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Error Estimates
for Semidiscrete Finite Element Methods

for Parabolic Integro-Differential Equations

By Vidar Thomée and Nai-Ying Zhang

Abstract. The purpose of this paper is to attempt to carry over known results for spa-
tially discrete finite element methods for linear parabolic equations to integro-differential
equations of parabolic type with an integral kernel consisting of a partial differential op-
erator of order ß < 2. It is shown first that this is possible without restrictions when the
exact solution is smooth. In the case of a homogeneous equation with nonsmooth initial
data d, d6¿2, optimal 0(hr) convergence for positive time is possible in general only
if r < 4 - ß. This depends on the fact that the exact solution is then only in i/4-^.

1.  Introduction. The aim of this paper is to analyze spatially discrete finite
element methods for solving initial-boundary value problems of the form

ut + Au = /   B{t, s)u(s) ds + f = Êu + f   in Q x J,
(1 1) °v     ; u = 0   on dQ x J,

u(-,0) = v   in Q.

Here, u = u(x,t) is a function in Q x J, where Q is a bounded domain in Rd
with a smooth boundary dQ, J = (0,£] with t > 0, and "t = §f • Further, A is a
second-order elliptic partial differential operator,

d
A = -.¿¿-(a^¿)+fl0W/'

where (a^) is a time-independent matrix, which is symmetric and uniformly positive
definite in Q, üq(x) > 0 in Q, and B — B(t,s) is a general second-order partial
differential operator of order ß < 2,

d        q      / ~   \ d ~
B(t,s) = - J2 J~ hij{x;t,s)— j +'^2bj{x;t,s)— +b0(x;t,s)I,

and Bu = Bu(t) stands for the integral term in (1.1). Finally, / and v are prescribed
real-valued functions. Throughout this paper, we shall assume that / and the
coefficients of A and B are smooth.

Parabolic integro-differential equations (PIDE) of the above type, and nonlinear
variants thereof, arise in many applications, such as, for instance, in non-Fourier
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122 VIDAR THOMÉE AND NAI-YING ZHANG

models for heat conduction in materials with memory and in the theory of nuclear
reactors; see, e.g., the introduction in Greenwell Yanik and Fairweather [3], where
also references to studies of existence, uniqueness and regularity are given.

For the purpose of numerical solution we assume that we are given a family {Sh}
of finite-dimensional subspaces of i/¿ = H¿(Q) such that, with r a given integer
>2,

(1.2)      inf {||u-x|| + fc||u-xl|i}<C/is||u|U    for 1 <s<r, if ueHsnH¿.

Here and below we work in the standard Sobolev spaces Hs = Ha(Q), the norms
in which are denoted || • ||s, with s omitted when zero so that || • || is the norm in
Z/2 = L2(Q). No inverse assumption is used for {Sh}-

The semidiscrete Galerkin finite element method that we shall study is then to
find Uh : J -* Sh such that

,, „. (uh,t,x)+Muh,X)=       B{t,s;uh{s),x)ds + {f,x)
(i-o) Jo

= B{uh,x) + {f,x)   vxe5h, teJ,
«h(0) = vh.

Here, Vh is an appropriate approximation of v in Sh, (•, •) is the standard inner
product in L2, A(-,-) and B(t,s;-,-) are the bilinear forms associated with the
operators A and B(t,s), i.e.,

d

and
B(t,s;u,w)

L

Mu,w) = j^ í ¿ o^W^^ + flo«»! dx

d r.      r. d ~
du dw     x-^,  ,        s duE. . uu uw      x~\     . . uu . .        Ibij(x;t,s) — — + 2^bj{x;t,s)——w + b0(x;t,s)uw    dx,

l   \jtj=l Xl     X3        j = l X3 J

and B{-, •) = É{t; -, •) is defined by (1.3).
Our purpose here is to discuss to what extent known error estimates for the case

of a parabolic differential equation (cf., e.g., Thomée [7]) carry over to the present
situation.

We shall consider first, in Section 2 below, the case of a smooth solution, i.e.,
when the smoothness of the exact solution is sufficient not to cause any compli-
cations in the analysis. We shall then be able to show that the result for B = 0
remains valid, i.e., that

\\uh(t)-u(t)\\<C\\vh-v\\ + Chrhv\\r + j \\ut\\r da\    for t G 7.

We shall then turn to the homogeneous equation (/ = 0) with nonsmooth initial
data. For the differential equation case, it is known that if Vh is chosen as P/,t>, the
Lî-projection of v onto Sh, then

(1.4) ||uh(í)-u(í)||<C/irrr/2||í;||    foríGJ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ERROR ESTIMATES FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS    123

thus showing optimal-order convergence for positive t, even with v only in L2.
This is related to the fact that the solution of a homogeneous parabolic equation
is smooth for positive i, even when the initial data are not. In quantitative form,
this may be expressed by the inequality

(1.5) N0lla<cra/a|M|   forieJ,

which is valid for any a > 0.
Therefore, the first point on the agenda is to investigate the smoothness of the

solution in the case / = 0 of (1.1), when v is nonsmooth. It turns out that in the
PIDE case the inequality (1.5) remains valid, but in general only for a < 4 - ß,
where ß is the order of B(t, s). This is shown in Section 3 below.

It is natural that this smoothness property will be significant also in the study
of the error in the semidiscrete solution. Our result is now that the error estimate
(1.4) remains valid if r < 4 — ß, or, more precisely, with r in (1.4) replaced by
7 = min(4 - ß,r). This will be shown in Section 4.

Earlier related results have been presented by Greenwell Yanik and Fairweather
[3], who derived optimal-order error estimates in the case of a (nonlinear) problem
with smooth solution, and with ß < 1. An alternative proof of our smooth data
result with ß = 2 has been given recently by Cannon and Lin [2]. Both smooth
and nonsmooth data estimates have been demonstrated in Le Roux and Thomée
[4] for a semilinear problem with ß = 0. For time stepping with special emphasis
on economical quadrature, see Sloan and Thomée [5] (and also [4]).

We shall end this introduction by fixing our notation and collecting some material
concerning the differential equation case of (1.1), i.e., the case B = 0. In addition to
Hr, we shall use the space Hs = HS(Q), s > 0, defined by the norm \v\3 = ||.As/2v||.
We recall that for s an integer, H" = {v e Hs;A>v = 0 on dQ for j < s/2}, and
that the norms || • ||s and | • |s are equivalent on Hs (cf. [7]).

Let thus E(t) denote the semigroup on L2 generated by the elliptic operator
A, under homogeneous Dirichlet boundary conditions. The solution of the homo-
geneous parabolic equation with initial data v is then u(t) = E(t)v and has the
property

< Cr(<,-p)/2-JHP    for v € Hp, t G J, 0 < p < q, j > 0.
q

Let further Eh{t) denote the finite element analogue of E(t), thus defined by the
semidiscrete equation (1.3) with / = 0, B = 0. This operator on Sh may be defined
alternatively as the semigroup generated by the discrete analogue Ah : Sh —* Sh of
A, where

{Ahxl>,x) = A{^,x)   W>,x€SÄ.
The error in the semidiscrete solution is thus Uh{t) — u(t) = Eh(t)vh — E(t)v.

In the particular case that Vh = PhV, the ¿2-projection of v onto Sh, we shall use
the error operator Fh{t) = Eh{t)Ph — E(t). For this operator it is known that (cf.
Theorem 3.1 of [1])

(1.7) \\Fh{t)v\\ < Chst-ts-PV2\v\p,        0<p<s<r.

(1.6) U)E{t)v
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124 VIDAR THOMEE AND NAI-YING ZHANG

Here and below, when q > 0, we write |M|-g and \v\-q for the dual norms to ||u||Q
and \v\q with respect to the L2 inner product.

Related to the definition of the discrete elliptic operator Ah is that of the solution
operator T/, : L2 —► Sh of the discrete elliptic problem, namely

A(Tkf,x) = (f,x)   VX€5ft;
it approximates the exact solution operator T = A-1 : L2 —> H2 in the sense that

(1.8) ||rfc/-T/||_, < Chp+"+2\\f\\p    for / € Hp, 0 < p < r-2, -1 < q < r-2.

The operator T is selfadjoint and positive definite on L2, and Th is selfadjoint,
positive semidefinite on L2 and positive definite on Sh- We also recall the elliptic
regularity property T: Hq —► //9+2 n ÍTq andtne associated inequality

(1.9) ||T/||,+a < C\\f\\q    for feH*,q>0.
We finally recall the Ritz projection Rh : Hq —► 5^ defined by

(1.10) A{Rhu,x) = A{u,x)   VxGSfc.

In the appropriate domain we have RhV = ThAv, and, by (1.9), the inequality (1.8)
may also be expressed as

(1.11) ||Äfcu-u||_, <Chp+q\\u\\p   Í0TueHpnH¿, -1 <q<r-2, 2<p<r.

Throughout this paper, C will denote, as above, a positive constant independent
of h and the functions involved, not necessarily the same at different occurrences.

2. Error Estimates in the Case of a Smooth Solution. This section
is concerned with the following error estimates for the semidiscrete finite element
method (1.3) in the case that the continuous problem (1.1) has a smooth solution.

THEOREM 2.1. Let u and Uh be the solutions of (1.1) and (1.3), respectively.
Then we have

\\uh(t) -u{t)\\ <C\\vh -v\\+ Chr I \\v\\r+ /   ||ut||rdsi     fort &1.

Proof. Following Wheeler [8], we write the error, with Rh defined by (1.10), as

e = uh - u = (uh - Rhu) + {RhU - u) = 0 + p.

Here we have at once from (1.11)

(2.1) ||/»(i)ll<CÄrN*)llr<C7/i'||Hr + y KM«}    forieX

We continue to estimate 6 = Uh - RhU S Sh- We find easily by (1.1), (1.3) and
(1.10) that

(2.2) (öt,x) + A(0,x) = -(Pt,x) + B(e,x)    VX G Sh, t € J.

We now write 6 — 61 + 62, where 0l and 02 : J —> Sh are determined by

(ô1t,x) + A(e1,x) = -(pt,x)   VxeSh, teJ,
ö!(0) = Ö(0),
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and
„ „v (Olx) + A{62,x) = ¿(e,x)   VX eSh,te J,
(   3) 02(O)=O.

Here the standard argument for the differential equation shows (cf. [7, Chapter 1])

(2.4) \\6\t)\\<C\\vh-v\\ + ChrU\v\\r+[\\ut\\rds\    ïortel,

and we are left with estimating 62.
Setting x = Th02 in (2.3), we find

(Th6l62) + \jt\\e2(t)\\2 = J* B(t,s;e(S),Th02t(t))ds

(2-5) = jt j* B(t, s;e(s),The2(t)) ds - B(t, t;e(t),The2(t))

- f Bt(t,s;e(s),The2{t))ds,
Jo

where Bt corresponds to the operator (of order ß) obtained by differentiating the
coefficients of B with respect to t.   Hence, by integration with respect to t, we
obtain

||02(i)||2 < C f {\B(t, s;e(s),Th62(t))\ + \B(s,s;e(s),Th92{s))\}ds
(2-6) J°   ,t  ,.

+ C \Bt(s,T;e{T),The2{s))\dTds = Q{t)   iorteJ.
Jo Jo

We shall prove that the quantity Q(t) thus defined satisfies

(2.7)   Q(i)<c{||wfc-«|| + ftr(||t;||r + y ||ut||rd«)+y ||e||dS|sup||ö2(S)||.

Assuming this for a moment, we find easily from (2.6) that

||02(i)|| < C j|K - V\\ + W (jMIr + J* \\ut\\r ds} + j* \\e\\ ds} .

Combining this with (2.1) and (2.4), we derive

\\e(t)\\<\\p(t)\\ + \\eHt)\\ + \\02(t)\\

(2'8) < C\\vh - v\\ + Chr U\v\\T + y" lltitll, dsl+cj' \\e\\ ds.
An application of Gronwall's lemma now completes the proof.

It remains to prove (2.7). For this purpose we need the following

LEMMA 2.1.  Let B(t, s; -, •) be a bilinear form associated with a partial differ-
ential operator B(t, s) of order ß < 2. Then

|B(í,s;/,Tfcí?)l<C(ft||/||i + ||/||)||í||    /orO<S<ÍG7, feH0l, geL2.
Proof. By (1.8) and (1.9) we have, with B* the adjoint of B,

\B(t, s; f, Thg)\ < \B(t, s; /, (Th - T)g)\ + \B(t, s; /,Tg)\
<CMU{Tk-T)gh + Mm,»rT9Vl
<C(ft||/||i + ||/||)||ff||.   Ü
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126 VIDAR THOMÉE AND NAI-YING ZHANG

We now return to the proof of (2.7). By Lemma 2.1 we obtain easily

(2.9) Q(t) < C /"(%l|i + ||e||)d5sup||02(S)||,
JO s<t

and the proof of (2.7) can hence be completed by showing that

(2.10) I \\e\U ds < C\\vh - v\\ + Chr~l (\\v\\r + j \\ut\\r ds} .

Inserting x = 9 = 9{t) into the error identity (2.2), we obtain

\jt \\9\\2 + A(9,9) = -(Pt, 9) + f B(t, s; e(s), 9(t)) ds

< \\Pt\\ \\9\\ + C ÍWelU dsWh
Jo

ïWPtWPW + C^Wehda^   +\a(9,9).
Therefore, we have after integration in time,

\\9(t)\\2 + f 11*11? ds < C\\9(0)\\2 + C f \\pt\\ \\9\\ ds + C f (f \\e\\, dr)   ds
Jo Jo Jo   vo /

< C||0(O)||2 + C QT \\pt\\ds}   + isup||ö(S)||2

+ C j  (fwe^dA   ds.
Since the above inequality is valid for all í € J, we obtain

sup||0(s)||2 + f \\9\\\ds < C\\9{Q)\\2 + c(f \\pt\\ds)(2 111 s-'

+ CJ  (fWehdA   ds.
Now, recalling that the interval J is bounded, we find

(_£ l|e||i ds}    <c£ \\9\\l ds + C QT \\p\U ds}

Kc^mids+c^-'fwuWrds} ,
and hence, using (2.11) for the first term on the right and the standard estimate
for p, yields

(£ ||e||i ds}   < C\\vh - v\\2 + Ch2^-^ (\\v\\2r + £ ||t*||r ds}

+ C j  (fweWidr}   ds,
whence (2.10) follows by using Gronwall's lemma.    D
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Remark 2.1. The difficult case in the proof is ß = 2. When ß < 1, we have

(2.12) |ß(M;e,x)|<C||e||||x||i,
and hence easily from (2.3), with x = 92{t),

\\92{t)\\<cf\\e{s)\\ds,
Jo

which implies (2.8) more directly. Also, when ß = 2, the proof of (2.7) from (2.9)
follows in a straightforward way directly in the presence of the inverse assumption
llxlli < Ch-1 Hxll for xeSh.

Remark 2.2. The part of the standard approximability assumption (1.2) which
concerns the gradient of u is somewhat difficult to satisfy in practice when r > 2.
However, Theorem 2.1 remains valid if (1.2) is replaced by

(2.13) inf {||u-x||+/i||«-xl|i,nJ<C/is||u||s   for 1 < s < r, if u G Hsf)H0\
X€£>h

where Q/, Ç Q is a mesh domain with supx€iî\Qh dist(x, dQ) < chr such that the
elements of Sh vanish in Q\Qh, and where || - \\i,nh is the norm in H1(Qh). This as-
sumption holds for (carefully constructed) isoparametric finite element spaces. The
modification of the proof consists in using the error estimates for Ä/, corresponding
to (2.13), together with the inequality

Nli,n\n,.<^/2H2
to show that (2.9) may now be replaced by

Q(t) < C /VlMkn, + INI + hr\\u\\2)dsSup\\92(s)\\,
JO s<t

and in substituting || • ||i,nh for || ■ ||i in the subsequent arguments. Using (2.12)
for ß < 1, it is seen that the change in the proof is only needed when ß = 2.

3. The Homogeneous Equation with Nonsmooth Data. In this section
we shall discuss the regularity of the solution of (1.1) in the case that the PIDE is
homogeneous (i.e., when / = 0) and v is only in L2.

By Duhamel's principle, we may formally write (1.1) with / = 0 in the form

(3.1) u{t) = E(t)v + i E{t- s)Bu(s) ds   for t G 7.
./o

For our present purpose we shall consider u to be a solution of (1.1) with / = 0
if u G C(J; H2) D C(7; L2) and satisfies (3.1). Here and below, C(J; H) denotes
the continuous functions in J with values in the Hubert space H, and similarly for
C{J\H). We note, in particular, that when u G C(J;H), the H-norm of u(i) is
bounded on J, whereas this is not necessarily the case if u G C(J; H).

We shall prove the following result.

THEOREM 3.1. For v G L2, the equation (3.1) admits a unique solution u,
which belongs to C{J\HA~0) for ß = 0 and 2, and to C(J;H3 n H2) for ß = 1.
Furthermore,

INOIU < Cra/2\\v\\    fort&J, 0 < a < 4 - ß.
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We reiterate that this result shows the same smoothness property as for the
purely parabolic equation when a < 4 — ß. As we shall demonstrate by counterex-
amples at the end of this section, this limit for a is sharp.

Denoting the integral in (3.1) by w(t), we find, since u(t) = E(t)v + w(t),

w(t) = /  E(t-s)êu(s)ds
Jo

^ ' ' =      E(t-s)ÉEv(s)ds+ i E{t-s)Êw{s)ds
Jo Jo

= V{t) + Kw{t),
where BEv is defined by (1.1) with u(s) replaced by E(s)v. We shall prove that
for v G L2 this Volterra-type integral equation in w has a unique solution w(t) G
C(J; H4'0) for ß = 0 and 2, and w(t) G C(J; H3 D H2) for ß = 1, and that

IM0II4-/Ï < C\\v\\    for Í G 7.
In view of the well-known estimate (1.6) for E(t)v, this will show Theorem 3.1.
Note in particular that the term w(t) does not have the singular behavior of E{i)v
at t = 0.

For the purpose of the proof we shall analyze the two terms on the right in (3.2).
We begin with the following lemma, where we note the alternative uses of the norms
in H9 and Hs. This is motivated by subsequent applications to functions satisfying
and not satisfying boundary conditions, respectively, the latter case occurring for
functions of the form Bu when ß = 1.

LEMMA 3.1.  Let a > 0.   Under the appropriate regularity assumptions for g,
we have

rt

< Csup{\g(s)\a + s\g'{s)\a)    for te J,
a+2 *<t

r
(3.3) /   E{t-s)g(s)ds

\Jo
and

II f*(3.4) /   E(t-s)g(s)ds
\\Jo

<Csup||0(s)||Q+1
a+3 *<É

+ Cr1'2 sup(|ff(s)|a + s\g'{s)\a)    for t G J.
s<t

Proof. Using integration by parts in the second term on the right, we find, since
£TE(s) = -E(s),

t      E{t - s)g(s) ds =      {t-s)E{t-s)g{s)ds+      sE{t - s)g{s) ds
Jo Jo Jo

= tTg(t) + f {((t - 8)1 - T)E{t - s)g(s) - sTE(t - s)g'(s)}ds
Jo

= tTg{t) + tG{t).
For the G{t) thus defined, we obtain by the boundedness of T: Ha+6 — Ha+2+6
and by (1.6) that

\G(t)\a+2+s < Ct'1 í (Í - s)-6/2(\g(s)\a + s\g'(s)\a)ds
Jo

< Cr*'2 sup(|g(s)|a + s\g'(s)\a)    for t G J, 6 = 0,1.
s<t
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The desired inequalities now follow, since T: Ha -+ Ha+2 and T: Ha+1 -» #Q+3
are bounded.     D

In order to derive the required estimate for the term V(t) in (3.2) we now show:

LEMMA 3.2. Let B(t, s) be a partial differential operator of order ß < 2. Then
v e L2 implies that BEv G C(J;H2~ß). If in particular, ß = 0, then BEv G
C(J;H2). Furthermore,

\\BEv(t)h.ß < C\\v\\   for tel,
and

\\BEv{t)\\<Ctl-ßl2\\v\\   for tel.
Proof. We obtain by integration by parts

BEv{t)= i B(t,s)E{s)vds = -B{t,t)TE{t)v + B{t,0)Tv + BsTEv{t),
Jo

where Bs is defined in terms of Bs = (d/ds)B. Hence, by the boundedness of
T: L2 - H2, we find

\\BEv(t)h-ß < Csup \\TE(s)v\\2 < C\\v\\.
s<t

When ß = 0 and ß = 1,

\\BEv{t)\\ <C f \\E{s)v\\ßds <C f s~ß'2 ds\\v\\ < CÏ-WWvl
Jo Jo

For ß = 0, B(t, s) is a multiplication by a scalar function and hence BEv(t) G H2
for tel.    D

We are now ready to derive our estimate for the term V(i) in (3.2).

LEMMA 3.3. Assuming v G L2, we have V G C(J; H4~ß) for ß = 0 and 2, and
V e C(J; H3 D H2) for ß=l. Further,

\\V(t)\U-ß < C\\v\\   for tel, ß<2.
Proof. Considering first ß = 0 and 2, we have by (3.3)

\V(t)\4-0 < Csup(\EEv(s)\2-ß + s\(BEv)'(s)\2-ß).
s<t

The first term on the right is estimated directly by Lemma 3.2, and for the second
we have, since (BEv)'(s) = B(s,s)E(s)v + BtEv(s) and applying now also (1.6)
and Lemma 3.2 to B3, that

s\(BEv)'(s)\2-0 < C(s\E(s)v\2 + s\BtEv(s)\2-0) < C\\v\\.

Here we have used the fact that for ß = 0 the operators B and Bt consist of
multiplication by a scalar function and are thus bounded in H2.

In the case ß = 1 we obtain similarly, using instead (3.4) and Lemma 3.2,

||V(i)||3 < Csup WBEvWU + Cr1'2 8up(||ß£MS)|| + s\\{BEv)'{s)\\) < C\\v\\.
8<t 3<t

The fact that V G C(1;H2) follows from (3.3) of Lemma 3.1 with a = 0. The
proof is now complete.    □

The following lemma is concerned with the properties of the operator K defined
in (3.2).
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LEMMA 3.4.   The operator K is bounded in C(J;H2) and

(3.6) 1*0(0la < C I |ff(a)|2 ds   for t G 7.
Jo

Furthermore, for g G C(l; H2), we have Kg(t) G C(l; H4) for ß = 0 and Kg(t) G
C{T,H3nH2) for ß=l, and

(3.7) \\Kg{t)\\4-ß<Csup\g(s)\2   fortel,ß<2.
8<t

Proof. Replacing g by Bg in (3.5), we obtain

|Ä"ff(i)l3<C8up||Äff(*)||+c/" \\(Bg)'(s)\\ds<C f \g(s)\2ds,
3<t Jo Jo

which shows (3.6) and the case ß = 2 of (3.7). For ß = 0, we have by (3.3)

\Kg(t)\4 < Csup(\àg(s)\2 + s\(Bg)'(s)\2) < Csup\g(s)\2
s<t s<t

and for ß = 1, by (3.4),

IIW)lls < Csup ||¿ff(í)||i + Cr1'2 8up(||Äff(*)|| + s\\(Bg)'(s)\\)
s<t s<t

<C sup \g{s)\2.
3<t

This completes the proof.    D
Proof of Theorem 3.1. Consider the Volterra type equation w = V + Kw for w.

Since by Lemma 3.4, K is a bounded operator in C(J;H2) which satisfies (3.6),
and since V G C(J; H2) by Lemma 3.3, we conclude by the standard argument for
Volterra equations that this equation has a unique solution w G C(J; H2), and

NOIa<CBup|V(t)|a<C|H|.
s<t

The regularity statements for w now follow by Lemmas 3.3 and 3.4, since

(3.8) IMOlU-zï < \\V{t)\\A-ß + \\Kw[t)\\A-ß < C\\v\\ + Csup |tü(a)|2 < C||«||.
s<t

In view of our above discussion this completes the proof of Theorem 3.1.    D
The following result will be used in Section 4.

LEMMA 3.5.   Let u(t) be the solution of (3.1) with v G L2.  Then

\\Btu{t)\\2-ß + \\Bu{t)\\2-ß < C\\v\\    for tel

and
\\Btu{t)\\ + \\Bu(t)\\ < Ctl-ßl2\\v\\   for t G J.

Proof. Since Bu = BEv + Bw, the bounds for Bu follow easily from Lemma
3.2 and (3.8). Since the arguments apply equally well to Bt, the lemma is estab-
lished.    D

We shall now demonstrate that the result of Theorem 3.1 is sharp in the sense
that, for general B of order ß, higher-order regularity than H4~ß cannot be attained
for v only in L2. We shall do this by exhibiting one PIDE for each of the cases of
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ß = 0,1, and 2, with the property that if u{t) G Ha for some a > 4 — ß and some
teJ, then v must belong to a space Hs with s positive.

We consider first the equation (3.1) with B = I and prove that then u(i) -T2v G
H5 for t e J. From this we may conclude that, if u(t) G Ha with 4 < a < 5 and
í G J, then T2v e Ha f) H4, so that v e Ha~4, which shows our claim for ß = 0.

Using our above notation, we have by (1.6) and (3.8), noting that w G H4 for
í G J, that

\Kw{t)\5 <C f (i - s)'1/2 /  |w(r)|4dr(Zs < C||t;||    for t G J,
./o Jo

and hence that Kw(t) G H5 for í G J. Further,

V(t)= f E{t-s) f E{T)vdrds = T2v-T2E(t)v-tTE{t)v,
Jo Jo

and since the last two terms are smooth for any positive t, this shows that w(t) —
T2v = V{t) - T2v + Kw{t) e if5. Since u(i) - w(t) = E{t)v G H5 for any positive
t, this implies u(t) - T2v G H5 for t G J and thus completes the proof.

We next consider ß = 1 and choose B = Di = d/dx\. We shall now show
u(t) - TD\Tv e Ha nH2 for t G J and any a < 4, from which we shall conclude as
before that no higher regularity than u(i) G H3 holds for all v G L2, thus confirming
the sharpness in this case. In fact, if u(() G Ha with 3 < a < 4, then we would
have D\Tv G Ha~2, which is not true for all v G L2, since £>iî/> is not in Ha~2 for
all ip e H2 when a - 2 > 1.

Here we know that w G C{1; H3 Pi H2) and hence TDxw G C(7; #4 D H2), so
that £(i - )TDiw G ¿i((0, i); ^Q), uniformly in t, for any a < 4, where Li(./; H)
denotes the set of functions J —» H with /f-norm integrable over J. Thus,

Kw(t) = f (I-E(t- t))TDiW(t) dreHaC\ H2   for t G 7.
Jo

This time,

V(i)= /" E(t-s) f DiEtfvdTds
Jo Jo

= TD1Tv-TD1TE{t)v- f TE(t-8)DiE(a)vds,
Jo

where the last two terms are both in Ha f)H2 for teJ. This shows u(t) —TDiTv =
E(t)v + w{t) - TDiTv e Ha n H2 for t G J and completes the proof.

We finally consider ß = 2 and now choose B = A. This time we shall show
u(t) - elTv G H3 for t G J, from which we infer that u(t) G H2 is the highest
regularity valid for all v G L2.

We now have w G C(J; H2) and

Äw(i) = /  w{s)ds- /   £(t-s)u;(s)ds,
io Jo

where the second integral is in C{J;H3), because E(t - -)w G Li((0,t);H3), uni-
formly in t. Further, V{t) = Tv- TE(t)v - tE{t)v, so that w is of the form

w(t) = Tv + g{t) + i w{s)ds,    withffGLi(J;i/3)nC(J;i/3).
Jo
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Hence,

w(t) =Tv + g{t) + /  el~a{Tv + g{s)) ds = exTv + h(t),
Jo

where h(t) G H3 for í G J. By the regularity of u(i) - w(t) = E(t)v, this completes
the proof.

4. Error Estimates for the Homogeneous Equation with Nonsmooth
Data. In this section we shall prove the following nonsmooth data error estimate
for the spatially discrete finite element method for our homogeneous PIDE.

THEOREM 4.1. Let u be the solution of (1.1) with f = 0 and v G L2, where
B(t, s) is a partial differential operator of order ß, ß < 2. Let further Uh be the
solution of the corresponding semidiscrete problem (1.3) with / = 0 and Vh = Phv-
Then we have

\\uh(t) - u{t)\\ < ChTl/2\\v\\   for t G J, where -y = min(4 - ß,r).

Clearly, in view of Theorem 3.1, the power of h occurring in this estimate is best
possible.

In the proof we may, and shall, assume that 4 — ß < r, so that 7 = 4 — /?. In
fact, if r = 2 or 3 and ß < 4 — r, then we may interpret B to be of order 4 — r, and
the results in this case will lead to the correct conclusion.

Defining the discrete analogue Bh = Bh{t, s) : Sh —► Sh of B = B(t, s) by

{Bh{t, s)^, x) = B(t, s; t¡),x)    W>, x G Sh, 0 < s < t G 7,

we write the semidiscrete problem (1.3) with / = 0 in the form

«fc,t + AhUh = /   Bh{t, s)uh{s) ds = BhUh{t)    for teJ,
Jo

ufc(0) = Phv.

By Duhamel's principle we then have for the semidiscrete solution

uh(t) = Eh{t)Phv + I Eh{t- s)Bhuh{s)ds.
Jo

Together with (3.1), this shows for the error e = Uh — u that

e(t) = {Eh{t)Ph - E(t))v + f Eh{t- s)Èhuk{s)ds
Jo

- /  E[t-s)Bu{s)ds
Jo

(4.1) /•'v = Fh(t)v +      Fh{t- s)Bu{s) ds
Jo

+ f Eh(t - s){Bhuh{s) - PhBu(s))ds
Jo

= eo{t) + ei(i) + e2(t) s e0{t) + ê{t).

We shall prove below, by estimating ei(i) and e2(t) separately, that

(4.2) \\e(t)\\<Ch4-ß\\v\\.
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Together with the known estimate (1.7) for eo(£) = Fh(t)v, the error for the finite
element solution of the associated differential equation problem, this will complete
the proof. We remark that, analogously to the integral term in (3.1), the contribu-
tion of ê to the error thus does not exhibit any singularity at t = 0.

The proof will be based on a sequence of lemmas. In the first one we study the
selfadjoint operator if/, (¿) : L2 —> Hq defined by

Hh(t) = Eh(t)Th - E(t)T.

This operator is a time integral of —Fh{t) and is introduced to avoid the singular
behavior of í/,(í) at t = 0.

LEMMA 4.1.   We have

(4.3) \Hh(t)v\-q < ChH'-b-^^WvW   forte J, l<q + 2<p<r,
and

(4.4) \\Hh(t)v\\ < Ch4\v\2   for tel, r> 4.

Proof. We may write

Hh(t)=ThFh(t) + (Th-T)E(t).

Since by (1.6) and (1.8), the last term above may be bounded as desired, we need
only consider the first term on the right. We shall now appeal to the analysis used
in [7, Chapter 6], and estimate eo{t) = Fh{t)v in the appropriate discrete seminorm
defined by \v|_Si/, = (T^u)1/2 (for v G Sh also for s = -1). We start by proving
(4.3). Using Lemma 3 of [7, Chapter 6] we obtain

\Theo\-q < C|eo|-(9+a),fc + Cft«|eo|-a,fc
< C|e0|_(g+2) + Chg\eo\-2 + C/i«+2||e0||    for 0 < q < r - 2,

and, for q = —1,

(4.6) |rfceo|i = \e0\-i,h < C(|e0|-i + %o||).

For any ¡p G Hl we have by (1.7) that

|(eo,p)| = \{v,Fh{t)<p)\ < ChH-ü-WWvW \<p\i   for 0<i<j<r,
whence

|«o(0l-i ^ Ch3r(3-i)/2\\v\\   for 0 < í < j < r.
Together with (4.5), (4.6) and (1.7), this shows

\ThFh{t)v\-q < Chrï-to-tiftWvW   for 1 < 9 + 2 < p < r,

which completes the proof of (4.3).
For the proof of the corresponding part of (4.4) we note that

Theo,t + e0 = po = -{Rh- I)E(t)v,

and hence, by Lemma 4 of [7, Chapter 3], Lemma 3 of [7, Chapter 6], (1.8) and
(1.6), that for r > 4

||The0|| = |e0|-2,ft < Csup(s\p'0(s)\-2,h + |fl>(*)l-3,fc) < Ch4\v\2.   D
8<t
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In our next lemma we shall use the notation

hg{t) = I   Fh{t- s)g{s) ds   for t G 7, g G C{1; L2).
Jo

LEMMA 4.2.   Under the appropriate regularity assumptions for g, we have

(4.7) ||FÄff(t)|| < Chp+2 sup(\g(s)\p + s\g'(s)\p)
s<t

for tel, p = 0 and 2, r > p + 2,

(4.8) \\Fhg(t)\\ < Ch3 (sup H^llx + r1'* sup(\\g(s)\\ + s\\g'(S)\\)\
(s<t s<t )

forte J, r > 3

and

(4.9) \\Fh9(t)\\i < CAsup(||ff(«)|| + s\\g'(s)\\)    fortel,r> 2.
s<t

Proof. In the same way as in (3.6) we obtain

tFhg{t) = f (t- s)Fh(t - s)g{s) ds+ f sFh{t - s)g{s) ds
Jo Jo

= tHh(0)g(t) + f {((t - s)Fh(t -s)- Hh(t - s))g(s)
Jo

-sHh(t - s)g'(s)} ds.

The estimate (4.7) now follows by straightforward application of the estimates (4.3),
(4.4), (1.7) and (1.8) for Hh{t) and Fh{t) (note that Hh(0) = Th- T).

Similarly, we have for r > 3

\\Fhg(t)\\ < Ch3 (sup HffOOH, + Crl f\t - S)-1/2(||ff(S)|| + s\\g'(s)\\) ds)
(s<t Jo )

(supllffWHa+r^supdlffWII + sllff'WII)},
(s<t s<t J

<Ch 3

proving (4.8), and (4.9) follows in the same way if we also utilize the fact

(4.10) ll*fc(*)«lli ^Chr^lvW    iorveL2, r>2.

To prove this last estimate, we note that 9o{t) — Eh{i)PhV — RhE(t)v satisfies

(eo,i, X) + (V0o, Vx) = 0   for x G 5h,

and hence by known estimates,

||V0o(<)||2 < ||eo,t(i)ll H^oWII < Cit-'WvMChH-'WvW) < CÄ2r2||t;||2.
Since Vpo may also be bounded by the right-hand side of (4.10), this establishes
the desired result.    D

We are now ready for the estimate needed for the term e\ in (4.1).
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LEMMA   4.3.   Under the assumption of Theorem 4.1  we have for e\{i)  =
Fh(Bu)(t)

IMOII<ca4-"IM|   for te J, ß<2,
and

||ei(0lli < Ch\\v\\   for tel, ß = 2.
Proof. When ß = 0 and ß = 2, we have by Theorem 3.1 and Lemma 3.5

\Bu{s)\2-0 + s\(Èu)'{s)\2-0 < C\\v\\ + s\B{s,«)u(s)|2-/j + s\Étu{s)\2-0

< C\\v\\ + Cs\u{s)\2 + s\Btu{s)\2-ß < C\\v\\.
The result therefore follows in these cases by (4.7) with p = 2 — ß. For ß = 1 the
estimate follows similarly by (4.8), Theorem 3.1 and Lemma 3.5.

The last inequality of the lemma is a consequence of (4.9), Theorem 3.1 and
Lemma 3.5.    D

We now turn to the term e2 defined in (4.1). Since e2 G Sh, we shall only need
to bound (ea, x) for x G Sh- We note that by our definitions

(Eh{t - s)(êhuh(s) - PhÉn(s)),x) = (Bhuh(s) - PhBu(s),Eh(t - s)X)

= f  B{s,T;e(T),Eh{t-s)x)dT,
Jo

and hence, since e{t) = Fh{t)v + ê(t),

(e2(í),x)= f   f B(s,T;Fh{T)v,Eh(t-s)x)dTds
Jo Jo

(4.11) /•' r3
+ B(s,T;ê{T),Eh{t-s)x)dTds

Jo Jo
= e2i(í;x)+e22(í;x).

For the purpose of estimating e2i(i; x) we define the functional

B{t;f,g)= [   [  B(s,T;f(r),g{t-s))dTds
Jo Jo

and show the following lemma, where f(t) denotes /0 f(s) ds, and similarly for g(t).

LEMMA   4.4.   Under the appropriate regularity assumptions for f and g, we
have

(4.12) |¿(í;/,ff)|<Csup(|/(s)|/í_lc + a|/(í)|/9-(c)sup(|í(s)|(t + *|ff(«)|lc)
s<t s<t

for tel, 0 < k < 2, ß = 0 and 2,
and

(4.13) IBit-J^^^Csnpis^WmiDsnpis^lgis)^)   for tel, 0 = 1.
s<t s<t

Proof. By integration by parts we get

B{t;f,g)= f B{s,s;f(s),g(t-s))ds
Jo

(4.14) -/    /   BT(s,r,f{T),g{t-s))drds

2

3 = 1
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(4.15)

Multiplying by t and using integration by parts once more, we obtain for the first
term

tB1(t;f,g)= f sB{s,s;f{s),g{t-s))ds
Jo

+ f {t-s)B{s,s;f{s),g{t-s))ds
Jo

= /   B{s,s;f(s),g{t-s))ds
Jo

+      sBs{s,s;f{s),g{t-s))ds
Jo

+      sB(s,s;f(s),g{t-s))ds
Jo

+ [ {t-s)B{s,s;f{s),g{t-s))ds,
Jo

where Bs is obtained by differentiating with respect to the first two arguments. In
the second term in (4.14) we interchange the order of integration and integrate by
parts again to obtain

É2(t;f,g) = -J I BT(s,T;f(T),g(t-s))dsdT

(4.16) =- f BT(T,T;f(T),~g(t-T))dr
Jo

- Bsr{s,T-J(T),g{t-s))dsdT.

Together, (4.15) and (4.16) thus show

tB(t;f,g)=  f B(s,s;f(s),g{t-s))ds+ f sBs(s,s;f(s),g(t-s))ds
Jo Jo

+  / sB(s,s;f(s),g(t-s))ds
Jo

(4.17) + [ (t- s)B(s, s; /(a), g(t - s)) ds
Jo

-t / Ba{s,s;f{s),g{t-s))ds
Jo

-tjf BST{s,T;f(T),g(t-s))dsdT.

By considering various possibilities for ß — 0 and 2, 0 < k < 2, we find

(4.18) \B(;-,f,g)\<C\f\0-K\g\K   for 0 = 0 and 2, 0 < n < 2,

and similarly for J5S and BST. Using this in (4.17) yields at once the first result of
Lemma 4.4.

The second result of the lemma follows directly from (4.14), since

|B(v;/,0)|<C||/|||ff|i    for 0 = 1,
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and similarly for BT. The reason why we are treating 0 = 1 separately is that
for ß — 1, K = 2 the factor |/|-i in (4.18) would have to be replaced by ||/||-i,
since Vff does not generally vanish on dQ and this last norm is undesirable in our
application below.    D

We are now ready to estimate the term e2i(i;x) hi (4.11).

LEMMA 4.5.   We have

\e2i(t;x)\<Ch4-%\\ Hxll    for tel, x € Sh, ß < 2,
and

|eai(i;x)l<C%|||x|-i,h   for tel, XeSh, ß = 2.
Proof. We first discuss 0 = 0 and 2. We have

(4.19) 621 (i; x) = ^(í; FhV>EhX) = ^(í; FhV'Fhx) + ^ FftV'Ex)
= e2n(í;x) + e2i2(í;x).

We shall estimate the two terms in the right-hand side individually.
With ~ as usual denoting integrals over J, we find, since (Fhv)~(t) = —Hh{t)v +

Hh{0)v, that by (4.12), (1.7), (4.3) and (4.10), with k = min(0,l),

|eau(í;x)l
Í4 20) - Csup{\Hh(s)v\0-K + s\Fh{s)v\ß-K) sup(|#h(s)xU + s\Fh(s)x\K)
*•   '     ' s<t s<t

< Ch2-^h2-K\\v\\ Hxll < ^4-^||t;|| ||x||.
Since (Ev)~(t) — -TE(t)v + Tv, we obtain similarly

|caia(i;x)l
(4.21) ^ Csup{\Hh{8)v\ß-2 + s\Fh{s)v\0-2) sup(|T£:(s)x|2 + a|^(«)xla)

<Ch4-ß\\v\\\\X\\.
Together, (4.19), (4.20) and (4.21) imply the first result of the lemma.

When 0 = 2, we also have, since (Ehv)~(t) = -ThEh(t)v + ThV,

\e2i{t]x)\<Csap(\Hh(8)v\1+a\Fh(a)v\i)eap{\ThEk{8)x\i + 8\Eh{8)x\i)
3<t 3<t

< Ch\\v\\ |x|-i,h,
where in the last step we have used the following inequality (cf. [6, Lemma 3]) for
the case p = q = 1:

(4.22) \Eh(t)x\q,h < Ct-(p-«V2\X\P,h    for t G J, p < q.

When 0 = 1, we have by Lemma 4.1, (4.13) and (4.22)

|e21(i;x)l < Csap(81^\\Hh{8)v\\)sap{81f2\Eh[8)X\i) < Ch3\\v\\ ||x||.
8<t 8<t

The proof is now complete.    D
Proof of Theorem 4.1. We shall now complete the proof of Theorem 4.1 by

showing the estimate (4.2) for ê = e\ + e2 and consider first the case 0 < 1.
Recalling the notation of (4.11), we have now by (4.22),

\e22(t;x)\<C f   [3\\e(T)\\\\Eh(t-s)x\\0dTds<C f \\ê\\dT\\x\\.
Jo Jo Jo
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Hence, using also Lemmas 4.3 and 4.5, we find

P(i)|| < ||ei(i)|| + HeaWII < Ch4-0\\v\\ + C f \\è\\ ds,
Jo

from which the desired result follows by Gronwall's lemma.
We turn to 0 = 2. Now

e22(i;x)=/    /   B{s,T;ê{T),Fh{t-s)x)dTds
Jo Jo

+ [   [S(ê(T),B(s,TyE(t-s)x)dTds
Jo Jo

= e22i(í;x)+eaaa(í;x).
Interchanging the order of integration and integrating by parts, we have

e22i(i;x) =   /    /   B{s,T;ê{T),Fh{t-s)x)dsdT

=  f B(t,T;ê{T),Hh{0)x)dT- f B{T,r;ê{T),Hh{t-T)x)dT
Jo Jo

- Ba{s,T;ê{T),Hh{t-s)x)dsdT.

Estimating these three terms individually gives, using (4.3) with p = 1, q = -1,

|e22i(i;x)l <C / ||e||irf*sup||Ä-A(*)x||i < CÄ /" ||ê||id«||x||.
Jo s<t Jo

Similarly, we get

\e222(t;x)\<C f \\ê\\dssup\\TE(s)x\\2<C [ \\ê\\ds\\X\\.
Jo s<t Jo

Thus,

|e22(<; x)l < Ch f Helix díllxll + C f \\è\\ ds\\x\\,
Jo Jo

which together with Lemma 4.5 yields

||e2(i)|| <<7/i2||t;|| + C/i / \\è\\ida + C f \\ê\\ds.
Jo Jo

We shall prove presently that, when 0 = 2, we have

(4.23) ||ê(s)||i <C%||    for s G 7.
Assuming this for a moment, and using also Lemma 4.3, we obtain that

P(0II < lid Wll + HeaWII < Ch2\\v\\+C [ \\ê\\ ds,
Jo

which concludes the proof of (4.2) as above.
It now remains only to prove (4.23). This time we write

caa(i;x)= /    /   B(s,T;ê(T),Eh{t-s)x)dsdT

=  f B(t,r,ê{T),ThEh(0)x)dsdT- f B{T,T;ë{T),ThEh{t - r)x)dr
Jo Jo

-ÍÍ Bs{s,T;ê{T),ThEh(t - s)X)dsdT,
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whence by (4.22)

|eaa(x)l<<?/" \\ê\\idsSup\\ThEh(s)x\\i <C [ ||ê||i<te||x||-ilfc.
Jo s<t Jo

Applying the second estimate of Lemma 4.5, we have

|(caW,x)l<c{%|| + jr ||«||i<toj Hxll-u,
and hence, by duality,

h\M+ /   l|ê||ids[.

Together with the second estimate of Lemma 4.3, this shows

PWIIi < IkiWIli + llcaWlli < Ch\\v\\ + cf \\eh ds.
Jo

By Gronwall's lemma, the proof of (4.23), and hence of the theorem, is now
complete.   D

Remark 4.1. Theorem 4.1 remains valid when the approximation (1.2) is weak-
ened to (2.13). In fact, for 0 < 1, only the L2 norm error estimate for Rh is needed
in the proof, and for 0 = 2 it suffices to consider r = 2, in which case (2.13) implies
(1.2).
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