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ERROR ESTIMATES IN L2, H1 AND L∞

IN COVOLUME METHODS
FOR ELLIPTIC AND PARABOLIC PROBLEMS:

A UNIFIED APPROACH

SO-HSIANG CHOU AND QIAN LI

Abstract. In this paper we consider covolume or finite volume element meth-
ods for variable coefficient elliptic and parabolic problems on convex smooth
domains in the plane. We introduce a general approach for connecting these
methods with finite element method analysis. This unified approach is used
to prove known convergence results in the H1, L2 norms and new results in
the max-norm. For the elliptic problems we demonstrate that the error u−uh

between the exact solution u and the approximate solution uh in the maximum
norm is O(h2| ln h|) in the linear element case. Furthermore, the maximum
norm error in the gradient is shown to be of first order. Similar results hold

for the parabolic problems.

1. Introduction

Let Ω be a convex domain in R2 with smooth boundary ∂Ω and consider the
general self-adjoint second order elliptic problem

Lu := −
2∑

i,j

∂

∂xi
(aij

∂u

∂xj
) + qu = f, x ∈ Ω,(1.1)

u = 0, x ∈ ∂Ω,(1.2)

where q ∈ L∞ is nonnegative, f ∈ L2(Ω), and the matrix of coefficients A :=
(aij), aij = aji ∈W 1,∞(Ω) is uniformly elliptic; i.e., there exists a positive constant
r > 0 such that

2∑
i,j=1

aij(x)ξiξj ≥ r(ξ21 + ξ22) ∀ξ := (ξ1, ξ2) ∈ R2 a.e. in Ω.(1.3)

The natural variational problem associated with (1.1)-(1.2) is to find u ∈ U :=
H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ U,(1.4)
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Figure 1. Primal and dual partitions of a convex domain

where

a(u, v) :=
∫

Ω

(
2∑

i,j

aij
∂u

∂xj

∂v

∂xi
+ quv)dx,(1.5)

(f, v) =
∫

Ω

fvdx.(1.6)

Since the error estimates to be derived below require that the exact solution u be in
H2(Ω) for the H1 norm case and be in H3(Ω) for the max-norm and L2 norm cases,
it is necessary to have the smooth boundary assumption on the problem domain.
If instead we were to consider a polygonal problem domain, all interior angles of
the domain would have to be no greater than π

2.5 even if f ∈ C∞, rendering the L2

and max-norm estimates so obtained too limited to be useful.
Referring to Figure 1, let Th = ∪KQ be a triangulation of the polygonal domain

Ωh ⊂ Ω into a union of triangular elements, where KQ stands for the triangle whose
barycenter is Q. Here h := maxhK is the maximum of the diameters hK over all
triangles. The nodes of a triangular element are its vertices. We further require
that the vertices which lie on ∂Ωh also lie on ∂Ω, so that there exists a constant C
independent of h satisfying

dist(x, ∂Ω) ≤ Ch2 ∀x ∈ Ω\Ωh.(1.7)

Associated with the primal partition Th, we define its dual partition T ∗
h of Ωh as

follows. Let P0 be an interior node and Pi, i = 1, . . . , 6 be its adjacent nodes, and
Mi := M0i be the midpoint of P0Pi. Connect successively the points M1, Q1,M2,
Q2, . . . ,M6, Q6,M1 to obtain the dual polygonal element K∗

P0
. Its nodes are defined

to be Qi, i = 1, . . . , 6. The dual element K∗
P2

based at a typical boundary node P2

is M12Q1M2Q2M23P2. Let Ω̄h denote the set of all nodes of Th; Ω◦
h := Ω̄h−∂Ω the

set of all interior nodes in Th, and SQ and S∗P0
denote the areas of triangle KQ and
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polygon K∗
P0

, respectively. Throughout this paper we shall assume the partitions
to be quasi-uniform. There exist two positive constants C1, C2 independent of h
such that

C1h
2 ≤ SQ ≤ C2h

2, Q ∈ Ω∗
h,(1.8)

C1h
2 ≤ S∗P0

≤ C2h
2, P0 ∈ Ω̄h.(1.9)

Corresponding to Th, we define the trial function space Uh ⊂ H1
0 (Ω) as the space

of continuous functions on the closure of Ω which vanish outside Ωh and are linear
on each triangle KQ ∈ Th. Let Πh : U → Uh be the usual linear interpolator, and
thus if u ∈W 2,p(Ω),

|u−Πhu|m,p ≤ Ch2−m|u|2,p, m = 0, 1, 1 ≤ p ≤ ∞,(1.10)

where | · |m,p is the usual seminorm of the Sobolev space Wm.p(Ω). This inequality
can be obtained from its “polygonal” version using standard analysis [23] in the
“skin layer” with the help of (1.7). Throughout the paper C will denote a generic
constant independent of h and can have different values in different places. We use
|| · ||m and | · |m for the norm || · ||m,p and the seminorm of Wm.p(Ω), respectively,
when p = 2.

The test function space Vh ⊂ L2(Ω) associated with the dual partition T ∗
h is

defined as the set of all piecewise constants. More specifically, let χP0 be the
characteristic function of the set K∗

P0
we have for vh ∈ Vh

vh =
∑

P0∈Ω◦h

vh(P0)χP0 .(1.11)

Note that a test function is identically zero outside Ωh. Define the transfer operator
Π∗

h : Uh → Vh connecting the trial and test spaces as

Π∗
hw :=

∑
P0∈Ω◦h

wh(P0)χP0 ,(1.12)

and hence

||w − Π∗
hw||0 ≤ Ch|w|1.(1.13)

The approximate problem we consider is to find uh ∈ Uh such that

a∗(uh, vh) = (f, vh) ∀vh ∈ Vh,(1.14)

where

a∗(uh, vh) :=
∑

P0∈Ω◦h

vh(P0)a∗(uh, χP0),(1.15)

and

a∗(uh, χP0) := −
∫

∂K∗
P0

(A∇uh) · nds+
∫

K∗
P0

quhdx,(1.16)

where n is an outward unit normal to ∂K∗
P0

, and a∗(·, ·) is bilinear by construction.
Using the facts n1ds = dx2 and n2ds = −dx1 yields

a∗(uh, χP0) = −
∫

∂K∗
P0

2∑
i,j=1

aij
∂uh

∂xj
nids+

∫
K∗

P0

quhdx

= −
∫

∂K∗
P0

w
(1)
h dx2 +

∫
∂K∗

P0

w
(2)
h dx1 +

∫
K∗

P0

quhdx,

(1.17)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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where ni is the i-th component of the outward unit normal to ∂K∗
p , and

w
(1)
h := a11

∂uh

∂x1
+ a12

∂uh

∂x2
,(1.18)

w
(2)
h := a21

∂uh

∂x1
+ a22

∂uh

∂x2
.(1.19)

Let us relate our work to the existing literature. The basic idea of the finite
volume method for general elliptic problems is to use the divergence theorem on
the elliptic operator L of (1.1) to convert the double integral into a boundary
integral as in (1.17). If one discretizes the boundary integral in (1.17) using finite
differences, one gets the so-called finite volume difference methods [1, 22] or the
generalized difference methods [15, 16, 17]. On the other hand if one uses finite
element spaces in the discretization, one gets the so-called finite volume element
methods [3, 4]. In both cases two grids dual to each other are used. More recently,
Nicolaides [18] generalized the usual operators in vector analysis such as Div, Grad,
and the Laplacian to Delaunay-Voronoi meshes. This class of methods is now
termed the covolume method and has been successfully extended to practical fluid
problems [13, 14, 19, 21]. See [20] for a survey of the covolume method. Porsching
[25] initiated the so-called network method, which has also been extended to the
Stokes problem [6, 12, 11] with rigorous analysis and to two fluid flow problems
[24, 5]. In the network method the emphasis is to conserve mass or energy over
control volumes. The meshes chosen do not have to be of the Delaunay-Voronoi
type. In this paper we take barycenters in favor of circumcenters (the Delaunay-
Voronoi mesh system uses circumcenters), since the maximum norm estimation
is less amenable in the latter case. We shall refer to any finite volume method
utilizing two grids as a covolume method since the last two methods mentioned
above are now subsumed under the name the covolume method [20]. In all the
covolume methods cited so far none has addressed maximum norm estimates for
general elliptic or parabolic problems, which are crucial to studying their nonlinear
counterpart where the coefficient matrix A becomes dependent on the solution.
(However, some computational results in a discrete L∞ norm were reported in [13,
p. 160].) The approximation problem (1.14) has been considered by [16, 17] where
convergence results in the H1 and L2 norms were demonstrated. However, we shall
prove these results in a unified way. The main purpose of this paper is to provide
convergence results in the maximum norm for (1.14) and for an accompanying
approximate parabolic problem.

We now outline a central idea used in this paper to show convergence in L2, H1,
and maximum norms. The idea, we think, is general enough to be useful for nu-
merical analysts working in covolume methods. Our style of presenting it will
follow that of the classical paper [23] on maxi-norm estimates in the finite element
method. The central idea of analyzing the convergence of covolume methods is to
reformulate (1.14) to find uh ∈ Uh such that

a∗(uh,Π∗
hTh) = (f,Π∗

hTh) ∀Th ∈ Uh,

which is a standard Galerkin method. With this association we can then tap into
standard finite element analysis. A covolume method based on linear elements, if
done properly, usually results in a system that is very close to the classical piecewise
linear Galerkin method (more about this later). Comparison of the two systems
then often leads to fruitful analysis. (This and similar ideas have been successfully
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exploited in [6, 12, 11, 8, 9, 10].) Now if one strives to carry out this program, one
is very naturally led into considering the quantity (d for “deviation”)

d(v − vh, Th) := a(v − vh, Th)− a∗(v − vh,Π∗
hTh),(1.20)

where v is a “general” function, vh ∈ Uh, Th ∈ Uh. The basic observation is that
(see (2.11))

d(v − vh, Th) = E1 + E2 + E3 + E4 + E5,(1.21)

where the Ei can be given various bounds that contain extra or “free” powers of h;
something unexpected at first glance (at the Ei). Thus, for example, the bounds
on various Ei take the following forms:

(B.E1) CAh||v − vh||1||Th||1,
(B.E2) CAh[||v − vh||1 + h1/2||v − vh||1/2

1 ||v||1/2
2 ]||Th||1.

Here CA depends on ||∇A||∞; it is 0 if the coefficient matrix A is constant.

(B.E3) C2h
2||v||3,p||Th||1,p′ ,

1
p

+
1
p′

= 1,

(B.E4) CAh[||v − vh||1 + h1/2||v − vh||1/2
1 ||v||1/2

2 ]||Th||1,
(B.E5) Cqh||v − vh||0||Th||1.

Here Cq = 0 if the function q ≡ 0.

Remark 1.1. See (2.12)-(2.26) for the derivation of these bounds.

To give a feel for the usefulness of this observation, let us take the case of

v ≡ 0, A constant, q ≡ 0.

Then

d(uh, Th) = 0 !

Thus the covolume approximation is given by

a(uh, Th) = (f,Π∗
hTh) ∀Th ∈ Uh,

whereas, for the ordinary Galerkin solution, ũh,

a(ũh, Th) = (f, Th) ∀Th ∈ Uh.

Hence it is obvious that the covolume approximation can be viewd as a Galerkin
method with a variational crime. In the general case,

a(uh, Th) + d(uh, Th) = (f,Π∗
hTh)

with similar interpretation as two variational crimes. This view is very useful when
dealing with the generalized Stokes problem (see [6, 12, 11] for more detail).

Now back to the issues of general estimates; take v ≡ 0, vh ∈ Uh and Th = vh

and apply (B.E1), (B.E2), (B.E4), and (B.E5) ((B.E3) is void since v ≡ 0):

|d(vh, vh)| ≤ Ch||vh||21.

From this the coercivity (for h small enough) and boundedness of a∗(·,Π∗
h·) follow

(see Lemma 2.3).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



108 SO-HSIANG CHOU AND QIAN LI

Next, take v ≡ 0, vh = eh := ũh − uh (ũh ordinary Galerkin) to find

||eh||21 ≤ Ca∗(ũh − uh,Π∗
heh)

= C[a∗(ũh,Π∗
heh)− a∗(uh,Π∗

heh)]
= C[(f, eh)− (f,Π∗

heh)− d(ũh, eh)],

and it follows immediately that

||eh||21 ≤ Ch(||f ||0 + ||ũh||1)||eh||1
so that, by the triangle inequality, ||u − uh||1 ≤ Ch||f ||0, which proves the H1

convergence (see Lemma 2.5).
Similarly, we can derive L2 convergence via a duality argument as follows. Note

that

||eh||0 = sup
||φ||0=1

(eh, φ).

Given a φ with unit L2–norm, let Lψ = φ, ψ = 0 on ∂Ω and let ψ̃h be the Ritz
projection of ψ. Thus

(eh, φ) = a(eh, ψ) = a(eh, ψ̃h)

= a(u− uh, ψ̃h)

= d(u − uh, ψ̃h)

≤ CA(h||u− uh||1 + h3/2||u − uh||1/2
1 ||u||1/2

2 )

+C2h
2||u||3,p||ψ̃h||1,p′ ( 1

p + 1
p′ = 1)

+Cqh||u− uh||0.

Here, ||ψ̃h||1,p′ ≤ C||ψ||1,p′ ≤ Cp||ψ||2 (stability and Sobolev). Clearly, after some
trivial manipulations, we obtain convergence in the L2 norm.

The W 1,∞ and L∞ norm estimation follows the same vein but is more involved.
The details can be found in Section 3. The organization of this paper is as follows. In
Section 2 we list and prove preliminary lemmas and the H1, L2 norm convergence
results. In Section 3 we derive maximum norm error estimates for the elliptic
problems. The main results are contained in Theorem 3.1 (the max-norm error in
the approximate solution is O(h2| lnh|)) and Theorem 3.2 (the max-norm error in
the gradient is O(h)). The method of proof uses the above-mentioned central idea
with the aid of the discrete Green’s function. In Section 4 we give similar maximum
norm estimates for parabolic equations.

2. Preliminaries

Define the discrete L2 norm:

||uh||0,h := ||Π∗
huh||0 = {

∑
K∗

P∈T ∗h

u2
h(P )S∗P }1/2.(2.1)

Referring to Figure 2 and using the fact that Q are centers and Mi are midpoints,
we have

||uh||0,h = {1
3

∑
KQ∈Th

[u2
h(P1) + u2

h(P2) + u2
h(P3)]SQ}1/2.(2.2)
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P1 M1 P2

M2

P3

M3
Q

Figure 2. Primal triangular element with dual partition

Next define the discrete H1 seminorm and norm:

|uh|1,h := (
∑

KQ∈Th

|uh|21,h,KQ
)1/2,(2.3)

|uh|1,h,K := {[(∂uh

∂x1
(Q))2 + (

∂uh

∂x2
(Q))2]SQ}1/2,(2.4)

||u||1,h := {||uh||20,h + |u|21,h}1/2.(2.5)

Lemma 2.1. The two norms | · |1,h and | · |1 are consistent, i.e., | · |1,h = | · |1,
and || · ||0,h and || · ||1,h are equivalent to || · ||0 and || · ||1, respectively. Here the
equivalence constants are independent of h.

Proof. The first statement is easy to see since ∇uh is constant over KQ. As for the
second statement, it suffices to show the equivalence of the L2 norms. In reference
to Figure 2, we have with K = KQ∫

K

|uh|2dx =
1
3
[u2

h(M1) + u2
h(M2) + u2

h(M3)]SQ

=
1
12

[u2
h(P1) + u2

h(P2) + u2
h(P3) + (uh(P1) + uh(P2) + uh(P3))2]SQ.

Summing over K yields
1
4
||uh||20,h ≤ ||uh||20 ≤ ||uh||20,h.

Lemma 2.2. Π∗
h is self-adjoint with respect to the L2 inner product.

(uh,Π∗
hūh) = (ūh,Π∗

huh), ∀uh, ūh ∈ Uh.(2.6)

Define

|||uh|||0 := (uh,Π∗
huh)1/2.(2.7)

Then |||·|||0 and ||·||0 are equivalent. Here the equivalence constants are independent
of h.
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Q
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e3

Figure 3. A triangular element K

Proof. In reference to Figure 3, for i = 1, . . . , 3, let ei be the quadrilateral
PiMiQMi+2, (M5 = M2,M4 = M1) and λi be the Lagrange nodal basis func-
tions associated with Pi, i.e., λ1, λ2, and λ3 are the barycentric coordinates. Over
a typical K write

uh =
3∑

i=1

uh(Pi)λi

(we will use local indices when there is no danger of confusion), and use (1.12) to
obtain

(uh,Π∗
hūh) =

∑
K∈Th

∫
K

uhΠ∗
hūhdx

=
∑

K∈Th

3∑
l=1

ūh(Pl)
∫

el

uhdx

=
∑

K∈Th

3∑
l=1

ūh(Pl)
3∑

k=1

uh(Pk)
∫

el

λkdx

=
∑

K∈Th

3∑
k=1

3∑
l=1

ūh(Pl)uh(Pk)
∫

ek

λldx

=
∑

K∈Th

3∑
k=1

uh(Pk)
3∑

l=1

ūh(Pl)
∫

ek

λldx

= (ūh,Π∗
huh),

where we have interchanged the summations and used the fact that∫
ek

λldx =
∫

el

λkdx.

This last equality can be shown as follows. First it is easy to see that the triangle K
is divided into six equal-area subtriangles. Use the three-vertices quadrature rule
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on linears to evaluate:

∫
e1

λ2dx =
∫

e1+

λ2dx+
∫

e1−
λ2dx

=
1
3
(λ2(P1) + λ2(Q) + λ2(M1))Se1+

+
1
3
(λ2(P1) + λ2(Q) + λ2(M3))Se1−

=
1
3
(0 + 1/3 + 1/2)Se1+ +

1
3
(0 + 1/3 + 0)Se1− ,

where e1+ and e1− are the two subtriangles that make up e1. Since Se1− , Se1+ , Se2−
and Se2+ are the same, we see that

∫
e1

λ2dx =
∫

e2

λ1dx.

The other cases can be handled similarly since the underlying integrals only depend
on the two areas as shown above. Finally, as a by-product, the equivalence of the
two norms now follows by direct computation.

Now let us derive the important relation (1.21) mentioned in Section 1. For
v ∈ H2(Ω), vh, Th ∈ Uh, we have by Green’s formula and the fact that Th vanishes
outside Ωh that (see Figure 2)

a(v − vh, Th) =
∑

K∈Th

∫
K

2∑
i,j=1

aij
∂(v − vh)
∂xj

∂Th

∂xi
dx

+
∫

Ωh

q(v − vh)Thdx

=
∑
K

∫
K

2∑
i,j=1

[aij(x) − aij(Q)]
∂(v − vh)
∂xj

∂Th

∂xi
dx

−
∑
K

∫
K

2∑
i,j=1

aij(Q)
∂2v

∂xi∂xj
Thdx

+
∑
K

∫
∂K

2∑
i,j=1

aij(Q)
∂(v − vh)
∂xj

cos〈n, xi〉Th ds

+
∫

Ωh

q(v − vh)Thdx,

(2.8)
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where Q is the center of K. Let Kv denote the set of all vertices of K. By Green’s
formula we have for w ∈ H2, wh ∈ Vh∑

K∈Th

∫
K

∂2w

∂xi∂xj
whdx

=
∑
K

∑
P∈Kv

∫
K∗

P∩K

∂2w

∂xi∂xj
whdx

=
∑
K

∑
P∈Kv

[
−

∫
K∗

P∩K

∂w

∂xj

∂wh

∂xi
dx+

∫
∂(K∩K∗

P )

∂w

∂xj
cos〈n, xi〉whds

]

=
∑
K

∑
P∈Kv

∫
∂(K∩K∗

P )

∂w

∂xj
cos〈n, xi〉whds

=
∑
K

∑
P∈Kv

{∫
∂K∗

P∩K

∂w

∂xj
cos〈n, xi〉whds+

∫
∂K∩K∗

P

∂w

∂xj
cos〈n, xi〉whds

}
.

Hence, with aij(Q)w in place of w in the above equation,∑
K∈Th

∫
K

aij(Q)
∂2w

∂xi∂xj
whdx

=

{∑
K

∑
P∈Kv

∫
∂K∗

P∩K

aij(Q)
∂w

∂xj
cos〈n, xi〉whds

}

+

{∑
K

∫
∂K

aij(Q)
∂w

∂xj
cos〈n, xi〉whds.

}(2.9)

Now argue as in deriving (2.8) and use (2.9) with w = v− vh and wh = Π∗
hTh to

obtain

a∗(v − vh,Π∗
hTh)

= −
∑
K

∑
P∈Kv

∫
∂K∗

P∩K

2∑
i,j=1

aij
∂(v − vh)
∂xj

cos〈n, xi〉Π∗
hThds

+
∫

Ωh

q(v − vh)Π∗
hThdx

= −
∑
K

∑
P∈Kv

∫
∂K∗

P∩K

2∑
i,j=1

[aij(x) − aij(Q)]
∂(v − vh)
∂xj

cos〈n, xi〉Π∗
hThds

−
∑
K

∫
K

2∑
i,j=1

aij(Q)
∂2v

∂xi∂xj
Π∗

hThdx

+
∑
K

∫
∂K

2∑
i,j=1

aij(Q)
∂(v − vh)
∂xj

cos〈n, x〉Π∗
hThds

+
∫

Ωh

q(v − vh)Π∗
hThdx.

(2.10)
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Hence

a(v − vh, Th)− a∗(v − vh,Π∗
hTh) =

5∑
i=1

Ei(v − vh, Th),(2.11)

where

E1(v − vh, Th) =
∑
K

∫
K

2∑
i,j=1

[aij(x)− aij(Q)]
∂(v − vh)
∂xj

∂Th

∂xi
dx,(2.12)

E2(v − vh, Th) =
∑
K

∑
P∈Kv

∫
∂K∗

P∩K

2∑
i,j=1

[aij(x) − aij(Q)]

· ∂(v − vh)
∂xj

cos〈n, xi〉Π∗
hTh ds,

(2.13)

E3(v − vh, Th) = −
∑
K

∫
K

2∑
i,j=1

aij(Q)
∂2v

∂xi∂xj
(Th −Π∗

hTh)dx,(2.14)

E4(v − vh, Th)

=
∑
K

∫
∂K

2∑
i,j=1

aij(Q)
∂(v − vh)
∂xj

cos〈n, xi〉(Th −Π∗
hTh)ds,

(2.15)

E5(v − vh, Th) =
∫

Ωh

q(v − vh)(Th −Π∗
hTh)dx.(2.16)

We are now in a position to show various bounds for Ei’s introduced in the
previous section. In view of the definition (2.12), bound (B.E1) is straightforward
since aij is in W 1,∞. As for (B.E2), from (2.13) E2(v − vh, Th) can be rewritten
(see Figure 2)

E2(v − vh, Th) =
∑
K

3∑
l=1

∫
MlQ

2∑
i,j=1

[aij(x) − aij(Q)]
∂(v − vh)
∂xj

× cos〈n, xi〉ds [Th(Pl)− Th(Pl+1)],

(2.17)

where P4 := P1. The equality is obtained by noticing that each line segment MlQ
is traveled twice but in opposite orientations (once as MlQ, once as QMl) and then
collecting the like-terms. By Taylor’s expansion and the fact Th is linear in K,

|Th(Pl)− Th(Pl+1)| = |
2∑

i=1

∂Th

∂xi
[xi(Pl)− xi(Pl+1)]|

≤ h(|∂Th

∂x1
|+ |∂Th

∂x2
|) ≤ C|Th|1,h,K .

(2.18)

On the other hand, by the Cauchy-Schwarz inequality∫
MlQ

|∂(v − vh)
∂xi

|ds ≤ Ch1/2{
∫

MlQ

|φi|2ds}1/2,(2.19)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



114 SO-HSIANG CHOU AND QIAN LI

where φi := ∂(v−vh)
∂xi

. Use the trace theorem ([2, p. 37]) and a scaling argument to
obtain ∫

MlQ

|φi|2ds ≤ C(h−1||φi||20,K + ||∇φi||0,K ||φi||0,K)

≤ C(h−1|v − vh|21,K + |v − vh|2,K |v − vh|1,K)

= C(h−1|v − vh|21,K + |v|2,K |v − vh|1,K).

(2.20)

Collecting estimates, using Lemma 2.1 and the generalized Hölder’s inequality, we
have

|E2(v − vh, Th)| ≤ Ch{|v − vh|1|Th|1 + h1/2|v − vh|
1
2
1 |v|

1
2
2 |Th|1},(2.21)

which implies (B.E2).
Using proper quadratures for the two integrands and the fact that the quadri-

laterals ei of Figure 3 have equal area, it is easy to see that∫
K

(Th −Π∗
hTh)dx = 0 ∀Th ∈ Uh.

Hence

|E3| = |
∑
K

∫
K

2∑
i,j=1

aij(Q)[
∂2v(x)
∂xi∂xj

− PK
∂2v

∂xi∂xj
](Th −Π∗

hTh)dx|,(2.22)

where PK is the local L2 projection to the space of piecewise constants. (Note that
using PK

∂2v
∂xi∂xj

instead of ∂2v
∂xi∂xj

(Q) avoids asking v to be in C2, as is done in some
literature.) From this bound (B.E3) follows easily.

As for the estimation of E4, first note that ∂vh

∂xj
cos〈n, xi〉 is constant along an

edge L of the element K and that∫
L

(Th −Π∗
hTh)ds = 0.(2.23)

Thus

E4(v − vh, Th)

=
∑
K

∫
∂K

2∑
i,j=1

aij(Q)
∂(v − vh)
∂xj

cos〈n, xi〉(Th −Π∗
hTh)ds

=
∑
K

∫
∂K

 2∑
i,j=1

aij(Q)
∂v

∂xj
cos〈n, xi〉

 (Th −Π∗
hTh)ds.

(2.24)

Let E be the collection of all the interior edges in the primal triangulation Th. (An
interior edge does not lie on ∂Ωh.)
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Using the boundary condition of Th on ∂Ωh, continuity of Th − Π∗
hTh and con-

tinuity of ∂v
∂xj

cos〈n, xi〉 across the edges in E (guaranteed by v ∈ H3(Ω)), we have

E4 =
∑
L∈E

∫
L

2∑
i,j=1

(aij(Q+
L)− aij(Q−

L ))

× ∂v

∂xj
cos〈n, xi〉(Th −Π∗

hTh)ds

=
∑
L∈E

∫
L

2∑
i,j=1

(aij(Q+
L)− aij(Q−

L ))

×
(
∂v

∂xj
− νj

)
cos〈n, xi〉(Th −Π∗

hTh)ds,

(2.25)

where Q+
L and Q−

L are the centers of the two triangles sharing L as a common edge,
and the addition of a constant νj is due to (2.23). Now we choose νj as

νj :=
1
2
(
∂v+

h

∂xj
+
∂v−h
∂xj

),

where v+
h (resp. v−h ) is the restriction of vh to the left (resp. right) triangle KL

(resp. KR).
Observe that∑

L∈E

∫
L

2∑
i,j=1

(aij(Q+
L)− aij(Q−

L ))
(
∂v

∂xj
− ∂vσ

h

∂xj

)
cos〈n, xi〉(Th −Π∗

hTh)ds,

where σ = + or − resembles E2. The technique used in deriving (2.20) yields(∫
L

(Th −Π∗
hTh)2ds

)1/2

≤ Ch1/2||Th||1,K .

Thus as in deriving out (2.21), we have bound (B.E4)

|E4(v − vh, Th)| ≤ Ch{|v − vh|1||Th||1 + h1/2|v − vh|
1
2
1 |v|

1
2
2 ||Th||1}.(2.26)

Finally, bound (B.E5) follows from (2.16) easily. The following lemma is now proved
in view of the central observation in Section 1.

Lemma 2.3. There exist positive constants h0, α,M such that for 0 ≤ h ≤ h0

a∗(uh,Π∗
huh) ≥ α||uh||21, ∀uh ∈ Uh,(2.27)

|a∗(uh,Π∗
hTh)| ≤ M ||uh||1||Th||1, ∀uh, Th ∈ Uh.(2.28)

For covolume methods we seldom have a symmetric bilinear form a∗(·,Π∗
h·) even

though a(·, ·) is. However, we have a lemma which measures how far the bilinear
form a∗(·,Π∗

h·) is from being symmetric. This lemma will be used in the parabolic
problem.

Lemma 2.4. There exist positive constants M,h0 such that for 0 < h ≤ h0

|a∗(uh,Π∗
hTh)− a∗(Th,Π∗

huh)| ≤Mh||uh||1||Th||1 ∀uh, Th ∈ Uh.(2.29)

Proof. Use (1.20) and the triangle inequality to derive

|a∗(uh,Π∗
hTh)− a∗(Th,Π∗

huh)| ≤ |d(uh, Th)− d(Th, uh)|.
Invoking proper bounds for d(·, ·) completes the proof.
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The next lemma is proved in Section 1.

Lemma 2.5. The solution of uh of the problem (1.14) and the exact solution u of
(1.1) satisfy

||u− uh||1 ≤ Ch||u||2,(2.30)
||u− uh||0 ≤ Ch2||u||3,p (p > 1),(2.31)

whenever the right-hand sides make sense.

Given any z ∈ Ω̄, we define Gh
z ∈ Uh to be the discrete Green’s function associ-

ated with the form a(·, ·) if

a(Gh
z , wh) = wh(z) ∀wh ∈ Uh.(2.32)

Lemma 2.6. The function Gh
z possesses the following properties [26, 27]:

||Gh
z ||1 ≤ C| ln h|1/2.(2.33)

Let v be a given unit vector (direction) and let ∆z be any vector parallel to v.
Then we define

∂zG
h
z := lim

∆z→0

Gh
z+∆z −Gh

z

|∆z| .(2.34)

Lemma 2.7. The derivative ∂zG
h
z ∈ Uh has the following properties [27]:

a(∂zG
h
z , vh) = ∂zvh(z) ∀vh ∈ Uh,(2.35)

||∂zG
h
z ||1 ≤ Ch−1.(2.36)

Lemma 2.8. Let u and uh be the solutions of (1.1) and (1.14), respectively. Then

a∗(u− uh, vh) = 0, ∀vh ∈ Vh.(2.37)

3. Maximum norm estimates for an elliptic problem

Theorem 3.1. Let u be the solution of (1.1) and uh be the solution of (1.14).
Then

||u− uh||0,∞ ≤ Ch2| lnh| [||u||3 + ||u||2,∞] ,(3.1)

provided that u ∈ H1
0 (Ω) ∩W 2,∞(Ω) ∩H3(Ω).

Proof. Let ũh be the ordinary Galerkin of (1.1).

||u − uh||0,∞ ≤ ||u− ũh||0,∞ + ||ũh − uh||0,∞.(3.2)

Since it is well known [26] that the maximum norm error in ũh is bounded by
Ch2| lnh| ||u||2,∞, it suffices to estimate eh := ũh − uh. By the definition of the
discrete Green’s function and (2.37)

eh(z) = a(eh, G
h
z )

= a(u− uh, G
h
z )

= d(u− uh, G
h
z ).

Now we estimate Ei(u − uh, G
h
z ), i = 1, . . . , 5. By (B.E1), (2.33) and Lemma 2.5,

|E1(u− uh, G
h
z )| ≤ Ch||u− uh||1||Gh

z ||1 ≤ Ch2| lnh|1/2||u||2.(3.3)
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By (B.E2), (2.33) and Lemma 2.5,

|E2(u− uh, G
h
z )| ≤ CAh[||u− uh||1 + h1/2||u− uh||1/2

1 ||u||1/2
2 ]||Gh

z ||1
≤ Ch2| lnh| 12 ||u||2.(3.4)

By (B.E3) and (2.33),

|E3(u − uh, G
h
z )| ≤ Ch2||u||3||Gh

z ||1
≤ Ch2| lnh| 12 ||u||3,

(3.5)

|E4(u − uh, G
h
z )| ≤ Ch2| lnh| 12 ||u||2.

Finally

|E5(u − uh, G
h
z )| ≤ Ch||u − uh||0||Gh

z ||1
≤ Ch2||u||3.

(3.6)

Theorem 3.2. Under the hypotheses of Theorem 3.1

||u − uh||1,∞ ≤ Ch [||u||3 + ||u||2,∞] .(3.7)

Proof. The proof parallels the development in Theorem 3.1. Since it is well known
[26] that the error in ũh is bounded by Ch||u||2,∞, it suffice to estimate eh := ũh−uh

in W 1,∞. As before

∂zeh(z) = a(eh, ∂zG
h
z )

= a(u− uh, ∂zG
h
z )

= d(u − uh, ∂zG
h
z )

=
5∑

i=1

Ei(u− uh, ∂zG
h
z ),

where

|E1(u− uh, ∂zG
h
z )| ≤ Ch||u− uh||1||∂zG

h
z ||1

≤ Ch||u||2,
|E2(u − uh, ∂zG

h
z )| ≤ Ch2||u||2||∂zG

h
z ||1

≤ Ch||u||2,
|E3(u − uh, ∂zG

h
z )| ≤ Ch2||u||3||∂zG

h
z ||1

≤ Ch||u||3,
|E4(u − uh, ∂zG

h
z )| ≤ Ch||u||2,

|E5(u− uh, ∂zG
h
z )| ≤ C||u − uh||0||∂zG

h
z ||1

≤ Ch||u||3.

(3.8)

Combining all the above inequalities completes the proof.
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4. Maximum norm estimates for parabolic problems

Consider the associated parabolic problem to (1.1)-(1.2):

ut + Lu = f(x, t), (x, t) ∈ Ω× (0, T ](4.1)
u = 0, (x, t) ∈ ∂Ω× (0, T ](4.2)
u = u0(x), t = 0, x ∈ Ω,(4.3)

where L is the elliptic operator of (1.1) and ut := ∂u
∂t . The domain Ω has the primal

partition Th and dual partition T ∗
h of the types specified in Section 1. The trial

and test spaces are still Uh ⊂ H1
0 (Ω) and Vh ⊂ L2(Ω), respectively. Consider the

time-continuous approximation to (4.1)-(4.3):
Find uh := uh(·, t) ∈ Uh, 0 ≤ t ≤ T such that

(uh,t, vh) + a∗(uh, vh) = (f, vh) ∀vh ∈ Vh, t > 0,(4.4)
uh(x, 0) = u0h(x), x ∈ Ω,(4.5)

where the approximate initial condition u0h is the elliptic projection (see (4.8)) of
the exact initial function to be specified in (4.15).

Theorem 4.1. Let u and uh be the solutions of (4.1)–(4.3) and (4.4)–(4.5), re-
spectively. Then for p > 1

||u− uh||L∞(L∞) ≤ Ch2| lnh|{||u||L∞(H3) + ||u||L∞(W 2,∞) + ||ut||L2(W 3,p)},(4.6)

||u− uh||L∞(W 1,∞) ≤ Ch{||u||L∞(H3) + ||u||L∞(W 2,∞) + ||ut||L2(W 3,p)},(4.7)

where L∞(L∞) := L∞(0, T ;L∞(Ω)), L∞(H3) := L∞(0, T ;H3(Ω)).

Proof. Introduce the self-adjoint operator Rh : H2(Ω) ∩H1
0 (Ω) → Uh defined by

a∗(Rhu, vh) = a∗(u, vh) ∀vh ∈ Vh.(4.8)

By Lemma 2.5, and Theorems 3.1 and 3.2,

||(u−Rhu)t||0 ≤ Ch2||ut||3,p, p > 1,(4.9)

||(u−Rhu)||0,∞ ≤ Ch2| lnh| [||u||3 + ||u||2,∞] ,(4.10)
||(u−Rhu)||1,∞ ≤ Ch [||u||3 + ||u||2,∞] .(4.11)

Write u − uh = (u − Rhu) + (Rhu − uh) := η + ξ. It suffices to estimate ξ. By
(4.1)-(4.4) and (4.8),

(ξt, vh) + a∗(ξ, vh) = −(ηt, vh), ∀vh ∈ Vh.(4.12)

Set vh = Π∗
hξt and use (2.7) to obtain

|||ξt|||20 +
1
2
d

dt
a∗(ξ,Π∗

hξ)(4.13)

= −(ηt,Π∗
hξt) +

1
2
[a∗(ξt,Π∗

hξ)− a∗(ξ,Π∗
hξt)].

By Lemma 2.4, an inverse inequality, and Lemma 2.2,

|a∗(ξt,Π∗
hξ)− a∗(ξ,Π∗

hξt)| ≤ Ch||ξt||1||ξ||1
≤ C||ξt||0||ξ||1 ≤ |||ξt|||20 + C||ξ||21,
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where we have used the ε-inequality ab ≤ εa2 + 1
4εb

2 for positive ε, a, b. Taking ε
small enough to absorb the ξt term on the right-hand side into the left-hand side,
we have

d

dt
a∗(ξ,Π∗

hξ) ≤ C(||ηt||20 + ||ξ||21).(4.14)

Set

u0h = Rhu(0)(4.15)

so that ξ(0) = 0. Integrate (4.14) and use Lemma 2.3 to get

α||ξ||21 ≤ a∗(ξ,Π∗
hξ) ≤ C

∫ t

0

(||ηt||20 + ||ξ||21)dτ.(4.16)

Use (4.9) and the Gronwall’s inequality to get

||ξ||1 ≤ Ch2||ut||L2(W 3,p), p > 1.(4.17)

From the asymptotic Sobolev inequality ([23, p. 274]), we have

||ξ||0.∞ ≤ C| lnh| 12 ||∇ξ||0 ≤ Ch2| lnh| 12 ||ut||L2(W 3,p).(4.18)

Combine (4.10) and (4.18) to get (4.6) and then use an inverse inequality to get

||ξ||1,∞ ≤ Ch−1||ξ||1 ≤ Ch||ut||L2(W 3,p).(4.19)

Noting (4.11) derives (4.7) completes the proof.
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