union of the triangles which
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intersect £2.  To this end, we first extend u G ^(£2) to a domain £2 with £2 3 £2,, for

0 < h < 1 in such a way that the extended u belongs to W2(£2) (cf. [1]).  We then ex-

tend uh to £2„ by setting uh equal to the linear function which interpolates the extended

u at the vertices of 7- for each 7- C £2/í\£2/¡. It is clear that, with un extended in this

fashion, the estimate of Theorem 1 holds, with £2ft replaced by £2, i.e., \u - un \. 2 < Ch.

We shall prove that, for any p with 1 <p < 2, there is a constant Csuch that

||u - uh\\p < Ch2, which implies Theorem 2 since £2 D £2„.  By increasing p or decreas-

ing q, we may assume without loss of generality that l/p + l/q = I.  It will, therefore,

be sufficient to prove that there is a constant C such that

(3.1) \ig,u-uf,)\ = \fngiu-uh) dx <Ch2\\g\\a    for£G/.(£2).

This will be accomplished by rewriting the left-hand side, interpreting g as the right-

hand side of a certain linear elliptic equation.

For this purpose, let us start with the simple identity

(3.2) fn [fjiS/u) -f/yuh)] xjdx = fna^iu - uh\fXt,dx,

where, for x G £2,

fl&to = fd /,i/(V«AW + *(V«(x) - Vu„(x)))ds,      i, j =1,2.

Defining the bilinear form

ahiX, ̂) = fna^XJ,jdx,

we notice that, by (2.1), (2.2) and (3.2), we have

o

(3.3) ahix,u-uh) = 0    forx£>V

Since the coefficients of an are discontinuous, it will be convenient to introduce

also the bilinear form

aix, "/O = Jjj «,/X,, ̂,; dx    with úriy(x) = f ,y(Vu(x)).

Since u G W2(£2) and, in particular, S]u is bounded, we find, using also (1.1), that

the coefficients a« satisfy the assumptions in the following lemma:

Lemma 3. Assume that a„ G tVj(£2) for some q > 2 and that f2(/(x)|(.^ is uni-

formly elliptic in £2.  Then, there exists a constant C such that, for any g G ¿^(£2),

the Dirichlet problem

(3.4) - (a,jUtl)j =g   in £2,  v = 0 on T,

admits a unique solution v G W2(£2) and

(3.5) llullj.^ClhjIL,.
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Proof.   See [4, p. 203].

Multiplying (3.4) by u - uh and integrating by parts, we now find that ig, u - uh)

can be rewritten in the following way:

ig,u- uh) = aiv, u-uh) + jr vniu - uh)ds

= ahiv, u-uh) + (a - ah)iv, u - un) + Jr vn(u - uh)ds.

Here vn = — n¡OfiV¡, where (wp n2) is the outward normal to T.  We shall prove that

each of the three last terms is bounded by C/i2 |bj||, which will obviously prove the

desired inequality (3.1).
o

To estimate the first term, let vn G Sn interpolate v on £2, so that lu - vh\. 2 ^

Ch\v\2 2.  Since the coefficients of an are bounded (cf. (1.1)), we thus find, by (3.3),

(3.5) and Theorem 1, that

|a„(u, u - uh)\ = \ahiv - vh, u - uh)\ < C\v - vn \l2 \u - un |12

<C/22|u|2i2<Cft2||^||2 <Ch2\\g\\q.

Consider next the second term (a - ah)iv, u - uh).  Since the derivatives of the

fa are bounded in R2, we have

wa - 41 = Jo [/,</(V") -/,,/(V^ + sViu - uh))] ds

<C\Vu-Vuh\    in £2,

so that

\\aii-4\\2<C\u-uf.\u2,      i,j= 1,2.

Further, by Sobolev's inequality and Lemma 3,

(3.6) l«li.-<C|ü|2,,<C||íl|q.

Thus by Theorem 1,

I (a ~ah)iv, u -uh)\ <C|u|I>00 max \\aif - cr^\\2\u -uH\u2
i.i

<Ch2\\g\\q.

Finally, for the boundary term, we have by (3.6)

I Jr »n(# - uh)ds\ < C\v\i,J\<P - Mi,r < cWsWq \W - Mi,r-

It is therefore sufficient to prove that

(3.7) ||^-UJ|ljr<C/z2.
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To see this, let xpn be the piecewise linear function of arc length s defined on T which

agrees with xp at the vertices on T. We then clearly have that \\xp - xph\\. r < Ch2\xp\2 . r.

and therefore (3.7) will follow if we prove that \\xph - uh\\. r < Ch2.  To show this, we

argue as follows:   For any P £F, let 7 be the triangle in £2^\£2ft such that P G 7. Let

P. and P2 be the vertices of 7- on T, let s. and s2 be the arc lengths corresponding to

Px and P2, and assume that P corresponds to s = st + X(s2 - s.) where 0 < X < 1.

Let now P be the point on the chord PlP2 such that dist(P, Pt) = \ dist iPlt P2). Since

we are interpolating linearly, we then have xphiP) = uhiP).  It is easy to see that

dist(P, P) < Ch2.  Further, since uh is the interpolant of u on 7-, we have that \\7uh \

is bounded on 7- and therefore

\xphiP) - uhiP)\ = \uhiP) - uhiP)\ < Ch2   for per,

which implies that ||^ - un\\. r < Ch2.  This completes the proof of Theorem 2.
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