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ERROR ESTIMATES WITH SMOOTH AND NONSMOOTH DATA 

FOR A FINITE ELEMENT METHOD 


FOR THE CAHN-HILLIARD EQUATION 


CHARLES M. ELLIOTT AND STIG LARSSON 

ABSTRACT.A finite element method for the Cahn-Hilliard equation (a semilin- 
ear parabolic equation of fourth order) is analyzed, both in a spatially semidis- 
Crete case and in a completely discrete case based on the backward Euler method. 
Error bounds of optimal order over a finite time interval are obtained for solu- 
tions with smooth and nonsmooth initial data. A detailed study of the regularity 
of the exact solution is included. The analysis is based on local Lipschitz con- 
ditions for the nonlinearity with respect to Sobolev norms, and the existence 
of a Ljapunov functional for the exact and the discretized equations is essen- 
tial. A result concerning the convergence of the attractor of the corresponding 
approximate nonlinear semigroup (upper semicontinuity with respect to the dis- 
cretization parameters) is obtained as a simple application of the nonsmooth 
data error estimate. 

The Cahn-Hilliard equation 

where typically @(u) = u3 - u ,  together with appropriate boundary and ini- 
tial conditions, is a phenomenological model for phase separation and spinodal 
decomposition. The boundary conditions are such that the fourth-order differ- 
ential operator in (1.1) can be written as the square of a second-order elliptic 
operator. Relying on this fact, we study numerical schemes for (1.1), which 
for the approximation of the spatial variables are based on standard Galerkin 
finite element methods for second-order elliptic problems. We discuss spatially 
semidiscrete schemes as well as a completely discrete scheme based on the back- 
ward Euler method. 

A semidiscrete finite element method (with numerical quadrature) of this 
type for the Cahn-Hilliard equation was first introduced and analyzed by Elliott, 
French, and Milner [7]. Completely discrete schemes based on the same idea 
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were discussed by Du and Nicolaides [5] and Du [4]. For numerical schemes 
based on other approximations of the fourth-order elliptic operator we refer to 
Elliott and Zheng [8] (conforming elements in l-D) and Elliott and French [6] 
(nonconforming elements in 2-D). 

In these works the analysis is restricted to solutions which are bounded uni-
formly in time, so that one may essentially assume that the nonlinearity 4 
satisfies a global Lipschitz condition. Because of the lack of a maximum princi-
ple this means that one has to prove (or assume) that the solution is sufficiently 
smooth depending on the number of space dimensions. 

The purpose of the present work is to prove error bounds that are optimal 
both in the order of convergenceand in the regularity assumed of the initial data. 
In particular, we would like to allow initial data of low regularity (compared 
to the number of derivatives occurring in equation (1.1)). The reason for this 
is the existence of a Ljapunov functional for equation (1.1) and its discrete 
counterparts, which yields an a priori bound, uniform in time, for the H 1  norm 
of the solution and for the discrete approximations considered. The Sobolev 
space H1(Q) is therefore a natural space in which to prescribe initial data. 

Moreover, error bounds for solutions with nonsmooth initial data have inter-
esting applications in the study of the longtime behavior of discrete solutions, 
see Heywood and Rannacher [12], Hale, Lin, and Raugel [lo] and Kloeden and 
Lorenz [14]. As an example of this, we prove a result concerning the convergence 
of the attractor of the corresponding approximate nonlinear semigroup. More 
precisely, we demonstrate that the discrete attractor is upper semicontinuous 
with respect to the discretization parameters. 

With initial data in H 1(Q), the solution is not bounded uniformly in time 
(except in the case of one space dimension). Instead, we base our analysis on 
uniform bounds in the H 1  norm for the exact and discrete solutions and local 
Lipschitz conditions for the nonlinearity 4 .  These are typically of the form 

- ~ ( v ) / / x5 c ( ~ / u ~ ~ ~ l, ~ ~ v / ~ ~ ~ ) ~ ~ u- V / / Y, 
where I /  Ilx, 1 1  . I t r  are appropriate Sobolev norms. 

Nonsmooth data error estimates for finite element methods have been proved 
earlier by Johnson, Larsson, Thomee, and Wahlbin [13], Crouzeix, Thomee, 
and Wahlbin [3] and Crouzeix and Thomee [2] in the context of a semilinear 
parabolic problem of second order with globally Lipschitz continuous nonlin-
earity. Similar results were obtained by Helfrich [I 11 in an abstract framework, 
using local Lipschitz conditions. See also Heywood and Rannacher [12] for 
related results in the context of the Navier-Stokes equations. 

Loosely speaking, our main result (Theorem 6.5) states the following: Let 
uh be the spatially semidiscrete approximation using a finite element method 
of order r and with mesh parameter h , and let the initial approximation be 
chosen as the L2 projection of the exact initial value uo . Then for r = 2 or 
3 (piecewise linear or quadratic finite elements) we have 

for 1 5 a < r ,provided that uo has ct. derivatives in L2 (together with appro-
priate boundary conditions). An analogous result is obtained in the completely 
discrete case (Theorem 7.2). The restrictions r = 2 or 3 and cr 1 1 are 
probably due to our method of proof, but in the light of a counterexample in 
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[13, 31 some restriction of this type might be expected. We have, however, 
not been able to adapt this counterexample to the present situation. See also 
Remark 2 of 55 below. 

The outline of the paper is as follows. In 52 we present three initial-boundary 
value problems for the Cahn-Hilliard equation and put them into a common 
abstract framework. In 53 we introduce spatially semidiscrete and completely 
discrete finite element methods for these problems. In 54 we state a result con- 
cerning the regularity of the exact solution, which is needed in the subsequent 
error analysis. Its proof is given in an Appendix in the Supplement section 
of this issue. In 55 we estimate the difference between the exact solution and 
the solution of a discrete linear auxiliary problem. This analysis is based on 
energy estimates. In 56 we prove error estimates for the spatially semidiscrete 
approximation, and in 57 we do the same for the fully discrete approximation. 
This analysis is based on semigroup techniques. Finally, in 58 we demonstrate 
the existence of global attractors for the nonlinear semigroups defined by the 
Cahn-Hilliard equation and its approximations, and prove a result concerning 
the convergence of the discrete attractors. 

Let R be a bounded domain in R~ for d 5 3 with a sufficiently smooth 
boundary. We consider the finite element approximation of the following initial- 
boundary value problems: Find u(x , t) for x E R , t > 0 ,  such that 

subject to one of the three sets of boundary conditions, 

Here, $ is a given polynomial satisfying the structural assumptions 

( s )  = ( s ), degree I,U = 2p, 
(2.4) 

- v/"(s) 2 -p2y/(s) 2 ~ o l ~ l ~ ~C I ,  VS E R ,  

where co > 0 and 2 5 p < co if d 5 2 ,  p = 2 if d = 3 .  In the case of the 
Dirichlet boundary conditions (2.3-a) we make the additional assumption that 
$(O) = 0 .  

In (2.3-b) we have used the notation dldv for the outward normal deriva- 
tive, and in (2.3-c), the case of periodic boundary conditions, we understand R 
to be a "cube" (0 ,  L ) ~with ei denoting the unit vector in the direction of the 
xi-axis. 

The differential equation in (2.1) is known as the Cahn-Hilliard equation. It 
arises in continuum models of phase separation and spinodal decomposition, 
cf. Cahn and Hilliard [I]. The field variable u is a scaled concentration of one 
species in a binary mixture and the "free energy" y/ is a double well potential. 
'4typical example for y/ is y/(s)= i ( s2- /32)2 with $(s) = s(s2- P 2 ) .  
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In order to put these three initial-boundary value problems in a common 
abstract framework, we introduce some notation. Let 1 1  . 1 1  and (. , -) denote 
the usual norm and inner product in L2 = L2(R), and let HS= HS(R) with 
norms 1 1  . 1 1 ,  be the usual Sobolev spaces. 

For the no flux and the periodic boundary conditions (2.3-b, c), it is easy to 
see that a sufficiently smooth solution of (2.1), (2.2) satisfies conservation of 
mass, 

U(X, i) d x  = S, d x ,~ ~ ( x )  t 2 0. 

Introducing the change of variables ii = u -% and 4(ii) = y(ii +%), where 
-
uo denotes the average of uo , we see that the equatio~s (2.1), (2.2), (2.3-b, c) 
and the structural assumptions (2.4) remain unchanged. Henceforth, for the 
boundary conditions (2.3-b, c), we assume that the initial datum satisfies 
J, uo(x) d x  = 0 .  For these boundary conditions we let H denote the subspace 
of L2 which is orthogonal to the constants, H = {v E L2 : (v , 1) = 01, and let 
P be the orthogonal projection of L2 onto H .  Clearly then Pf =f -f . For 
the Dirichlet boundary conditions (2.3-a), we let H = L2 and P = I .  We then 
define the linear operator A = -A with domain of definition 

~ ( A ) = { v EH 2 n H : v ( x + L e i ) = v ( x ) f o r x ~ d C 2 ,i =  1 ,  . . . , d ) ,  

for the three sets of boundary conditions, respectively. Then A is a selfadjoint 
positive definite densely defined operator on H ,and (2.1)-(2.3) may be written 
as an abstract initial value problem 

By spectral theory we may also define the spaces k" = g ( A 3 )  with norms 
lv I s  = 1 1  A $v 1 1  for real s . It is well known that, for integer s 2 0 ,  k" is a 
subspace of H W  H characterized by certain boundary conditions, and that the 
norms I . I s  and 1 1  . 1 1 ,  are equivalent on fi . This can be proved by means of 
the spectral theorem and trace inequalities, see Thomee [18, p. 341 for a proof 
in the case of the Dirichlet boundary condition. In particular, we have 

H 1 = H ' n H ,  

H' = { v ~ ~ ' n ~ : v ( x + ~ e ~ ) = v ( x ) f o r x ~ d C 2 ,i =  1 ,  . . . , d ) ,  

for the three sets of boundary conditions, respectively, and the norm lv 11 = 
l l ~ i v= llv 1 1  on H' . Apart from this, we shall only 1 1  llVvll is equivalent to 
need the inequality 

which follows by interpolation between the corresponding inequalities with in- 
teger s .  
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We also define G: H -, k2to be the inverse of A .  It is convenient to 
extend it to all of L2 by G f = GPf for f E L 2 .  Thus, v = Gf if and only 
if Av = Pf ,  or equivalently 

V E H ' ,  ( v v , v x ) = ( ~ , x )  V X E H ' .  

Clearly, G is selfadjoint positive semidefinite on L2 and positive definite on 
H .  

We next derive an a priori bound in the H1 norm for solutions of (2.5). 
This bound (and its discrete counterparts) will be basic to all of our analysis 
below. Applying G to (2.5), we have 

Gut + AU+ P$(u) = 0 ,  

and taking the inner product of this with ut ,we obtain 

Setting V(u) = ilul: + Jn ~ ( u )dx ("the free energy functional"), we conclude 

provided that uo E k1. In view of the structural assumptions (2.4) it follows 
that V is a Ljapunov functional for the initial value problem (2.5) (see $8 below 
for the definition of this concept). Moreover, by the Sobolev imbedding of HI 
into L2p (where p is as in (2.4)) the identity (2.7) implies an a priori bound: 
If uo E H I  with l/uolll 5 R ,  then 

(2.8) Ilu(t)Ill 5 C(R) ,  0 5 t < 03. 
In the sequel we shall always assume that uo E HI (at least), so that (2.8) holds. 
We also note that the derivative of V ("the chemical potential") is given by 
w = V1(u)= AU+ P$(u) = -Gut. 

Finally, we let E( t )  = e x p ( - t ~ ~ )denote the analytic semigroup generated 
by -A2. Much of our analysis will be based on the variations of constants 
formula, 

(2.9) u(t) = E(t)uo- E ( t  - s)AP$(u(s)) d s  ,I' 

for solutions of (2.5). 

For the approximation of the Cahn-Hilliard equation we assume that we have 
a family {Sh)h,O of finite-dimensional approximating subspaces of HI . At the 
end of this section we formulate the approximation assumption upon which we 
shall base our error analysis. But first we formulate our discrete equations. 

Consider, to begin with, the no flux boundary conditions (2.3-b). Recalling 
the usual weak formulation of the corresponding initial-boundary value prob- 
lem, we state the following semidiscrete problem: Find uh(t) ,vh(t)E Sh such 
that 

(uh,t , X)+ (vvh 3 OX)= 0 V X E S ~ ,  t > 0 ,  

(3.1) 	 (vh , X )  = (Vuh, VX) + ($(uh) , X )  VX E Sh, t > 0 ,  

uh(0) = u0h , 
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where u0h E Shis a suitable approximation of uo E H' . Since we are assuming 
that i&= 0 ,  it is natural to assume that = 0 ,  too. It is easy to see that this 
can be achieved, e.g., by taking U O ~to be the orthogonal projection of uo E H' 
onto Shwith respect to the L2 inner product, or with respect to the H1 inner 
product. Let now 

Sh= {XE S h : (X , 1) = 0). 

It is immediate from (3.1) that uh(t) E Sh if uOh E Sh. Therefore, uh can 
equivalently be obtained from the following equations: Find uh (t) , wh(t)E Sh 
such that 

where now uOhE Sh is an approximation of uo E H' . (The relation between 
wh and vh is wh = vh - .) Equivalently, we may write this as 

where the operator Ah : Sh+Sh (the "discrete Laplacian") is defined by 

and Ph: L2 + shis the orthogonal projection. Clearly, Ah is selfadjoint pos- 
itive definite, and we let Gh denote its inverse. As for G ,  it is convenient to 
extend Gh to all of L2 by Ghf = GhPhf for f E L2.  Thus, vh = Ghf if and 
only if Ahvh = Phf , or equivalently 

We note that, thus defined, Gh is selfadjoint positive semidefinite on L2 and 
positive definite on Sh. We also record the facts that A ! ~ I  = IVXI1 = I X  1 1  
for all x E Sh, and that for the "discrete chemical potential" wh in (3.2), we 
have wh = Ahuh +Ph4(uh)  = - G ~ U ~ , ~ .  

The above refers to the no flux boundary conditions. In the case of the 
Dirichlet boundary conditions (2.3-a), we define instead 

and for the periodic boundary conditions (2.3-c), we set 

s ~ = { ~ E s ~ : ~ ( x + L ~ ~ ) = x ( x ) o ~ ~ C ~ ,i =  1 ,  . . . ,  d).  

Starting with (3.2), we then reiterate the above arguments and definitions. The 
initial value problem (3.3) is thus a common framework for our semidiscrete 
approximations of the three initial-boundary value problems (2.1)-(2.3). 

We now derive a discrete counterpart to the a priori bound (2.8). In fact, 
V(u) = lul: + Jn ~ ( u )dx is a Ljapunov functional for (3.3), too. To see this, 
we argue in the same way as in the proof of (2.7) and obtain 
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which leads to the a priori bound: If uoh E Shwith j j  uOh1 1  5 R , then 

With Eh(t)  = e x p ( - t ~ i )  we have the variations of constants formula, 

(3.5) ~ h ( t )= Eh(t)~0h- I' Eh(t - - ~ ) ~ h ~ h d ( ~ h ( ~ ) )d ~ ,  

for solutions of (3.3). 
We next formulate a fully discrete approximation based on the backward 

Euler method. This means that we replace the time-derivative in (3.2) or (3.3) 
by a backward difference quotient dtUn = (Un- U,-l)/k, where k is the time 
step and Un is the approximation to u at time t, = nk , n = 0 ,  1 , 2 ,  .. . . We 
thus seek Un E Sh such that 

Again, it turns out that the functional V is a Ljapunov functional for (3.6). 
In fact, arguing as in the proof of (2.7), we obtain 

Here, 
(AhUn, dtUn) = & d f / ~ n l :+ &kidtun/:. 

Recalling the condition yl'(s) 2 -P2 in (2.4), we obtain that 

so that 

(+(un),gtun) > dtJn ~ ( u n )  fkP211~~unl12~dx -

Hence, 

Thus, if k 5 4/P4,  this shows that 

which leads to the a priori bound: If uoh E $ with 1 1  uoh1 1  5 R , then 

This time, the variation of constants formula becomes 

where Ekh= (I+ kAi)-' 
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We conclude this section by formulating an approximation assumption for 
the spaces Shc H',which will be the basis for our error analysis below. Let 
Rh:  H~+shbe the Ritz projection defined by 

(V(RhV- v ) ,  VX) = 0 YX E s h .  
We assume that, for r = 2 or r = 3 ,  

(Recall that lv 1-1 1 1  1 1= 1 1  G ~ V= supxEfil(v , x)I/Iv .) From this assumption it 
follows that 
(3.11) 	 JJPhv- v J JI ChrJvJr.  

The main examples of this situation are obtained by letting Sh be the stan- 
dard piecewise linear ( r = 2 ) or piecewise quadratic ( r = 3 ) finite element 
spaces. 

We now state a result concerning existence and regularity of solutions to 
the Cahn-Hilliard equation (2.5). Global existence has been proved by several 
authors under various assumptions of initial regularity, see, e.g., Nicolaenko, 
Scheurer, and Temam [15], Temam [17], Elliott and Zheng [8], Zheng [21] and 
von Wahl [20]. Our error analysis depends on precise regularity estimates for 
the exact solution, most of which are not available in the literature, and we 
therefore develop the required results in the following theorem. Our approach 
is based on the techniques of [20], where global existence of solutions with 
initial data in H1 was shown. 

Theorem4.1. Let a E [1, 31, P E [O, 4 ) ,  j ,  1 = 0 ,  1 ,  2 ,  with 4j-21+P 2 a ,  
and let T ,  R 2 0 be arbitrary. If uo E H" with luol, 5 R ,  then equation 
(2.5) has a unique solution u which belongs to C([O , TI ,Ha)nC1 ( (0 ,  TI , L2). 
Moreover, there is a constant C = C ( T ,  R , P) such that 

The estimate (4.1) means that the solution operator of the nonlinear Cahn- 
Hilliard equation enjoys (at least to some extent) a smoothing property analo- 
gous to that of the analytic semigroup E( t )  : 

(4.2) D { E ( ~ ) V ~  t - 1 - 9  Ivla, t > O ,  O I a I b5 c , ,~  
The proof of Theorem 4.1 can be found in the Supplement section of this issue. 

5. ERRORANALYSIS FOR A LINEAR PROBLEM 

In this section we shall discuss the following linear nonhomogeneous variant 
of the Cahn-Hilliard equation (2.5): Let u satisfy the initial value problem 

together with the regularity assumption that, for some T > 0 ,  a E [O, 31, 
K > O ,  

j + L - V
(5.2) I I G ' D { U ( ~ ) ~ ~ ~  ,I ~ t - -2 o < t I T ,  
forall P E [ O ,  33, j, 1 = 0 ,  1 , 2  with 4 j - 2 1 + P 2 a .  
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We shall apply this in the following two situations: If u is the solution 
of (2.5) (i.e., f = -+(u) ), then (5.2) holds with K = C ( T ,  R )  whenever 
luola 5 R according to Theorem 4.1. If u( t )= E(t)uo (i.e., f 	 = 0 ), then we 
have K = Cluol, according to (4.2). 

We first consider a semidiscrete finite element approximation uh( t )  E sh 
given by 

U h , t  + ~ i = ~ h t > 0,AhPhf 7

(5.3) 	
~ ~ ( 0 )= Phu0. 

We shall estimate the difference between uh and u under the regularity as- 
sumption (5.2). This analysis is linear in the sense that uh depends linearly on 
U .  

Observe that by applying G2 to (5.1)we obtain G2ut+u = G f and, similarly 
for (5.3), G ~ u ~ , ~  + uh = Gh f ,  where we have used the fact that GP = G ,  
Gh Ph = Gh. For the difference e = uh - u we then have 

~ i e ,+ e = (Gh- G )  f - (G; - = (Gh- G ) ( P  f - Gut)- - G)utG ~ ) u ~  Gh(Gh 

= ( G h- G)Au- Gh(Gh- G)ut= ( R h  - I ) u  - Gh(Rh - I ) G u ~ ,  

where the identities P f -Gut = Au , Rh = Gh A have been employed. It follows 
that 

(5-4) 	 G i e t + e = p + G h q ,  t > O ,  

with 
P = ( R h- I ) u ,  q = - (Rh - I)Gut.  

Equation (5.4) is the basis for the estimation of e . It is convenient to first give 
a lemma providing estimates of p and q . 

Lemma 5.1. Let r = 2 or 3 ,  and let u satisfj ( 5 . 1 )  and (5.2) for some a E 
[ O  , r]. Assume that 1 5 p 5 r , 0 5 P - a 5 2 .  Then the following bounds hold 
for O < t < T :  

( 5 . 5 )  	 t ~ l l ~ { ~ ( t ) l l5 c ~ h ~ t - 9 ,  

(5.6) 	 t i ~ ~ j r l ( t ) j l  ,5 c ~ h ~ t - i - 9  
1-9 

(5.7) 	 IlD(t)ll 5 c K h B t  , 

(5.8) 	 l l i j ( t )~5 c ~ h f l t i - 9, 

where P(t)  = Jip(z)  d z , i j ( t )= $ q ( z )  d z  . Moreover, 

<- ~ ~ 2 h 2 8 ~ 2 -9. 
Proof. 	By (3.10) and (5.2)we have 

B -9
t j l l ~ j p ( t ) / l= - 5 c t j h B l l ~ j u ( t ) l l ~  tt j l l ( ~ ,  I ) D J u ( ~ ) ~ ~  5 C K ~  

which is (5.5). Similarly, 
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and (5.6) is proved. Using these estimates, we obtain 

I I P ( ~ ) I II I I P ( ~ ) I Id r  5 C K ~ ~  
r- 9 j3 I - + ,it d r =  C K h  t 

and 

provided, in the latter case, that 0 I /3 - a  < 2 .  For /3 - a  = 2 we have instead 

= c h a l l ~ ( t )- ~ 0 1 l aI Ch8(II~(t) l la+ I I ~ o l l a )I c K h B .  
This proves (5.7) and (5.8). Finally, (5.9) is an immediate consequence of the 
previous bounds. 

Lemma 5.2. Let r = 2 or 3 ,  let u satisfi (5.1) and (5.2)for some a E [ 0 ,r ] ,  
and let uh be the solution of (5.3).Assume that 0 5 r - a 5 2 .  Then 

Moreover, for the "chemical potential" w = Au - Pf and its approximation 
wh = Ahuh - Phf ,  we have 

(5.11) Ilwh(t)-w(t)ll I c K h r t - i - y ,  0 < t I T 

We remark that C is independent of T . 
Proof. Let /3 be as in Lemma 5.1. We first note that by our special choice Phuo 
of discrete initial value we have Ghe(0)= 0 ,  where e = uh - u . In order to 
prove the case I = 0 of (5.10),we start out by taking the inner product of (5.4) 
with et . Using the fact that Gh is selfadjoint positive semidefinite on L2 , we 
get 

ll~het11~+ i ~ t l l e l l ~= ( ~ 7et) + ( ~ 7Ghet) 5 ( ~ 7et) + ill~11~+ i I I ~ h e t l l ~7 

which shows 
llGhet112+ ~ t l l e l l ~5 2 ( ~ 7 et) + 1 1 ~ 1 1 ~ 

Multiplying this by t2, 

and integrating with respect to t ,we obtain after a simple kick-back argument 

Invoking the bounds for p and q in Lemma 5.1,  we conclude that 
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We now have to estimate 1; rllel12dr , and we therefore multiply (5.4) by e 
to get 

tDtIIGhel12 + l e l 1 2  = ( P ,  e, + ( v ,  Ghe) 5 +lpl12+ +lle12+ 1 1 ~ 1IGhell, 

whence 
DtlIGhel12 + lle1I2 5 llp11' + 2 / l ~ l lIlGhell. 

Multiplication by t now yields 

Dt(tllGhel12)+ t l l e l 1 2  5 t l l ~ 1 1 ~  + 211Ghe1~2,+ t'11~11~ 

so that, in view of (5.9), 

tll~hell'+ ltrllel12dr 5 l ( r l l p l12+ r211q112+ 2Il~hell')dr 
(5.13) 


< ~ ~ ' h ' ~ t ' - v  dr.
+ 2 1  1 ~ ~ e 1 1 ~  

To derive an estimate of S,' 1 1  GheI dr ,we integrate (5.4) with respect to t , 
taking Ghe(0)= 0 into account. This yields 

G ; ~ + P = ~ + G ~ I ~ ,t > o ,  

where P(t) = 1; e dr ,etc. Multiplication by e = Dt& gives 

ll~hell'+ { ~ t l l ~ l l '= ( 6 ,  e )  + (li, Ghe) 5 llPll llell + flIi11l2 + :IlGhe1l2, 

which after some simple manipulation leads to 

and, upon substitution into the right-hand side of (5.13), 

Taken together, estimates (5.12) and (5.14) yield 

and the case I = 0 of (5.10) follows. 
It is now convenient to estimate the difference between w and wh . Observe 

that 

W -Wh = -Gut + G h ~ h , t  Gh(uh,t- + (Gh - = - V ,= ~ r )  G ) u ~  Ghet 

and hence 

(5.16) Ilw - wh//5 lIGhetll + IlVll. 
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In view of Lemma 5.1 it is therefore sufficient to bound Ghet. Differentiating 
(5.4) with respect to t yields 

Taking the inner product of this equation with et gives 

and after multiplication by t3 , 

so that 

Combining ( 5 . 1 5 )  and (5.9)with (5.17),we obtain 

Together with (5.16),this implies 

and the desired bound (5.1 1 )  follows. 
Finally we estimate the H1 norm of e by interpolating between the known 

bounds for the errors in uh and wh . Let e = (uh-Rhu)+ ( R h u- U )  = 8 + p . 
Since, by (3.10) and (5.2), 

it is sufficient to make the following estimation: 

161: = (V(uh- Rhu) ,  v ( ~ h-Rhu) )  = ( v ( ~ h- u ) ,V(uh- R h u ) )  

= (AhUh-A u ,  U h  - RhU) = (wh-W , U h  - RhU)+ (Ph f- P f ,  U h  -Rhu)  
= (wh -W U h  -Rhu)  5 I(wh- w I I lIuh -RhuII 
5 llwh - ~ 1 1(Iluh - ull + llRhu - ~ 1 1 ) . 

Hence, in view of (5.18), ( 5 . 1 5 )  and (5.5),we have 

for a I p I r .  If a s r - 1 ,  thenwecantake p=r -1 , and thecase  I =  1 of 
(5.10) follows. If r - 1 < a 5 r ,we argue differently. A glance at (5.4) reveals 
that 

~ , 2 8 ,+ 8 = -G;pt + Ghq,  

or 
Ot + A;8 = -Phpt + AhPhq. 

An estimation of [16[11can be based on this equation via the variation of con-
stants formula (cf. the proof of Lemma 6.8 below). We omit the details. 
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Remark 1. If we choose P = r in (5.19)we obtain a bound of superconvergent 
order for the gradient of 8 = uh - Rhu : 

Iluh(t)- Rhu(t)lll5 chrt-a-?,  0 < t 5 T .  
In the case d 5 2 this can be used to show an error bound of almost optimal 
order in the maximum norm, see Thomee [18, p. 1 11 .  

Remark 2. The restriction r -a 5 2 occurs in (5.8);all other steps of the proof 
are valid under the less stringent condition r - a < 4 .  

For the special case of equation (5.1) with f = 0 ,  we have the following 
result. 

Corollary 5.3. Let r = 2 or 3 .  Then 

IIEh(t)Phv- E ( t ) v1 1  5 ~ h ' t - $ l l v1 1  , t > 0 ,  v E H. 
Proof. Lemma 5.2 shows (cf. (5.15)) 

IIEh(t)PhV- E(t)V1 1  5 c h 2 t - +1 1 ~1 1  , t > 0 ,  
which is the desired result when r = 2 .  For r = 3 we note that Lemma 5.2 
also shows 

IIEh(t)Phv -E(t)vll 5 Ch31v13, t > 0 ,  
and the proof can be completed by Helfrich's iteration, cf. Thomee [18, pp. 
39-41]. 

We now turn to the fully discrete case. The backward Euler method applied 
to (5.3) defines Un E Sh by ( f a  = f ( tn )  , U n  = u( tn)) 

Analogously to (5.4),we obtain for the difference en = U, - u, : 

(5.21) Gidten + en = pa + Ghin + Gh&n, tn > 0 ,  
with 

pn = ( R h- I ) u ~ ,  i n  = -(Rh - I )Gdtun ,  En = -G[Btun - u t ( tn ) ] .  
Equation (5.21) is the basis for the estimation of en . It is convenient to first 
give a lemma providing estimates of p, , in,and E ,  . In Lemma 5.2 we allowed 
a = 0 in order to have Corollary 5.3. In the remainder of this section we assume 
that a 2 1 . 
Lemma 5.4. Let r = 2 or 3 ,  and let u satisfy ( 5 . 1 )  and (5.2)for some a E 
[ l  , r]; assume further that a 5 /3 5 r . Then the following bounds hold for 
O < t n 5 T :  
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and 

where b n  = k z=1P j  , e n  = k xy=l[j  , in= k x:=,~j . Moreover, for t2 < 
tn 5 T ,  we have 

(5.29) I ld t inI l ICKh tn , 

(5.30) lldtenll <- CKktii-* 
Proof. To begin with, (5.5) implies 

for n > 2 ,  since t ,  5 2tn-1 . This proves (5.22). The bound (5.23) is proved 
in the same way as (5.7). Next we note that en = ( R h- I )G(un-U O )  = jln , and 
hence (5.25) is the same as (5.8). For the proof of (5.24),we have by (3.10) 
and (5.2) 

llLll= ( R h - 1 ) -:1' Gutdr 1 < C h B -: IIGutllBdr 

1
for n 2 2 .  For n = I ,  we have instead = i)ltll)< CKhDty7- by
(5.25). In order to prove (5.26),we use Taylor's formula to get 

for n 2 2 ,  and for n = 1 

In a similar way we get 

- $ - &  ,$ 

which is (5.29),and 
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where we have used the fact that IIGuttt(t)(l- llutt(t)112 -- CK~-5-y, cf. the 
end of the proof of Theorem 4.1. This proves (5.30). For the estimation of 
Ghtn we write 

IIGhÊ nII I IIG-fnII + II(Gh -G)Cnll-
Here, 

since a 2 1 ,and 

and (5.27) is proved. Finally, (5.28) is an immediate consequence of the previ-
ous bounds. 

Lemma 5.5. Let r = 2 or 3 ,  let u satisfi (5.1) and (5.2)for some a E [ 1  , r ] ,  
and let Un be the solution of (5.20). Then 

r - n  4 t l -n  

(5.31) IIUn - u(tn)l(lI CK(hr-'ti"- + k t i 4 ) ,  0 < t, I T ,  I = 0 ,  1.  

Moreover, for the "chemical potential" w ,  = Au, - Pfn and its approximation 
Wn = AhUn - Phfn,  we have 

I r - o  1 4 - 0  

(5.32) 1 1  Wn-w(tn)ll5 CK(hrt,'-"- + kt,'-4), 0 < tn 5 T .  
Proof. Let p be as in Lemma 5.4. In order to prove the case 1 = 0 of (5.31), 
we start out by taking the inner product of (5.21) with a t e n .  Using the fact 
that Gh is selfadjoint positive semidefinite on L2 ,we get 

l l ~ h 3 t e ~ 1 1 ~+ ( e n ,aten)= (pn, &en) + ( C n ,  G h t e n )-t- ( e n ,Ghaten) 
-

I (pn , aten) + I I C ~ I I ~+ I I & ~ I I ~-t i ~ ~ ~ h a t e n1 1 2 ,  
which shows 

11Ghdten11~+ 2(en,Bten)I ~ ( P H ,dten) + 21!1n1l2+ 211&n112. 
Using the identity 

(5.33-a) Bt(anbn)= (Btan)bn+ an-l(gtbn) 
(5.33-b) = (3tan)bn+ an(2tbn)- k(dtan)(atbn), 
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we obtain 

Cancelling the term k lldten[ I 2  , multiplying by t:-, and using (5.33-a) yields 

Multiplying by k and summing with respect to n , we obtain after a simple 
kick-back argument 

Invoking the bounds for pn , inand en in Lemmas 5.1 and 5.4, we conclude 
that 

We now have to estimate k C;=,tjllejl12, and we therefore multiply (5.21) by 
en to get 

whence, by (5.33-b), 

Multiplication by tn and using (5.33-a) now yields 
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so that, since Gheo= 0 and in view of (5.28), 

To derive an estimate of k z ; = ,  IIGhejl12 , we sum (5.21) with respect to n , 
taking Gheo= 0 into account, which yields 

-
where 8, = k C;=,ej , $0 = 0 ,  etc. Multiplication by en = arkn gives 

= ( b n  , en)+ ( g n  Ghen)+ (Ghtn, en) 

6 3 1 1 t n 1 1 ~+ 311Ghenll2+ (llbnll f llGhE^nll)IIenII, 
which after some simple manipulation leads to 

5 ~ ~ ~ ( h ~ p t ,
2- 9 + k2ti-?) + +kf:t j l l e j l 2 ,  

j= 1 

and, upon substitution into the right-hand side of (5.35), 

(5.37) k f:t j l l e j l 1 2  + k2t:-+).5 ~ ~ ' ( h ' p t i - ~  
j= 1 

Estimates (5.34) and (5.37)now yield 

(5.38) k xn 

t:-, ~ ~ ~+ t;len1'~ 6 ~ K ' ( h ' ~ t i - ~, ~ + k2t:-+),d e

j= 1 


and the case 1 = 0 of (5.31) follows. 
It is now convenient to estimate the difference between w ( t n )  and Wn. Ob-

serve that 

~ ( t n )- Wn = -Gut(tn) + Ghdtun= Ghdten- in- E,. 

The last two terms inand E ,  are estimated as desired by (5.24)and (5.26). In 
order to estimate Ghdten, we form the backward difference of (5.21): 

Taking the inner product with dten and using (5.33-b),we get 

;dtllGhdten1I2 + $k l l~hd ten l l~+ lldten1I2 
-

= (dtpn 7 aten)+ (dtcn Ghdten)f ( d t ~ n ,Ghdten). 
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Hence, by a simple kick-back argument, 

Multiplying by t;f-2, using (5.33) and the fact that d,(t;f-,)  5 3t iP1,now yields 

In a standard way we conclude 

and hence, by (5.38) and Lemma 5.5, 

for n 2 2 .  For n = 1 we recall that Gheo= 0 ,  so that in view of (5.36) and 
(5.37), 

Taken together, these estimates prove (5.32). 
Finally, the estimate of the H 1  norm of en is proved by interpolation be-

tween the known bounds for the errors in Un and Wn just as in the proof of 
Lemma 5.2. 

In this section we shall estimate the difference between the solution u of the 
nonlinear Cahn-Hilliard equation (2.5) and its semidiscrete approximation uh 
defined in (3.3). We begin by settling the question of existence, uniqueness and 
stability for uh . Recall the a priori bound 

that we obtained in (3.4). Since (3.3) is a finite-dimensional system of ordinary 
differential equations with differentiable nonlinearity, this bound immediately 
gives global existence: 

Lemma 6.1. The initial value problem (3.3) has a unique solution, which exists 
for all time. 

In our error analysis we shall use the following bounds for the nonlinearity 
$ ( u ) .  
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Lemma 6.2. Let Ilv 1 1  1 , Ilw 1 1  5 R . Then 

(6.2) ll4'(v)zll 5 C ( R )llzIl1 9 

(6.3) Ild(v)- 4(~)115 c ( R )Ilv - ~ 1 1 17 

(6.4) Il4(v)ll 5 C ( R ) ,  

(6.5) l l ~ ~ ~ 4 ~ ( v ) z l l lI c ( R )I l ~ l l ~ 

(6.7) l l ~ ; ( [ 4 ' ( v )- 4'(w)lz)Il5 c ( R )Ilv - wll 1 1 ~ 1 1 1 . 
Proof. We only demonstrate (6.5)and (6.6);the remaining bounds are proved 
in a similar way. First note that, by Holder's and Sobolev's inequalities ( d I 3 ), 

Since by assumption (2.4),4 is a cubic polynomial if d = 3 ,  we thus have 

I I G ; [ ~ ' ( V ) ~ I I I5 c l / 4 ' ( v ) z l l~~ ;~5 c ~ ~ ~ ' ( v ) ~ ~ ~ ~ ~ ~ z ~ ~ ~ 2 

5 C ( 1+ llvlli6)IlzllI C ( l  + llvll:)llzll, 
which is (6.5),and (6.6)readily follows. The modification needed when d 5 2 
and 4 has arbitrary degree is obvious. 

Remark. The local Lipschitz condition (6.6)was used by Thomee and Wahlbin 
[19]in the error analysis of finite element methods for semilinear parabolic 
problems of second order. 

We also need the following well-known generalization of Gronwall's lemma. 
We include a proof for the sake of completeness. 

Lemma 6.3. Let thefunction q( t, z) > 0 be continuousfor 0 5 z < t I T .  If 

q( t,z )  I A ( t  - z)-'+" + B ( t  - s)-'+Bq(s,z)d s ,  0 I z < t 5 T ,I' 
for some constants A ,  B 2 0 ,  a ,  > 0 ,  then there is a constant C = 
C(B, T ,  a ,  /3) such that 

q ( t , z ) I ~ A ( t - z ) - ' + ~ ,  O I z < t S T .  
Proof. Iterating the given inequality N - 1 times, using the identity 

t 

(6.9) J ( t  - s)-Ita(s - r)-liB ds = C ( a ,P )  ( t  - 7 ) - I+"+B, a , p > 0 ,  
7 

and estimating ( t  - z)B by T B  , we obtain 
t 

q ( t , r ) ~ ~ ~ ~ ( t - r ) - ~ + ~ + ~ 2 / ( t - ~ ) - ~ + ~ B q ( s , z ) d s ,7 0 5 z < t < ~ ,  

where C1 = C I ( B ,T ,  a ,  P ,  N ) ,  C2 = C2(B ,P ,  N ) .  We now choose the 
smallest N such that - 1  + NP 2 0 ,  and estimate ( t  - s ) - I + ~ B  by T - ~ + ~ B. 
If -1 + a 2 0, we obtain the desired conclusion by the standard version of 
Gronwall's lemma. Otherwise, we set y( t  , z )  = ( t- z) '-"q(t ,  z)  to obtain 

2 

y ( t , r )  I C I A + C ,J ( ~ - r ) - ' + ~ y ( s , z ) d s ,  O < r < t s  T ,  
7 
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and the standard version of Gronwall's lemma yields ~ ( t, r )  < C A  for 0 I: 
r < t 5 T ,  which is the desired result. 

We now turn to the stability of uh with respect to perturbations of the initial 
value. 

Lemma 6.4. Let u f ), i = 1 ,  2 ,  be two solutions of (3.3) with initial values 
u$ and satisfiing ~ l u r ) ( t ) ~< R for 0 < t 5 T ,  i = 1 , 2 .  Then for j = 
- 1 , 0 ,  1 ,  j < I = O ,  1 wehave 

( 1 )luh ( t )- u r ) ( t ) i< C ( R ,~ ) t - q l ~ b i- u E ~ ,  o < t < T. 
Proof. The proof is more or less the same as that of Theorem 6.5 and we omit 
it. 

We are now ready to formulate our main result. 

Theorem 6.5. Let r = 2 or 3 ,  and assume that for some a E [ 1  , r] we have 
uo E H~ with 

(6.10) l l ~ o l l a < R l ;  I I ~ ( t ) l l l + I I ~ h ( t ) l l l < R 2 ,  O < t < T ,  

where u and uh are the solutions of (2.5) and (3.3), respectively. Then 

(6.1 1 )  Iluh(t)- u(t)ll < Clluoh- Phuoll + C h r t - 7  , 

(6.12) 1luh(t)- U ( ~ ) I I< c ~ + ! I u ~ ~- P h ~ O l j+ c h r - I t - 7  , j = O ,  1 , 
for O <  t < T ,  where C =  C ( R 1 ,  R 2 ,  T ) .  
Proof. It follows from Lemma 6.4 that we may assume that uOh= PhuO; oth-
erwise, the additional errors in (6.11) and (6.12)caused by such a perturbation 
of the discrete initial value are bounded by 

Clluoh- Phuoll and C t - ~ l u o h- Phuolj ,  j = - 1 , 0 ,  1 ,  O < t < T ,  

respectively. Assuming thus that U O ~= Phu0,we shall compare uh with the 
auxiliary function Gh(t)€ jj, defined by 

G h ,  + ~ i 6 h= -AhPh$(U), t > 0 ,
(6.13) 

Gh(0)= PhuO 

Setting e = uh - u and P = Gh - u ,we know from Lemma 5.2 and (6.10) that 

(6.14) ( t )  < ( R , ) h i t , 0 < t < T ,  I = 0 ,  1.  

By Duhamel's principle ( 3 . 9 ,  we have 

By (6.14), the Lipschitz condition (6.6) and (6.10), we obtain 
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and Gronwall's Lemma 6.3 shows 

For the proof of (6.12), we use (6.3) instead: 

and (6.12) follows by Gronwall's lemma. 

In order to apply the above result, we must verify assumption (6.10). In view 
of (2.8) and (6.1), we find that (6.10) holds, for example, if it can be proved 
that lluoh1 1  1 5 Cll uoll1 independently of h . Clearly, this holds if uOh= RhuO. 
Another possibility is to choose u0h = PhuO,provided that we have the inverse 
inequality 

(6.15) X I x VX E sh. 

It is easy to see that (6.15) and (3.10) imply IIPhuolllI Clluolll. 
In view of (3.10) and (3.11), we have 

lRh~0- P h ~ 0 l j5 lRh~0- u0lj f 1 ~ 0- P h ~ 0 l j5 C ~ ' - ' ~ U O I ~  

for 1 I p Ir and j = 0 if r = 2 ,  j = -1,  0 if r = 3 .  (The negative 
norm bound for the error in Ph follows from (3.11) by a well-known duality 
argument.) The following corollaries are now evident. 

Corollary 6.6 (Smooth data). Let r = 2 or 3 ,  and assume that uo E Ei' with 
Iuolr I R .  

(1) If uOh= RhuO,then 

(2) if u0h = PhuO and (6.15) holds, then 

Corollary 6.7 (Data in H1). Let r = 2 or 3 ,  and assume that uo E k1with 
luol1 I R .  

(1) If uOh= RhuO,then 

lI~h(t)- ~ ( t ) l l lIC ( R ,  ~ ) h ' - ' t - q  , 0 < t IT ;  

(2) if u0h = PhuO and (6.15) holds, then 

The estimation of the error in the semidiscrete "chemical potential" wh = 
Ahuh+ Ph$(uh) is more technical. We shall only present a result for the case 
of nonsmooth data: uo E k1. In the proof of this we shall need the following 
bound for uh ,,. 
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Lemma 6.8. Let 1 1  uoh1 1  1 < R . Then 

(6.16) ( t )5 ( R ,  T ) t l  0 < t < T ,  1 = 0 ,  1 .  
Proof. Let zh = uh, . Then by differentiation of (3.3),we have 

Z h ,  t + A;zh = -AhPh(P1(uh)zh, 
and after multiplication by t , 

(6.17) 
Dt(tzh)+ A;(tzh)= Zh - tAhph$'(Uh)zh 

= - ~ $ h  -AhPh4j(~h)- tAhPh4j1(~h)~h, 
where we have used (3.3)in the last step. Hence, 

t ~ h ( t )= - Eh(t - s ) ( A ~ u ~ ( s )+Ahf ' h$ (~h (~ ) )+~Ahph$l(uh(~))zh(s))d~ ,I' 
so that, by the boundedness of lluhlll, (6.4) and (6.5), 

< c ( R ) ~ ++ C ( R )  ( t  - s ) - ~ s ~ ~ z h ( s ) ~ ~ds.I' 
Now Gronwall's Lemma 6.3 yields t 1 1  zh( t )1 1  < C ( R, T ) t$ for 0 < t < T ,which 
proves the case 1 = 0 of the lemma. The proof for the case 1 = 1 can be based 
on the first identity in (6.17). We proceed in the same way, using the known 
bound for llzhll and the bound (6.2) for II$'(uh)zh1l. 

Theorem 6.9. Let r = 2 or 3 and let uo E H' with 1 uo1 < R , and uoh= PhuO. 
Thenfor the "chemicalpotential" w = Au +P$(u) and its approximation wh = 
Ahuh+ Ph$(uh)we have 

Ilwh(t)-w(t)ll < C ( R ,  ~)h ' t - r -?  , 0 < t 5 T.  
Proof. Again, we use the auxiliary function Gh defined in (6.13). Let e = 
uh - U ,  zh = uh - i ih,  and 2Zrh = AhGh+ Ph$(u)= -GhGh,*. Since wh -w = 
(wh-wh)+ (wh-w )  ,where by Lemma 5.2 

(6.18) Ilzijh(t)- w(t)ll 5 Chr t -4 -9  = C h r t - y ,  0 < t < T ,  

it remains to estimate wh - wh = -Gh(uh, - G h ,  t )  = -Ghzh, . The function 
zh satisfies 

(6.19) Z h , t  + ~ i z h= Ahf'hf f = $(u)- $ ( ~ h ) .  
Differentiating this equation we get 

Z h ,  tt +&h,t  = AhPhft-
Multiplying by t and using (6.19)yields 

D t ( t ~ h , t )+ ~ i ( t ~ h , t )= Z h , t  + tAhPhft = - ~ ; z h+AhPhf + tAhPhft. 
Hence, by Duhamel's principle, 
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Here, by the error bounds in Lemma 5.2 and Theorem 6.5, we have 

I r - l  

11,ll5cJf( t  dS 5 c h r  I' (t - s ) - I s - T  ds 5 chr t l -Q.  
0 

Similarly, by (6.6), 

For Z3,we write ft = -[4'(uh) - 4I(u)]uh, -@(u)et, SO that 

Here, by (6.7), Theorem 6.5 and Lemma 6.8, we have 

Further, by Corollary 5.3, (6.2) and the bounds for ut and uh,, in Theorem 
4.1 and Lemma 6.8, we obtain 

For I6we argue as follows. Let x E L2 be arbitrary. Then 

(E(t  - s)[4'(u(s))et(s)l,X )  = (Get(s), AP[4'(u(s))E(t - s)xI) 
I IlGet(s)ll IIAP[4'(u(s))E(t - s)xlll. 

By a careful exploitation of Sobolev's inequality ( d  I 3 )  and the moment 
inequality 

(6.20) lvlp I clvl~- ' lv l~ /3 = (1 - 0)6 + 0y, 0 E [O, 11, 

we may show 
IIAP[4'(u)vlll I C (1 + lulllulY)lvl2, 

where < y < 3 (cf. the proof of Lemma A.l  in the supplement). Hence, by 
the regularity estimates for u(t) and E( t )  ,we have 

and, since x is arbitrary, we conclude that 

where 0 = y - 1 E (3  , 2) . Therefore, 

11I611 I C I' (t - s ) - ~ s l - ~ ~ ~ ~ e t ( s ) l lds. 
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Here, Get = -(Gh - G)uh, - (wh- W )  + Ghzh, , where by (3.10) and Lemma 
6.8 with 1 = r - 2 (hence 1 = 0 or 1 ), 

Taking this together with (6.18) and the above bounds for Ij, j = 1, .. . , 6 ,  
we now have 

or, with yl(t) = tGhzh,t( t), 

Iterating this inequality once, recalling that o < 2 ,  we obtain (cf. the proof of 
the Gronwall Lemma 6.3) 

and since 1 - ( r  + 1)/4 L 0 the standard Gronwall lemma shows p(t) 5 
Chrtl-* for 0 < t 5 T ,which implies the desired bound for Ghzh, . 

7. ERRORBOUNDS FOR THE COMPLETELY DISCRETE SCHEME 

The purpose of this section is to estimate the difference between the solution 
u of the Cahn-Hilliard equation (2.5) and its completely discrete approximation 
U, defined in (3.6). The argument is completely parallel to that of the previous 
section and we only present an outline indicating the modifications needed. We 
first recall that, if k 5 4 /p4 ,  then we have the a priori bound (3.8). Using this 
bound, we conclude that (3.6) has a unique solution U, for all t, if k is small. 

In the proof of our main result we need a discrete version of the Gronwall 
Lemma 6.3: 

Lemma 7.1. Let 0 5 yl, 5 R for 0 5 t, 5 T .  If 

for some constants Al , A2, B 0 ,  a l , a2,  P > 0 ,  then there are constants 
ko = ko(R,B ,  /3) and C = C(B,  T ,  a1 , a2,  P) such that, for k 5 ko, 

pn 5 C ( A ~t,""' + ti^+^^ ) O < t n 5 T .  

Proof. The proof is completely analogous to the proof of Lemma 6.3. Iterating 
the given inequality, using 
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which follows by comparison with the integral in (6.9),we get 

j= 1 

where C1 and C2 are the same as before, and - 1  + NP _> 0 .  If k is small, 
then we may cancel the last term on the right and the proof is completed by 
means of the standard discrete Gronwall lemma. In this connection, if a1 2 a2 , 
say, and -1 +a2 < 0 ,  we first set yn = tAPa2qnto get 

which leads to vn5 C ( A ~ t , a ' - ~ ~+AZ)  for 0 < t,  5 T .  

We can now state our main result. For simplicity of presentation we assume 
that u0h = PhuO.The modifications needed for other choices of discrete initial 
data are exactly the same as in the previous section. 

Theorem 7.2. Let r = 2 or 3 ,  and assume that for some a E [ l, r] we have 
uo E Eia and u0h = Phu0 with 

I l ~ o l l a L R ~ ;  II~(fn)lll+IlUnIIlIR2, O I t n I T ,  
where u and Un are the solutions of (2.5) and (3.6), respectively. Then there 
are ko = kO(R2)and C = C ( R I, R 2 ,  T )  such that,for k 5 ko ,  

4+1-o 

IIUn - u ( t n ) ~ /I c ( h r - ' t i Y  +kt,'), o < tn 5 T ,  I = 0 ,  1. 

Proof. We define fin E Sh by 

-
With en = [Un- Gn]+ [Un- u(tn)]- Zn + Cn , we know from Lemma 5.5 that 

We first demonstrate the case I = 0 .  B y  the variation of constants formula 
(3.9)we have 

n 

en = en - k C ~ : i ' + ' ~ h ~ h [ $ ( u j )- $(u(tj))l. 
j= 1 

Using the fact that 

and the Lipschitz condition (6.6),we obtain 
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and the desired bound follows by the discrete Gronwall Lemma 7.1. Similarly, 
for the case 1 = 1 we use the discrete analogue of the proof of (6.12). However, 
this does not work when a = 1 , owing to the strength of the singularity of the 

4+1-o 

term k t i 4  in (7.1). Instead, we argue as follows when a = 1 : From the 
equation for Z, and (5.33) it follows that 

Using Zo = 0 and (6.3), we obtain by the variation of constants formula 

By a modification of the first part of this proof we have here (with a = 1 ) 

12~115 C(Rl ,R 2 ,  T) (hr-lty9 +kt;!), 0 < t, 5 T. 

Together with (7.I), this shows 

j=1 

and the desired result follows. 

Let u(t) =Y(t ) (uo)  denote the solution of the Cahn-Hilliard equation (2.5). 
Then Y ( t )  is a nonlinear semigroup in H' . Similarly, (3.3) and (3.6) define 
nonlinear semigroups z ( t )  and 5; in Shc k1by uh(t)= Z( t ) (uOh)and 
U, = %;(uoh). We show below that Y ( t )  has a global attractor d . This 
means that d c k1is a maximal compact invariant set which attracts every 
bounded subset of k1. See Hale [ 9 ]  for the definitions of these terms. We also 
show that Z ( t )  and 5; have global attractors dhand dhk, respectively, in 
s;,ckl. 

We may think of %(t) and 5; as perturbations of Y ( t )  , and the purpose 
of this section is to use our error bounds for solutions with initial data in k1 
to prove a stability property of the perturbed attractors dhand dhk. 

In fact, applying Theorems 6.5 and 7.2 with uo = uoh E Sh c k1, we 
immediately obtain 

Corollary 8.1. Let r = 2 or 3 ,  R > 0 ,  and let J c (0,  m )  be a compact 
interval. Then, for small k , we have 

(Note that the constant blows up as J approaches 0 or m .) Since dh(R,J) 
4 0 ,  dhk(R,J )  4 0 as h ,  k 0 for any R ,  J ,  it follows that 
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see Temam [17, Theorem I. 1.21. Here, d(A , B) = sup,,, infbEB Ila -bll 1 is the 
(unsymmetric) semidistance between the sets A, B . Thus (8.1) means that for 
any E > 0 there is h such that dhlies in an &-neighborhood of sf , or, in the 
terminology of [9], that dhis upper semicontinuous at h = 0 .  

The idea of the proof of (8.1) is to compare a discrete trajectory uh(t) on 
time intervals [NT,  (N + 1)T],  N = 1, 2 ,  . .. , to exact trajectories u(t) with 
u(NT) = uh(NT) using Corollary 8.1. The length T of these intervals is 
determined as the time it takes for d to attract any initial value into a ;E-

neighborhood of itself. Everything being uniform on bounded sets of k1, one 
may conclude that uh(t) belongs to an &-neighborhood of d for h 5 ho = 

h0(&), t 2 T = T(E). 
The same idea of using a nonsmooth data error bound to obtain a result 

about the long-time behavior of discrete solutions can be found in Heywood 
and Rannacher [12]. See also Hale, Lin, and Raugel [lo] and Kloeden and 
Lorenz [14] for related results on the upper semicontinuity of attractors. 

We conclude this section by demonstrating the existence of the attractors sf , 
dh, and dhk. This follows easily from a general result about asymptotically 
smooth gradient systems, see Hale [9, Theorem 3.8.51. We verify the assump- 
tions of this theorem. 

First we note that Y ( t )  is a C1-semigroup in k1. This means that for fixed 
t the mapping uo HY(t ) (uo)  is Frechet differentiable, which is easily proved 
using the techniques of the proof of Theorem 4.1 in the supplement. Next we 
note that the smoothing property of 7 ( t )  obtained in Theorem 4.1 implies 
that Y ( t )  is completely continuous. This implies that Y ( t )  is asymptotically 
smooth and that all positive orbits y+(v) = {Y(t)v : t 2 0) are precompact 
(see [9, Corollary 3.2.2, Lemma 3.2.11). We also note that Y ( t )  is a gradient 
system, i.e., it is a C1-semigroup with the additional properties: 

(1) each bounded positive orbit is precompact; 
(2) 	there is a Ljapunov functional for Y ( t ) ,  i.e., there is a continuous 

mapping V: k1-+ R such that 
(3)  	V is bounded below; 
(4) V(u) + oo as lull + m; 
(5) t H V(Y(t)v)  is nondecreasing; 
(6) 	if v is such that V(Y(t)v) = V(v) for all t , then v is an equilibrium 

point of Y ( t )  . 
We have already verified (1). Moreover, we saw in 52 that V(v) = 31vl: + 
Jn ~ ( v )d x  is a Ljapunov functional for Y ( t )  . 

Finally, we need to check that the set of equilibrium points i? of Y ( t )  is 
bounded in k1. To see this, let v E 8. Then Av + P4(v) = 0 ,  so that 
Ivl: + ($(v), v) = 0 .  Using (3.7) and (2.4), we get 

which shows that lv 11 5 C . 
We are now in a position to apply [9, Theorem 3.8.51. We conclude that 

Y ( t )  has a global attractor d . Moreover, the attractor is connected and equal 
to the unstable manifold of the set 8.Similar arguments apply to z ( t )  and 
5;. In this case the complete continuity is automatic by finite dimensionality. 
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