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CHAPTER

ONE

Overview

The finite element method is a numerical tool to approximate solutions to partial
differential equations, for instance those describing physical phenomena in engi-
neering. Accuracy of a finite element solution depends mainly on the discretisation
of the problem domain. Certainly, a more refined/enriched discretisation improves
the ability of the finite element analysis to approximate the exact solution.

However, some questions arise, for example, whether the mesh used in the com-
putation is good enough to output an acceptably accurate result and, if not, how
fine it should be. Using a finer mesh also means an increased number of unknowns
that must be solved in the finite element computation. And, even though the ca-
pability of computers nowadays is much improved, the numerical models are also
becoming more complicated as the knowledge about the physical phenomena has
become much clearer than in the past.

The measurement of error information is the basis for an answer to the above
questions. Error information is an objective measure to assess whether the used fi-
nite element mesh is of sufficient quality. Moreover, local error information and the
corresponding local criteria give the user some hints where in the mesh the discreti-
sation should be improved. This procedure of discretisation improvement is known
as mesh adaptivity. It can enhance the efficiency of the discretisation enormously, es-
pecially in problems whose solutions need very fine discretisation only in a small
part, whereas coarse discretisation may be applied in the rest of the problem do-
main. A typical example of such a problem, to which this dissertation is devoted,
is the analysis of cracks. For quasi-brittle materials, cracks constitute small zones
where the mechanical nonlinear activity is concentrated, while the rest of the struc-
ture behaves elastically. The cracking zones, normally not known a priori, require
a fine discretisation whereas the remainder of the structure can be analysed with a
coarser discretisation. Thus, crack analysis can benefit from mesh adaptivity.

The aim of this chapter is to give a brief introduction to the whole dissertation. We
will start with defining three levels of problems in preparation for the finite element
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analysis as well as the corresponding errors that emerge during transitions from
one level to another. Next, as the finite element solution relies essentially on how the
problem domain is discretised, remarks about mesh discretisation in finite element
analysis will be addressed. Essentials about mesh adaptivity and error estimation,
as well as its applications in crack modelling, will end this chapter.

1.1 Physical, model and discretised problems

Generally, there are three defined problems in numerical computation. In practice,
the physical problem to analyse must be defined as the first step. Due to the com-
plexity of the real physical problem, normally some assumptions are made. These
assumptions may be, for instance, a 2D representation of the real 3D problem being
under plane stress/plane strain conditions with the assumed material behaviour
during a loading process described by a certain constitutive relation. With those
assumptions, the physical problem is now transformed into the model problem. In fi-
nite element modelling, the problem domain must then be discretised so that it can
be analysed numerically. At this stage, the problem becomes the discretised problem.
The boundary conditions are projected to the discretised domain and the forces
are distributed corresponding to the discretisation, resulting in so-called consistent
nodal forces.

Progressing from one problem to another leads to different types of error. The as-
sumptions made in the model problem to represent the physical problem cause the
so-called modelling error, while the mapping of the model into the discretised do-
main brings about the discretisation error. While the modelling error indicates how
accurate the mathematical model is in representing the real physical problem, the
discretisation error indicates how accurate the discretisation is in approximating
the solution to the mathematical model∗. While the modelling error is measured by
comparing the mathematical model (model problem) with the experimental data
(physical problem), the discretisation error can be estimated by comparing the so-
lutions of the discretised problem with those of the model problem represented by
a very refined/enriched discretisation†. Even so, in real practice, it is not simple
at all to distinguish between the modelling error and the discretisation error since
the answer to the constitutive relation (model problem) can generally not be de-
termined analytically but only numerically. And, via the finite element concept, the
discretisation of the model problem is unavoidable, whereby it becomes impossible
to separate modelling errors from discretisation errors. However, this constitutes a
dilemma in the transition from physical problems to model problems. In this dis-
sertation, we are concerned with the transition from model problems to discretised
problems.

∗Here, we denote the solution to the mathematical model as the exact solution of the model problem.
†A refined discretisation is defined as a discretisation with an improvement regarding element sizes,
whereas an enriched discretisation denotes a discretisation with an improvement regarding interpola-
tion capability.
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In particular, our main goal is to assess the error in finite element discretisation.
Thus, one of our assumptions is that the constitutive relations of material mod-
els used throughout this thesis are perfectly correct, i.e. they are a perfect repre-
sentation of the underlying physical processes. The discretisation error, resulting
from the projection of the model quantities to the discretised domain, originates
from two sources, namely the inability to reproduce the geometric boundary of the
model problem and the inability to reproduce the exact solution of the model prob-
lem. The error from the first source is actually a source of error that, for not too
complicated boundary geometries, is avoidable by carefully selecting suitable type
of finite elements. Thus, our main focus will be on the second source of discretisa-
tion error.

1.2 Quality of a finite element mesh

As mentioned earlier, accuracy of the finite element solution depends on how the
model problem is discretised. Two main factors of the standard finite element dis-
cretisation are

• size of the finite elements (the h-factor), and

• characteristic of the interpolation functions, for instance the polynomial order
(the p-factor).

Obviously, a smaller element size may provide a better resolution of the exact so-
lution. However, the approximation also depends on how suited the interpolation
function, often based on piecewise polynomials, is for describing the exact solution.

Figure 1.1 shows how the finite element analysis approximates the exact solution
of an ordinary differential equation, which here is a quartic polynomial. Keeping
the interpolation function in linear form, a better resolution to the exact solution
can be obtained via the uniform refinement of the finite element mesh, the so-called
h-version finite element method. Each smaller element has to model a smaller seg-
ment of the exact solution. On the other hand, in the p-version finite element frame-
work, the approximation is improved by enrichment of the interpolation functions.
Without changing the element size, the resolution of the exact solution is well-fitted,
especially when the order of interpolation polynomial approaches that of the ana-
lytical solution. Another important observation from this problem is that, with the
same number of degrees of freedom, the p-version provides a better approximation
to the exact solution than the h-version. This holds in particular for higher values
of the interpolation orders.

In this research, we focus on the p-version (cf. Chapter 2) as well as the h-version
finite element methods. Although not as popular, the p-version has some outstand-
ing advantages. Firstly, it provides accuracy improvement without changing the
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mesh configuration‡. Secondly, for problems with smooth solutions, the p-version
provides a higher rate of convergence [93], i.e. the approximate solution becomes
more accurate by increasing the polynomial degree than by adding the same num-
ber of degrees of freedom via the h-version. Thirdly, when the hierarchical p-version
(for example, [93, 94]) is employed, each additional higher-order contribution does
not change any of the interpolation functions used in the previous contribution. As
such, the stiffness matrix for order p is embedded in the stiffness matrix for order
p + 1, reducing computational effort and improving the conditioning of the stiff-
ness matrix.

1.3 Error control and mesh adaptivity

Due to limitation of computer capacity, not all information describing the actual
continuum model can be included in the finite element computation. And even
though a more refined/enriched discretisation is a better representation of the con-
tinuum model, it requires higher computational cost accordingly. As a solution
to this problem, one should set a balance between accuracy and computational
cost. An acceptably accurate solution that does not require outrageous computa-
tion should be the rule for practical applications.

Types of error assessment

To measure the accuracy of the finite element solution, it is necessary to assess an
error quantity, which results from the finite element discretisation. Basically, there
are two types of error estimation procedures available, namely a priori and a pos-
teriori error estimators. The a priori estimate provides general information on the
asymptotic behaviour of the discretisation errors but is not designed to give an ac-
tual error estimate for a specific given mesh, geometry and loading conditions. On
the other hand, the a posteriori estimate measures the actual error at the end of a
specific computation and can be exploited to drive a subsequent mesh adaptivity
procedure.

In this context, following [43], we distinguish between error estimation and error
indication based on objectivity of the output quantity. The error indication does not
provide objective information about the exact error, but gives some hints where
the solution may need a more refined/enriched discretisation. Based on heuristic
observations, we can actually predict in which regions of the problem domain er-
rors are likely to occur based on the problem geometry and the solution itself. For
example, errors are always concentrated at sharp corners of the problem domain,
where point loads are prescribed, and where there is an abrupt change in boundary
conditions; in other words, errors concentrate where high gradients of the solution
occur.

‡The geometric representation of a problem with complex geometry may change slightly the mesh con-
figuration during the p-extension. However, this type of problems will not be studied in this thesis.
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Mesh enrichment

Mesh refinement

Mesh gradation

(r−adaptivity)

Original

(h−adaptivity)

(p−adaptivity)

Figure 1.2 Some mesh adaptive schemes used in this research.

However, as the error indication directly links available quantities to error in-
formation, it needs to be derived for each material model and is rather restricted
to the assumptions based on types of the problem to be analysed. In contrast, the
standardised and mathematically founded error estimation can be applied to ev-
ery problem for any material model without any (major) reformulation. In spite of
being computationally more expensive than the indication, the error information
obtained from the error estimation is objective and can be exploited with optimality
criteria in designing an optimal mesh. We employ, by such reasons, an error estimator
in this research study.

Error estimators

Basically, the a posteriori error estimators can be categorised into two main classes.
The recovery-type error estimators (for example, [106,107]) measure the smoothness
of stresses between adjacent elements. Since the methods do not require solving the
error equations, they are simple and more preferable in many practical problems.
However, there are not so many cases reported in [106,107] that show superconver-
gence§. On anisotropic meshes or those with mixed element meshes, the analysis is
hindered by an apparent lack of superconvergence properties. Also the recovery-
type estimator is not proven to converge in nonlinear problems.

In contrast, the residual-type estimators, although related somehow to the
recovery-type [103], do not depend on the superconvergence properties. Thus, they

§Superconvergence property belongs to some points where a very accurate solution can be obtained.
They are usually the quadrature points [105].
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Figure 1.3 Standard procedure for adaptive finite element computation.

can be applied to a wider variety of problems. The methods (for example, [12]) de-
termine the error by calculating the residual of the finite element solutions in each
local space. We have chosen a residual-type error estimator in this study. Following
the idea in [29], homogeneous Dirichlet conditions are imposed in the error equa-
tion defined by forming patches of several elements. The method is applied for
estimating the error in energy norm (cf. Chapter 3), as well as the error in a local
quantity of interest (cf. Chapter 4).

Mesh adaptivity

Once the error information is obtained, the finite element mesh can be adapted ac-
cordingly. The mesh should be improved where the local error exceeds the accept-
able limit (controlled by refinement criteria – also known as adaptive criteria). There
are many techniques for local mesh improvement, for instance, mesh refinement (h-
adaptivity), mesh enrichment (p-adaptivity), mesh gradation (r-adaptivity), mesh su-
perposition (s-adaptivity) or combinations of any two.

In this dissertation, we consider only three adaptive techniques (cf. Figure 1.2).
By applying h-adaptivity, it is possible to design an optimal mesh based on an op-
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timality criterion, which is formulated from the a priori convergence assumption (cf.
Chapter 5). On the other hand, finding a precise balance between acceptable error
levels and computational costs via p-adaptivity may imply that fractional polyno-
mial degrees must be used, which is not a feasible option. Hence, in p-adaptivity,
the interpolation is enriched hierarchically by one order at a time. Without adding
any extra degrees of freedom, r-adaptivity can be a compromising alternative to h-
adaptivity. And without solving any equation, a smoothing based r-adaptive tech-
nique based on the weighted Laplace smoothing is introduced and investigated in
Chapter 5.

Figure 1.3 shows the standard adaptive procedure in the finite element analy-
sis. In the same figure, the dashed box roughly indicates the scope of this research,
wherein the discretisation error is the only error under consideration. Although it is
difficult to neglect involvement of the numerical error (e.g. floating point error) in
this study, its contribution is assumed to be very marginal as compared to the dis-
cretisation error. All detailed information about mesh adaptive aspects, including
the transfer of state variables for nonlinear analysis, is addressed in Chapter 5.

1.4 Adaptive modelling of quasi-brittle failure

In this dissertation, error estimation and mesh adaptivity are applied to problems
involving stationary and propagating cracks. The focus is on materials such as con-
crete, rock, ceramics and some matrix composites, which show so-called quasi-brittle
behaviour. Unlike perfectly brittle materials, quasi-brittle materials do not lose their
entire strength immediately after the maximum strength is exceeded but instead
gradually lose their material strength and show the so-called strain-softening phe-
nomenon (cf. Figure 1.4). Softening stress-strain relations show a drop of stress af-
ter the applied load exceeds the material strength (peak point). In fact, microcracks
are initiated in the material before the stress in the material reaches its maximum
strength [89]. However, the material is still able to carry loads to an extent. Upon
further loading, these microcracks will then join together to form a dominant crack
line which will lead to failure of the specimen.

Another phenomenon that occurs during the fracture process is strain localisation
(cf. Figure 1.5). When the material loses its ability to carry load, the affected part
shows increasing displacement gradients. Ultimately, when a complete rupture has
occurred and the material is separated into distinct pieces, the displacement gradi-
ent has transformed into a displacement jump.

Basically, there are two main assumptions to model the fracture mechanism oc-
curring in these quasi-brittle materials. The first class consists of continuous crack
models, in which the material deterioration is accounted for in a smeared way. The
stress field and strain field remain continuous during the entire fracture process
resulting from a gradual degradation in material properties.

Discontinuous crack models can be regarded as the second class. In these models,
the failure mechanism is presented by means of geometrical discontinuities in the
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σ

ε

Figure 1.4 Softening phenomenon.

material domain. Cracking takes place when stresses in the materials, in any di-
rection, exceed the maximum quantity that the material can resist in that direction.
Such discontinuities imply that materials have separated parts and a jump in the
displacement field can be found in the zone where discontinuities exist. Figure 1.5
shows the difference between crack representations of the two assumptions in the
context of a three-point bending test.

In standard finite element computation, in order to deal with complicated ma-
terial models, the finite element mesh must be properly designed a priori. Such
mesh design has to rely on information before the computation. The mesh may
be designed based on information such as the regions wherein the stresses may
concentrate or where the material/geometrical imperfections are. These guidelines
are not always obvious in practice and the designed mesh does not always guar-
antee appropriate results during cracking processes. Apparently, the need of mesh
adaptivity becomes of great importance in crack propagation analyses.

1.4.1 The continuous crack model

Continuous crack models can be implemented using either the concept of plasticity
or the concept of continuum damage mechanics. In this research, the gradient-enhanced
damage model [70] is used for mesh adaptivity in a continuous crack concept. Dam-
age occurs in the part of material domain where the stress cannot be sustained fully
anymore. As a regularised continuum, the gradient-enhanced damage model con-
verges properly upon refinement of the finite element discretisation.

Error estimation, as well as error indication, has been applied in problems with
softening phenomena. Some outstanding works, employing the residual-type er-
ror estimation and h-adaptivity in softening media such as viscoplastic or nonlocal
damage models, can be found in [28, 78]. In these works, the error estimation takes
place at the end of the analysis. Thus, the mesh is adapted based on the final er-
ror distribution. This refined mesh is then used to restart the whole analysis from
scratch. As the error is not measured during computation, there is a possibility that
the failure mechanism obtained is incorrect. It was shown in [6] that crack paths
may be different for diffent meshes and the adaptive process must be updated dur-
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Figure 1.5 Representation of crack and corresponding strain localisation. Strain localisation occurs
when the tensile strength is exceeded in the bottom part of the beam (top). The resulting crack can be
modelled with a continuous (bottom left) or a discontinuous (bottom right) crack concept.

ing the nonlinear computation in order to make sure that the solution path is cor-
rect.

An alternative to the use of expensive error estimation in driving mesh adaptivity
is the use of inexpensive error indication. In [6, 90], an error indicator is derived
from the critical wave length in the damage model. The desired element sizes are
defined as functions of the damage level and are successfully applied in h-, r- and
hr-adaptivity. However, in [10,11,69], it is suggested that it is as important to assess
the error both in the linear regime (where no damage exists) and the nonlinear
regime (where there exists damage). Without damage and localised strain fields,
error estimation may be a suitable choice to drive the adaptive process in the earlier
computational steps (the linear elastic part), whereas the error indicator is used
when the solution presents nonlinearity. To support this idea, it is claimed in [25]
that the error estimate [49] becomes less significant in the localisation region as
damage grows and stresses tend to vanish. By applying the error estimation during
the whole computation, we can verify these statements.

As h-adaptivity leads to changes in mesh configuration, the finite element anal-
ysis needs reformulating the shape functions, stiffness matrix and force vectors. A
challenging alternative is the use of richer interpolation, or p-adaptivity. In this con-
tribution, we investigate performances of p-adaptivity in combination with simple
mesh gradation applied to problems with strain localisation. A slightly modified
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version of the error estimation in [29] is chosen in this study as it can be easily ap-
plied to problems with non-uniform higher-order interpolations while still being
well-integrated with the optimality criterion in designing the element sizes. Perfor-
mance of the adaptive models will be investigated in Chapter 6.

1.4.2 The discontinuous crack model

As the terms cracking and rupture already imply, introduction of discontinuity as
a result of material failure seems to be natural. Unlike the continuous modelling,
the fracture criterion of this concept is defined separately from the constitutive re-
lations. Discontinuities in the material domain are modelled by introducing a jump
either in the displacement field (the so-called strong discontinuity) or the strain
field (the so-called weak discontinuity).

A classical approach to model a crack is to adapt the finite element mesh accord-
ing to geometrical change due to crack propagation. It then requires a continuous
change of the topology of discretisation (i.e., remeshing process), which is compu-
tationally laborious and complicated. An alternative approach is to place interface
elements of zero width in the finite element mesh [79]. However, since the direction
of crack growth is not known a priori, small elements are needed to allow a jump
in the displacement field in a range of possible directions of cracking, resulting in
an expensive computation.

Without restriction to mesh alignment, the crack can be modelled in a much sim-
pler way. It is shown in [5, 63, 85] that modelling cracks within elements is possible
by both weak and strong discontinuity assumptions. Via the introduction of inter-
nal degrees of freedom, the discontinuous contribution is solved on the element
level and the displacement jump can be modelled without being restricted to the
underlying mesh. The method is known as the embedded discontinuity approach. An-
other recent development is to model the displacement discontinuity by simply
adding extra nodal degrees of freedom via the partition of unity (PU) [14], which
is a basic property of the finite element interpolation. This PU-based finite element
method, also known as the extended finite element method (XFEM) [21, 32, 58, 101], is
more robust in implementation than the embedded discontinuity approach. As ex-
tra degrees of freedom, the enhanced functions are solved at the global level and
do not involve modification at the element level, thus preserving symmetry of the

Figure 1.6 Discontinuity modelling based on enrichment via the partition of unity.
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global stiffness matrix.
Although, via the PU concept, the jump in the displacement field can be modelled

without any restriction to the underlying finite element mesh (cf. Figure 1.6), the
resolution of the discretisation along the cracked element still needs to be ensured.
It has been observed in [99] that a too coarse discretisation may lead to a rough
global response. Even without the oscillations, the response and the resulting crack
path may not be sufficiently accurate. So far, without any research investigating
mesh requirement in the PU-based discontinuity model, it is hardly certain that
the propagation of a discontinuity leads to an acceptable level of accuracy. We will
investigate intensively the discretisation aspect of the discontinuous crack model
in Chapter 7.



CHAPTER

TWO

Finite element interpolation

The finite element method is a numerical tool for approximating solutions of
boundary value problems, which are usually too complicated to be solved by an-
alytical techniques. As its name implies, the method employs the concept of sub-
dividing the model problem into a series of finite elements over which variational
formulations are set to construct an approximation of the solution.

The finite element approximation relies mainly on the interpolation via piecewise
polynomials over a set of finite elements. As mentioned before, the introduction of
higher-order interpolation functions (also called shape functions) is one technique
to achieve a better approximation to the solutions of the problem and is our main
motivation for this study.

The higher-order interpolation can be constructed either based on the so-called
Lagrange (non-hierarchical) elements, or based on adding hierarchical counterparts.
Two types of hierarchical shape functions, formulated based on elements and
nodes, as well as some critical aspects are presented in this chapter.

In the first part of this chapter, we attempt to give a short introduction of stan-
dard finite element analysis, and move on to the formulations of higher-order shape
functions in the second part, as this concept will subsequently be used in so-called
p-elements in the rest of the thesis.

2.1 Basic settings

Let Ω be a bounded domain with the boundary ∂Ω. The boundary consists of the
Dirichlet boundary Γd and the Neumann boundary Γn for which Γd ∩ Γn = ∅ and
Γd ∪ Γ n = ∂Ω. For a problem in statics, we try to find the unknown solution u of the
variational boundary value problem
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∫

Ω

ε(v) : σ(u) dΩ =
∫

Γn

v · g dΓ +
∫

Ω

v · q dΩ (2.1)

which can be written in terms of derivatives of trial and test functions, u and v, as∫

Ω

(∇v) : D : (∇u) dΩ =
∫

Γn

v · g dΓ +
∫

Ω

v · q dΩ (2.2)

The test function v is any arbitrary function in the Sobolev space V , which is defined
by V := {v ∈ H1(Ω); v = 0 on Γd}. Moreover, ε(v) := ∇v and σ(u) := D : ∇u
represent strains and stresses, g represents the traction forces along the boundary
Γn and q denotes the body forces in the domain Ω. The Galerkin weak form of a
linear problem can also be written as

B(u, v) = F (Γn)(v) + F (Ω)(v) = F (v), ∀v ∈ V (2.3)

where the term B(·, ·) is a symmetric positive-definite bilinear form, corresponding

to the left-hand-side of Eq. (2.2), while F (Γn) and F (Ω) refer to the first and the
second terms of the right-hand-side, respectively.

In order to approximate the continuous variable u, a numerical computation
must be performed. The discretised system of equations

B(u(h,p), v(h,p)) = F (v(h,p)), ∀v(h,p) ∈ V(h,p) (2.4)

is solved in the finite element space V(h,p), where V(h,p) ⊂ V . The subscripts h and
p denote the finite element analysis using element size h and polynomial order p.
As a result, the solution u(h,p) is an approximation to the exact function, u. The ap-
proximate solution u(h,p) ∈ V(h,p) and the test function v(h,p) ∈ V(h,p) are discretised
as

u(h,p) =
n

∑
i=1

φi ai =φ · a, v(h,p) =
n

∑
j=1

ψ j c j = ψ · c (2.5)

via the use of basis functions (also known as shape functions)φi andψ j of the trial
(unknown solution) and the test functions, respectively. Substituting the discretised
fields u(h,p) and v(h,p) back into Eq. (2.4) results in a system of discretised equations

n

∑
j=1

Ki ja j = f i , i = 1, 2, .., n, n := number of nodes (2.6)

where Ki j := B(φ j,ψi), f i := F (ψi), and a j denotes the approximate solutions
corresponding to the shape functionφ j. Eq. (2.6) can be rewritten in a matrix form
as

Ka = f (2.7)

where K denotes the stiffness matrix of the linear system, a represents the vector
containing the unknowns and f denotes the force vector.
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Figure 2.1 Complete 2D polynomial terms described by Pascal’s triangle [18].

2.2 Element-based finite element shape functions

The finite element shape functions φ are characterised by two basic features, as sug-
gested in [105], which are the continuity requirement∗ and the so-called partition-
of-unity property. The latter property suggests that

n

∑
i=1

φi(x) = 1, ∀x ∈ Ω (2.8)

allowing the description of rigid body motions. Importantly, the shape functions
should not permit straining of an element when nodal displacements are caused by
a rigid body displacement.

The finite element interpolation is fundamentally set in a piecewise polynomial
format. To ensure the convergence of the approximation, it has been suggested that
the shape functions should contain complete polynomials, which can be described
in the Pascal triangle shown in Figure 2.1†. Basically, there are two categories
of polynomial-based interpolation functions, namely the non-hierarchical functions
and the hierarchical functions. The key difference between the two schemes is how
the polynomial bases are upgraded to higher-order levels. While higher-order
shape functions in the non-hierarchical scheme are completely different from the
lower-order bases, the hierarchical scheme hierarchically adds the higher-order
contributions and retains the lower-order bases without any reformulation. Details
of the two versions will be described in this section.

∗The differential equations studied here are all second-order. Hence, C0-continuity is required (that is,
interelement continuity of the unknowns but not of derivatives of the unknowns).

†The quadrilateral elements referred to in Figure 2.1 are the so-called Lagrangian elements. The quadri-
lateral serendipity elements use a subset of the Lagrangian elements’ polynomials.
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Figure 2.2 One dimensional shape functions for a non-hierarchical element.

2.2.1 Non-hierarchical (classical) shape functions

The classical finite element approach employs the so-called Lagrange polynomials
introducing the local interpolation function by prescribing values at nodal points.
The approach is a direct extension of the classical Lagrange interpolation. The inter-
polation is based on fitting values at nodal points. For one-dimensional problems,
the shape functions containing polynomials of degree p are of the general form

φ
(1D,p)
i (ξ) =

p

∏
j=1

(ξ −ξ j)

p

∏
j=1;i 6= j

(ξi −ξ j)

(2.9)

where ξi, i = 1, 2, ..., p + 1, denotes a set of nodal coordinates in the finite element
model. With some manipulations, the one-dimensional functions can be extended
to generate higher-dimensional functions such as 2D quadrilateral and 3D brick
elements‡.

The computation of the shape functions in the given form obviously requires the
reconstruction of the shape functions once it is upgraded to higher orders, which
implies that the stiffness matrix must be completely recomputed. As our mesh

‡It is noted here that the shape functions for triangular and pyramid elements can also be formed differ-
ently, in terms of area coordinates or barycentric coordinates. (See, for example, [93].)
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Figure 2.3 One dimensional shape functions for a hierarchical element based on Legendre polynomials.

adaptive technique includes p-adaptivity, having to recompute all stiffness matrix
components everytime the mesh is upgraded can be an unpreferable feature.

2.2.2 Hierarchical shape functions

Unlike in the classical version, higher-order shape functions can be extended by
adding an extra set of functions while the existing functions are preserved, i.e. span

of φ
(p)
i is contained in span of φ

(p+1)
i , in the hierarchical approach. Some exam-

ples of hierarchical interpolations are those based on Legendre polynomials (for ex-
ample, [93]), Chebychev polynomials (for example, [98]) and Hermite polynomials [61].
Also, Lagrange shape functions can be reformulated in the hierarchical form (for
example, [27]), where the hierarchical degrees of freedom can be referred to as tan-
gential derivatives of various orders at the midside nodes.

In this work, we focus on the use of Legendre polynomials since they possess or-
thogonality implying no linear dependence between the polynomial functions [105]
and, hence, a sparse data structure as compared to the use of classical shape func-
tions. The Legendre basis also provides consistent element conditioning number
when the polynomial order is increased, thus leading to a smaller numerical round-
off error and a faster convergence in nonlinear analysis, as compared to other
bases [35].

The Legendre interpolation function is based on the Legendre polynomials,
which originally are solutions to Legendre’s differential equations. The polynomial
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of degree p may be expressed using Rodrigue’s formula

Pp(ξ) = (2p p!)−1 dp

dξ p

[

(ξ2 − 1)p
]

. (2.10)

In addition to the standard linear shape functions (vertex modes), the hierarchical
enrichment including edge and internal modes are defined in the interval −1 ≤
ξ ≤ 1 as

φ
1D,p
i (ξ) :=

√

2p − 1

2

∫ ξ

−1
Pp−1(t) dt =

1
√

2(2p − 1)

[
Pp(ξ) − Pp−2(ξ)

]
(2.11)

for p ≥ 2. The main difference between the standard finite element shape functions
and Legendre shape functions, given in Figures 2.2 and 2.3, can be clearly observed.

Similar to the standard finite element interpolation, the higher-dimensional func-
tions are based on products of one-dimensional functions and Legendre polyno-
mials [93]. Another set of combinations, in forming the higher-dimensional set of
shape functions, has been suggested in [24], with the improvement of sparsity and
conditioning of the stiffness matrix.

2.2.3 Comparison

It is noted that, in the hierarchical approach, the higher-order degrees of freedom,
known as edge modes and internal modes (also known as bubble modes), are not
based on nodes. Figure 2.4 compares how the two interpolation schemes work.
While the non-hierarchical version (based on Lagrange polynomials) interpolates
values at nodes, the hierarchical version (here, based on Legendre polynomials)
interpolates values at the primary nodes as well as values corresponding to
additional higher-order interpolation functions. Due to such characteristic, the
following difficulties obviously emerge:

(A) Enforcement of constraints
The standard element shape functions have a superiority over the hierarchical

functions when it comes to constraint enforcement. Possessing the Kronecker delta
property (i.e. φi(x j) = δi j, where i and j refer to nodes), either external constraints
(i.e. prescribed values of primary variables) or internal constraints (i.e. the relation-
ship between different degrees of freedom) can be simply imposed at nodes. In
contrast, the enforcement of constraints in the hierarchical approach causes some
difficulties due to the obsence of nodes on edges. Direct imposition can be applied
only in case of constant or linear constraints (p ≤ 1). In that case the edge shape
functions at the corresponding edge are dropped out (i.e. zero-value prescribed)
and the linearly varying constraints are directly prescribed at nodes, which exist
only at the vertices of an element in the hierarchical approach.

In real applications, there hardly exist problems with constraints of higher-order
functions. However, if necessary, special techniques such as Lagrange multipliers
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Figure 2.4 Higher-order interpolation based on standard isoparametric element and hierarchical ele-
ment based on Legendre polynomials.

or a Penalty formulation may be applied (for example, [65]), leading to a modified
Galerkin weak form.

(B) Modelling of geometrical data

The standard p-elements are able to describe the model geometry via the higher-
order shape functions by relocating the edge nodes. A complex geometry, however,
brings some complications in the hierarchical p-version as the edge nodes do not
exist. As a remedy, geometrical mapping via linear/quadratic parametric mapping
functions [93] or the so-called blending functions [36] is suggested. The blending
functions can be flexibly selected, thus allowing an accurate representation of
various configurations.

(C) Compatibility of the hierarchical modes between adjacent elements

Due to the C0-continuity requirement, it is necessary that the interpolation func-
tions (shape functions) between adjacent elements are compatible. Using the stan-
dard shape functions, nodes at shared edges (in case of 2D problem) and shared
faces (in case of 3D problem) have identical values of the primary unknown, ensur-
ing compatibility of the corresponding shape functions. In contrast, the hierarchical
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Figure 2.5 Example of interelement compatibility of the hierarchical edge mode: (left) wrong definition
and (right) correct definition.

version does not have a physical definition of the modes at shared parts of elements.
A problem of incompatibility may occur. In Figure 2.5, we illustrate this problem
using the edge mode that is added for upgrading an element from quadratic order
to cubic order. Obviously, the edge shape functions may not be continuous over
the interelement boundary if the edge mode is separately defined for each element
(cf. Figure 2.5 (left)). This is due to the fact that asymmetric shape functions do not
appear in pairs, as in Figure 2.2. Nevertheless, with careful consideration, the edge
mode can be properly defined using an appropriate node ordering rule as in Figure
2.5 (right).

2.3 Node-based hierarchical enhancement

In the last decade, the so-called meshless methods [22] have gained popularity due
to their ability in avoiding a complicated remeshing procedures in adaptive finite
element analysis. However, they possess some limitations. For example, the mesh-
less shape functions (e.g. the moving Least-Squares (MLS) approximation [50]) are
normally much more computionally expensive than the conventional finite ele-
ment interpolation. Furthermore, most meshless shape functions do not possess
the Kronecker delta property, implying that the approximation function does not
pass through data points, thus leading to difficulties in imposing essential bound-
ary conditions [46,59,65]. And, since they are meshless, difficulties due to numerical
integration arise [22]. Instead of being specified on elements, the quadrature points
are then located in the newly created background cells, which may not conform the
domain (or subdomain) geometry. Such treatment brings about quadrature errors
and a background of integration cells destroys the meshless nature of these interpo-
lations.

By such shortcomings, attention has been concentrated on how to improve the
existing finite element models with the strong points of the meshless methods. Ex-
amples of some attempts are the cloud-based finite element method [62], the par-
tition of unity finite element method [57], the generalised finite element method
[91, 92], the special finite element method [13] and the new hierarchical finite ele-
ment method [94], which are all based on the same concept: nodal enrichment via
the partition of unity property of the finite element shape functions (cf. Eq. (2.8)).
Based on the finite element hat functions§, computational cost is much reduced as

§Due to its shape, linear finite element shape functions are also known as hat functions.
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compared to the use of MLS shape functions.
The node-based enrichment technique inherits the strong points of meshless

techniques while it retains the strong points of the FEM. For instance, the choice
of enrichment functions is much more flexible as compared to the element-based
hierarchical enrichment. The technique also concentrates hierarchical degrees of
freedom at nodes thus providing a sparser band structure of the stiffness matrix
than the one in the traditional approach. Moreover, the Kronecker delta property of
the finite element interpolation introduces straightforward imposition of boundary
constraints, while numerical integration based on element structure is automatic
and conformed to the element domains resulting in better accuracy in the numer-
ical analysis. The technique can be implemented easily and efficiently without in-
troducing any complicated arrangement of hierarchical modes at edges and inside
elements as in the element-based hierarchical p-version finite element method.

2.3.1 Enhancement technique

The enhancement of the finite element shape functions to higher-order polynomi-
als being added through the partition-of-unity property has been applied in many
studies (for example, [54, 91, 92, 94, 102]). The scheme avoids the use of additional
nodes in the domain to enrich the polynomial order of the shape function and can
be considered as a hierarchical class of p-enrichment. In particular, for the approxi-
mant u, it is written that

u =
n

∑
i=1

φi

(
mi+1

∑
j=1

ϑ
(i)
j ã

(i)
j

)

(2.12)

where, at node i, ϑ
(i)
1 = 1 always and the corresponding degree of freedom ã

(i)
1

represents rigid-body movement. The enhancement can be added hierarchically.
To reveal this property, Eq. (2.12) can also be written as

u =
n

∑
i=1

φi

(

ai +
mi

∑
j=1

γ
(i)
j b

(i)
j

)

(2.13)

which distinguishes between the existing interpolation functions (corresponding to

ai with i = 1, 2, .., n) and the additional enrichment functions (corresponding to b
(i)
j

with i = 1, 2, .., n and j = 1, 2, .., mi). Here, n and mi are number of nodes and extra
(non-unity) terms for node i, φ denotes the interpolation function of the discrete
primary unknown a, γ contains enhancement terms and b refers to a set of extra
degrees of freedom that is introduced through the partition of unity property of the
finite element shape function. Note that the interpolation of the degrees of freedom

b is not set by γ alone but rather through the productφiγ
(i)
j .

It is noted here that Eq. (2.13) is equivalent to Eq. (2.12) assuming that {ϑ} =
{γ} + {1}, i.e. span of the enrichment function ϑ(x) (cf. Eq. (2.12)) comprises one
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extra component representing rigid body movement, i.e. the unity component, in
addition to the span of the enrichment function γ(x)(cf. Eq. (2.13)).

2.3.2 Choices of polynomial enrichment functions

In order to construct a set of shape functions based on higher-order interpolation,
one should realise that the resulting shape functions should possess the complete
polynomial property to guarantee convergence of the finite element solutions and
satisfy the continuity requirement. Generally, the polynomial enrichment functions
are added through nodal shape functions, which are basically of linear order (i.e.
only vertex shape functions exist). In such a case, to obtain higher-order shape func-
tions, one may specify a set of enrichment functions at node i, according to the
polynomial terms in Pascal’s triangle (cf. Figure 2.1) as

γ
(i)
(1→2)

= {ξ2
i ,ξiηi , η

2
i } (2.14)

γ
(i)
(1→3)

= {ξ2
i ,ξiηi , η

2
i ,ξ3

i ,ξ2
i ηi ,ξiη

2
i , η3

i } (2.15)

γ
(i)
(1→4)

= {ξ2
i ,ξiηi , η

2
i ,ξ3

i ,ξ2
i ηi ,ξiη

2
i , η3

i ,ξ4
i ,ξ3

i ηi,ξ
2
i η2

i ,ξiη
3
i , η4

i } (2.16)

to upgrade linear shape function to quadratic, cubic and quartic order, respectively.
The subscript ( j → k) here refers to an upgrade from polynomial degree j to poly-
nomial degree k, and the superscript (i) refers to the enrichment function associated
with node i. It is worth noting that the enrichment functions are added hierarchi-
cally, i.e.

γ
(i)
(1→p+1)

⊂ γ(i)
(1→p+2)

⊂ γ(i)
(1→p+3)

⊂ . . . ⊂ γ(i)
(1→p+∞)

(2.17)

As such, the resulting shape functions can be viewed as a specific type of hierarchi-
cal shape functions.

The functions ξ = ξ(x) and η = η(y) must be chosen such that the aforemen-
tioned continuity requirement is satisfied. An example is the one proposed in [94],
i.e.

ξi = (x − xi) and ηi = (y − yi) (2.18)

where x and y represents the global Cartesian coordinates of a point in the domain.
Corresponding to the enrichment at node i, xi and yi denote the global coordinates
of the nodal point. The choice represents the distance of any point to the to-be-
enriched node, providing the continuity of the enrichment functions throughout

the domain. The enrichment functions γ
(i)
j increase in magnitude with increasing

distance from the associated node i. However, the enrichment is cut off at the end
of the element edge due to the multiplication with the existing finite element shape
functionφi, which equals zero in all elements not adjacent to node i.
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In [33], the choice

ξi =
(x − xi)

hi
and ηi =

(y − yi)

hi
(2.19)

was chosen to weigh the enrichment function with hi, the diameter of the largest
finite element sharing node i. Obviously, this format provides an improved version
of the format in Eq. (2.18) as a better conditioning number of the resulting stiffness
matrix is obtained.

In addition to the enrichment functions presented above, it is also possible to se-
lect other types of polynomials such as harmonic polynomials as presented in [91]
and [57]. This set of polynomials has the advantage that its dimension grows lin-
early with polynomial order, whereas the set of full polynomials from FEM grows
quadratically.

2.4 Remarks

In this chapter, finite element shape functions have been introduced in various
forms. In spite of their non-physical meaning, the hierarchical shape functions gain
more popularity in the mesh adaptive studies as the existing shape functions are
preserved thus avoiding that the whole stiffness matrix system must be recalcu-
lated. This attractive feature facilitates p-adaptive analysis to be carried out in this
thesis.

The hierarchical enhancement of the finite element shape functions can be intro-
duced in an element-based fashion or a node-based fashion. Despite the attractive
features of the node-based hierarchical extension, one serious problem that makes
the method unattractive is linear dependence of the resulting shape functions, which
leads to unsolvability of the discretised equations. This is discussed in detail in Ap-
pendix A. Although there are some techniques to overcome such shortcoming, we
do not wish to complicate the present work unnecessarily. Therefore, in this thesis,
we will employ only the element-based hierarchical shape functions.





CHAPTER

THREE

A posteriori error estimation

An important component of finite element adaptive analysis is how to assess the
local error accurately. This error information normally gives a clue where and to
which extent some parts of the mesh should be enhanced so that the finite element
analysis can provide acceptably accurate and cost effective results. As such, the so-
called a posteriori error estimators, which approximate the actual error at the end of
the calculation step, play an important role in ensuring reliability of finite element
models. The error information, which is the focus in this research work, refers to
the error that is caused by inadequate discretisation in the finite element analysis,
and it is also known as the discretisation error.

This chapter starts with a mathematical definition of the discretisation error in
the finite element method, which is usually measured in terms of an energy norm.
Then, we address some basic ideas about the standard residual-type error estima-
tion, which later leads to the formulation of the simple error estimator used in this
research. The chapter ends with some investigations about performances and some
critical comments about the method.

3.1 Discretisation error

The discretisation error, e, is defined as

e := u − u(h,p) (3.1)

i.e. the difference between the exact solution to the mathematical model, u, and the
finite element solution, u(h,p). Here, we assume that the error that comes from the
numerical process, known as the numerical error, is marginal in comparison to the
error in the discretisation part, and thus can be neglected.

Apparently, the error e in Eq. (3.1) cannot be computed directly since the exact
solution u is generally unknown. Nevertheless, as a more refined/enriched discreti-
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sation gives a better approximation to the actual solution u, we can closely repre-
sent the actual solution u by a very fine discretisation (so-called reference mesh), via
h-extension and/or p-extension∗, for example.

The finite element solution from the refined/enriched system u(h̃, p̃), obtained

from solving the reference discretised problem

B(u(h̃, p̃), v(h̃, p̃)) = F (v(h̃, p̃)) ∀v(h̃, p̃) ∈ V(h̃, p̃) (3.2)

is now denoted as a reference to the actual solution u. As a consequence, the dis-
cretisation error, defined in Eq. (3.1), is approximated by

e ≈ u(h̃, p̃) − u(h,p) =: e(h̃, p̃) (3.3)

The approximation involved in Eq. (3.3) is sufficiently accurate because the actual
solution u is much closer to the solution from the refined system u(h̃, p̃) than to the

primary solution u(h,p).
In order to provide a proper measurement of global and elemental error, the dis-

crete error should be measured in a well-defined norm. A classical option, also em-
ployed in this contribution, is the measurement of error in an energy norm defined
as

‖e‖ :=
√

B(e, e) =
√

∑
k

Bk(e, e) =
√

∑
k

‖e‖2
k (3.4)

where the subscript k denotes the error contribution obtained from the elemental
level. The global estimation is obtained by summing up the elemental contribu-
tions. The global error measure ‖e‖ is used in consideration whether or not the finite
element solution is acceptably accurate. As well, the elemental error measure of the
element k,

‖e‖k :=
√

Bk(e, e) (3.5)

is necessary in driving the mesh adaptive process (See Chapter 5).

3.2 Standard residual-type error estimation

Basicallly, a posteriori error estimators can be categorised in two main groups
namely the recovery type and the residual type. As aforementioned in Chapter 1,
the residual-type error estimators are employed in this research. The methods, pi-
oneered by the work of Babuška and Rheinboldt [12], determine the error by cal-
culating the residual of the finite element solutions in each local space. Without

∗The mesh may be either refined (h-extension) or enriched (p-extension). It is not necessary that both
factors are enhanced to form the reference solution.
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Error indication Error estimation

Implicit estimationExplicit estimation

Local Neumann type Local Dirichlet type

Error assessment

Residual type Recovery type

Figure 3.1 Error assessment techniques in finite element analysis. Note that the double-bounded box
refers to the type used in this research.

relying on the superconvergence property of some sample points in the problem
domain as in the recovery type, the residual-type error estimators can be applied
to a wider variety of problems, including non-homogeneous higher-order interpo-
lation or even nonlinear solution control, which are in the scope of this research.

The standard residual-type error estimation can be formulated either explicitly or
implicitly. Whereas the explicit version employs the residuals in the current approx-
imation directly, the implicit version uses the residuals indirectly via a set of local
algebraic equations. Obviously, the implicit version, in comparison to the explicit
version, requires more computational effort in solving an additional set of equa-
tions. The bigger effort, however, pays for the approximate error function, which is
subsequently measured in a quantified norm. This error estimate provides more ac-
curate information than those from the explicit version that relies on the inequality
setting [4,97]. Figure 3.1 shows an overview of error assessment techniques used in
finite element analysis.

In this research, we concentrate on the implicit error estimation. The method con-
sists of three components, i.e.

• a set of error equations,

• a reference discretisation, and

• a local computational framework.

Basically, the set of error equations is formulated based on residuals in a global
computational framework. Without the known exact solutions, the residuals are
estimated by setting the reference discretisation via either h-extension, p-extension,
or any other mesh improvement approaches. Finally, the computational costs in-
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volved with the reference discretisation can be reduced importantly by replacing
the solution of a global system with the solution of a series of local problems.

Setting of error equations based on residuals

The residual-type error estimator, as its name implies, approximates the error based
on residuals, i.e. the amount by which the finite element solution fails to satisfy
pointwise the equilibrium equation in the mathematical model. The finite element
solution u(h,p) ∈ V(h,p) is obtained by solving the set of equations

B(u(h,p), v(h,p)) = F (v(h,p)) ∀v(h,p) ∈ V(h,p) (3.6)

In order to estimate the error of the finite element solution, we recall the set of
equations of the reference system†. That is,

B(u(h̃, p̃), v(h̃, p̃)) = F (v(h̃, p̃)) ∀v(h̃, p̃) ∈ V(h̃, p̃) (3.7)

is to be solved and used as a close representative to the actual model.
The difference between Eq. (3.6) and Eq. (3.7), and using Eq. (3.3) leads to a set of

error equations

B(e(h̃, p̃), v(h̃, p̃)) = Ru(v(h̃, p̃)) = F (v(h̃, p̃)) −B(u(h,p), v(h̃, p̃))

∀v(h̃, p̃) ∈ V(h̃, p̃) (3.8)

with the boundary condition that e = 0 on Γd. The residual Ru, which is based
on the primary unknown u, can be interpreted as a fictitious load by which the
approximate solution deviates from the actual solution.

Setting of local computational framework

In fact, one can estimate the error of a finite element model by comparing the fi-
nite element solutions obtained from the original mesh to those from the enhanced
mesh. This however requires a large amount of computation and makes no sense.
There is obviously little value in estimating the error of a coarse discretisation by
solving a global system of equations according to an enhanced discretisation. The
computational costs involved with the error estimation would far outweigh those
involved with solving for u(h,p), while at the same time an improved solution u(h̃, p̃)

is already provided. By virtue of u(h̃, p̃), the solution u(h,p) has become redundant,

and so has e(h̃, p̃). In contrast, an efficient calculation of e(h̃, p̃) should involve local

(rather than global) solutions of u(h̃, p̃).

Since Eq. (3.8) is defined globally, it requires a large amount of computer re-
sources. In order to avoid this, the local spaces Vk, k = 1, 2, ..., n and Vk ⊂ V ,

†Again, it is not necessary that both h and p factors are enhanced to form the reference solution. However,
at least one factor needs to be upgraded to form the reference system of equations.
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are defined and the residual-based error is computed in each local space. That is,
instead of solving Eq. (3.8), we, instead, solve a set of local equations

Bk(e(h̃, p̃), v(h̃, p̃)) = Ru
k (v(h̃, p̃)) ∀v(h̃, p̃) ∈ Vk(h̃, p̃) (3.9)

where the local residual is defined as

Ru
k (v(h̃, p̃)) = Fk(v(h̃, p̃)) −Bk(u(h,p), v(h̃, p̃)) +

∫

∂Ωk\(∂Ωk∩Γn)

∂u

∂nk
v(h̃, p̃) dΓ (3.10)

As a result from the integration by parts on each local domain, the additional
contribution, which is the last term on the right-hand side of Eq. (3.10), represents
the normal derivatives (or flux) on the interelement boundary ∂Ωk as well as on
Γd and cancels in the global system of equations. Note that the contribution of the

normal derivative on element edges on Γn, i.e.
∫

∂Ωk∩Γn

∂u

∂nk
v dΓ is included in Fk(v)

as defined earlier.
To obtain the error associated with the primary unknowns u(h,p), the local error

equations (cf. Eq. (3.9)) must be solved. It is then necessary to define a proper set
of boundary conditions of these local problems. We will address this subject in the
next section.

3.3 Boundary conditions of the local error equations

As mentioned in the last section, a key ingredient in solving local error equations is
setting the boundary conditions to be prescribed in Eq. (3.9). Taken from the global
finite element setting, the only Dirichlet boundary condition defined in each local
space Ωk ⊂ Ω is

e = 0 on ∂Ωk ∩ Γd (3.11)

This is because the primary unknown u is exactly prescribed on the Dirichlet
boundary Γd. Obviously, additional boundary conditions for the local problems are
needed.

Basically, there are two subclasses of the implicit residual error estimation, de-
pending on how the boundary conditions are defined in the local problems. While
the Neumann-type error estimation prescribes the Neumann conditions in the local
problems, the Dirichlet-type error estimation imposes the local Dirichlet conditions,
see also the overview in Figure 3.1. Some basic ideas about the two approaches will
be presented in this section.

3.3.1 Local Neumann conditions

The imposition of the non-homogeneous flux boundary conditions (local Neumann
conditions), represented by the last term of Eq. (3.10), may be set via the simple flux
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averaging technique as

∂u(h,p)

∂nk
≈
〈

∂u(h,p)

∂nk

〉

=
1

2
nk ·

{

(∇u(h,p))k + (∇u(h,p))k′

}

on ∂Ωk ∩ ∂Ωk′ (3.12)

The considered edge of an element k is shared by another (adjacent) element de-
noted as k′. The introduction of two distinct indices k and k′ allows to describe
jumps of the normal fluxes at the interelement boundary.

The simple averaging has been criticised for being ad-hoc and fails to respect
the basic requirement for the local problem to be well-posed. Some researchers [3,
48] have proposed a new modification, the so-called equilibrated flux approach by
setting the equilibration condition

Fk(v) −Bk(u(h,p), v) +
∫

∂Ωk\(∂Ωk∩Γn)

∂u

∂nk
v dΓ = 0 (3.13)

where v = 1 and v = φ are selected for zeroth-order equilibration and first-order
equilibration conditions, respectively. And with the consistency condition

∂u

∂nk
+

∂u

∂nk′
= 0 on ∂Ωk ∩ ∂Ωk′ (3.14)

the error equations are well-posed on the regular subspace and the resulting error
estimator will provide a guaranteed upper bound of the exact error.

It should be noted that imposing only Neumann boundary conditions in the lo-
cal problems is not sufficient. It is necessary to impose a proper set of Dirichlet
conditions to eliminate the zero energy modes (rigid body modes), leading to solv-
ability of the equations. Obviously, the Dirichlet conditions described in Eq.(3.11)
are not sufficient for solving the local problems that are not attached to the Dirichlet
boundary. To overcome this problem, one may reformulate the local problem over
a reduced subspace where the zero energy modes have been factored out [1, 2, 16].

3.3.2 Local Dirichlet conditions

Modelling of the equilibrated residual fluxes at the interelement boundaries gen-
erally requires high computational effort. To avoid such complicated computation,
the local Neumann boundary conditions in conventional element residual method
may be replaced by a set of local Dirichlet conditions. The method approximates lo-
cal errors without the necessity to compute the flux jump, thus the computational
cost can be significantly diminished. However, this assumption leads to a lower
bound estimate that is often not of a good quality.

An improvement of the approach has been proposed by Dı́ez et al. [29]. In their
approach, an additional set of local error equations is introduced to help improving
quality of the error estimate computed based on the elemental basis. The error func-
tion can be approximated by solving a set of local problems whose spaces overlap.
These local (patch) spaces must be selected in such a way that
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(I) Internal residual estimate (2) Boundary jump recovery

Figure 3.2 Two steps of residual-based error computation in the local Dirichlet-type framework based
on local h-refinement [29].

• Ω =
⋃

k Ω
pat
k , i.e. all patches together cover the whole problem domain, and

• Ω
pat
i ∩Ω

pat
j 6= ∅, i.e. a patch Ω

pat
i must overlap partly at least one other patch

Ω
pat
j that is in the neighbourhood. The overlapping of patches depends on

how the reference mesh is chosen.

For a local space (or patch) Ω
pat
k , a set of homogeneous boundary condi-

tions is defined by suppressing error components as zero on the local boundary

∂Ω
pat
k \(∂Ω

pat
k ∩ Γn). The error estimate can then be obtained by finding ξ ∈ V ∗

k

where V∗
k := {v ∈ H1(Ω

pat
k );ξ = 0 on Γd ∪ ∂Ω

pat
k } from

Bk(ξ(h̃, p̃), v(h̃, p̃)) = Ru
k (v(h̃, p̃)) = Fk(v(h̃, p̃))− Bk(u(h,p), v(h̃, p̃))

∀v(h̃, p̃) ∈ Vk(h̃, p̃) (3.15)

temporarily neglecting the last term appearing in Eq.(3.10). The space Vk =

supp(Ω
pat
k ), thus Vk ⊂ V . In the original work [29], this first estimate ξ to e(h̃, p̃)

is computed elementwise (i.e. the local space is based on one element) and denoted
as the interior estimate.

Since the estimated error is suppressed to zero on the inter-patch boundaries,
the obtained error solution is a poor approximation to the exact error. It is then
necessary to enrich the first patch solutions by a set of patches overlapping the local
space. Let Λl be the local space that overlaps Ωk, find another error estimate η ∈
U ∗

l , where U ∗
l := {v ∈ H1(Λ

pat
l );η = 0 on Γd ∪ ∂Λ

pat
l } from another boundary

value problem

Bl(η(h̃, p̃), v(h̃, p̃)) = Ru
l (v(h̃, p̃)) = Fl(v(h̃, p̃)) −Bl(u(h,p), v(h̃, p̃))

∀v(h̃, p̃) ∈ Ul(h̃, p̃) (3.16)

The second estimate η is based on the collection of parts in surrounding elements
to form each patch overlapping the element domain (thus interior domain) and is
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( A )

( B )

( C )

Figure 3.3 How the local Dirichlet method works: (A) interior estimation ξ , (B) patch estimation before
orthogonality setting η and (C) patch estimation after the orthogonality setting η∗. The exact errors and
the estimated errors are shown in solid and dashed lines, respectively. The filled circles denote nodal
points in the one-dimensional problem domain.

called the patch estimate [29]. Similar to the interior estimate ξ, the local errors on
∂Λl\(∂Λl ∩ Γn) are prescribed to zero. This patch estimate provides information of
the error caused by the residual fluxes on the elemental boundaries. See Figure 3.2
for an illustration of the two-step error computation.

To combine components from different patches, the contributions ξ and η must
be adjusted to satisfy the Galerkin orthogonality property, that is Bl(ξ(h̃, p̃),η(h̃, p̃)) =

0 on Λl . Retrieving the interior estimate which is projected onto Λl , the patch solu-
tion in each Λl can be recalculated as

η∗
(h̃, p̃)

= η(h̃, p̃) −
Bl(η(h̃, p̃) ,ξ∗

(h̃, p̃)
)

Bl(ξ
∗
(h̃, p̃)

,ξ∗
(h̃, p̃)

)
ξ∗

(h̃, p̃)
in Ωl (3.17)

whereξ∗ is the projection of the interior estimate ξ on Λl which is adjusted as zero
on ∂Λl\(∂Λl ∩ Γn) by

B∗
l (ξ∗

(h̃, p̃)
, v(h̃, p̃)) = Bl(ξ(h̃, p̃) , v(h̃, p̃)) ∀v(h̃, p̃) ∈ Ul(h̃, p̃) (3.18)

where B∗
l (·, ·) represents Bl(·, ·) with the prescription of zero error on ∂Λl\(∂Λl ∩

Γn). The use ofξ∗ instead ofξ in Eq. (3.17) ensures continuity of the estimated error
function after setting the orthogonality to the interior values, which subsequently
guarantees the continuity of the complete solution‡ .

‡It should be noted that the orthogonality setting procedure unfortunately causes some blind points on
the Neumann’s boundary where two patches meet. At those points on Γn, the estimation of zero error is
obtained.
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For each patch of elements

1. Retrieve elements in the patch:

a) subdivide the patch/enrich the shape functions,

b) compute the refined/enriched stiffness matrix Kel
(h̃, p̃)

,

c) compute the refined/enriched load vector f el
(h̃, p̃)

,

d) interpolate solution vectors to the refined/enriched system
uel

interp, and

e) add to the patch stiffness matrix K
pat

(h̃, p̃)
, patch load vector

f
pat

(h̃, p̃)
and patch solution vector u

pat
interp.

2. Impose the error boundary conditions for the patch problem, i.e.
epat = 0 on ∂Ω

pat\(Ωpat ∪ Γn).

3. Solve for patch error vector epat.

4. Retrieve existing patch error vector epat,0.

5. Set the orthogonality of the existing error vector and the new error

vector e
pat
orth.

6. Add the orthogonal new error vector to the global numbering

eglob,0 = eglob,0 + e
pat
orth.

7. Continue to next patch.

Table 3.1 Flow diagram for the error estimation [29].

By adding the two components, the complete estimate becomes

e(h̃, p̃) ≈ ξ(h̃, p̃) + η∗
(h̃, p̃)

(3.19)

which shows the automatic recovery of the errors along the inter-patch boundaries.

The estimated error can be measured in the energy norm by

‖e(h̃, p̃)‖2
k ≈ ‖ξ (h̃, p̃)‖2

k + ‖η∗
(h̃, p̃)

‖2
k (3.20)

and summed up to get the global error in the energy norm (cf. Eq. (3.4)). Figure 3.3
shows how this local Dirichlet error estimation works in one-dimensional setting.
The method can be implemented following the flow chart suggested in Table 3.1.
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3.4 Error estimation for non-uniform interpolation

In the original version [29], two sets of local problems are formulated. First, the
interior residual-based error is computed by setting zero error on the edge of the
elements which do not belong to the Neumann’s boundary. The second set is to
recover the residual on the boundary of the element by setting the patches, based
on nodes or edges, overlapping the neighbouring elements.

Originally, the local Dirichlet type error estimator was formulated and success-
fully applied with a local h-extension§. To provide a proper reference discretisation
in the case of non-uniform interpolation, a p-extension is more suitable. Instead of
subdividing each local space (element), the degree of polynomial interpolation (p)
is upgraded to one higher order (p + 1). The error with respect to the reference
mesh, in comparison to the actual error, is illustrated in Figure 3.4.

Here, we have implemented two error estimators for use with non-uniform in-
terpolation, i.e.

• based on the element-based hierarchical enhancement (cf. Section 2.2), and

• based on the node-based hierarchical enhancement (cf. Section 2.3).

We have found that, although the node-based approach [67] facilitates the im-
plementation, it requires a tedious element selection procedure to avoid linear de-
pendency problems usually found in the local model containing a small number
of elements. As a consequence, this can diminish the robustness of the nodal p-
enrichment method since the required minimum number of elements may keep
growing if the polynomial order grows (see also Appendix A). The element-based
approach [68], however, does not show such a shortcoming. For this reason, our
p-version error estimation will only be based on the element-based p-extension.

One problem remains. Unlike the h-version error estimation [29], it is impossible
to use a portion of a certain finite element within a patch. Instead, the whole element
must be taken. Automatically set based on each node, a patch can be constructed by
a set of surrounding elements, as illustrated in Figures 3.5 and 3.6. By this scheme,
the global number of patches is fixed by the number of nodes. Each element is en-
riched by the number of patches that corresponds to the element type. For instance,
contributions from three patches are combined to recover errors in a linear triangu-
lar element and contributions from four patches are used for a bilinear quadrilateral
element.

3.5 Error assessment in nonlinear analysis

It has been proven that the Dirichlet-type error estimator [29] can be easily inte-
grated in a conventional finite element program and it has been successfully ap-
plied to linear as well as nonlinear problems. In [28,42,78], the estimator has shown

§Note that h-version and p-version refer here to the error estimation procedure, not to a possible global
enhancement of the discretisation that may follow the error estimation.
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Figure 3.4 Reference error and actual error in the local p-enrichment scheme: the reference for linear
elements (left) and for quadratic elements (right).

h−extension

p−extension

Figure 3.5 Reference mesh in the framework of h- and p- extensions for the problem with non-uniform
higher-order elements. The short lines on element edges denote the edge modes and the square symbol
denotes the internal mode.

Figure 3.6 Node-based patches for error estimation based on local p-enrichment.
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to provide a good lower-bound estimate in problems that exhibit softening either in
the viscoplastic setting or in the nonlocal damage setting.

In nonlinear analysis, B(·, ·) is a nonlinear form. As such, the Newton-Raphson
iterative procedure is generally applied. Furthermore, the load is normally applied
in a number of increments. Within an incremental-iterative scheme, solution of a
nonlinear problem pertains to the solution of a sequence of linear problems. At the
computational step (time step) t − 1 to t, we can write the solution of the linearised
problem as

Btang(∆u(h,p), v(h,p))|(t−1:t) = ∆F (v(h,p))|(t−1:t) (3.21)

The correction based on nonlinear solution residuals is formed as

Btang(δu
(i)
(h,p)

, v(h,p))|(t) = F (v(h,p))|(t) −B(u
(i−1)
(h,p)

, v(h,p))|(t) (3.22)

where i = 1, 2, ..,number of iterations and u(h,p) is updated after each iteration

u(h,p)|(t) = u(h,p)|(t−1) + ∆u(h,p)|(t−1:t) + ∑
i

δu
(i)
(h,p)

|(t) (3.23)

Upon convergence, at the end of a loading step, the error according to the introduc-
tion of Newton-Raphson procedure approaches zero, which implies

F (v(h,p))|(t) ≈ B(u(h,p), v(h,p))|(t) (3.24)

That is to say, the external force (i.e. the left-hand side of Eq. (3.24)) is at this
stage balanced with the internal force (i.e. the right-hand side of Eq. (3.24)). At this
equilibrium stage, we assume that the error from the nonlinear solution control is
marginal. However, the discretisation error still needs to be measured. Again, the
discretisation error is estimated by upgrading the existing discretisation and the
upgraded discretisation is referred to as the reference mesh.

The discretisation error equation in nonlinear analysis can be formulated as

Btang(δe
(i)

(h̃, p̃)
, v(h̃, p̃))|(t) = F (v(h̃, p̃))|(t) −B(u

(i−1)
(h,p)

, v(h̃, p̃))|(t) (3.25)

where u
(i)
(h,p)

is updated during the iteration

u
(i)
(h,p)

|(t) = u
(i−1)
(h,p)

|(t) + ∑
i

δe
(i)

(h̃, p̃)
|(t) (3.26)

and the error is accumulated as

e(h̃, p̃)|(t) = ∑
i

δe
(i)

(h̃, p̃)
|(t) (3.27)

The error computation is terminated as the tolerance is reached, that is, δe ≈ 0. For
simplicity, we compute our error quantity only once at the end of each computa-
tional step in this study, as it is assumed that the error quantity is much smaller
than the unknown itself.
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3.6 Some implementational aspects

3.6.1 Solution mapping

Discretising the continuous test function v with the finite element shape functions,
the error can be obtained by solving the local discretised equations

Bk(e(h̃, p̃),φ(h̃, p̃)) = Fk(φ(h̃, p̃)) −Bk(u(h,p),φ(h̃, p̃)) (3.28)

which may be better known in matrix form

K
(k)

(h̃, p̃)
e

(k)

(h̃, p̃)
= f

(k)

(h̃, p̃)
− Ǩ

(k)

(h̃, p̃)
a

(k)
(h,p)

(3.29)

where

K
(k)

(h̃, p̃)
:= Bk(φ(h̃, p̃),φ(h̃, p̃)) =

∫

Ωk

(∇φ(h̃, p̃)) : D : (∇φ(h̃, p̃)) dΩk (3.30)

f
(k)

(h̃, p̃)
:= Fk(φ(h̃, p̃)) =

∫

Ωk

φ(h̃, p̃) · q dΩk +
∫

Γn∩∂Ωk

φ(h̃, p̃) · g dΩk (3.31)

and

Ǩ
(k)

(h̃, p̃)
:= Bk(φ(h,p),φ(h̃, p̃)) =

∫

Ωk

(∇φ(h̃, p̃)) : D : (∇φ(h,p)) dΩk (3.32)

Alternatively, to make use of the existing stiffness matrix K for error computation,
one can use an equivalent form as

K
(k)

(h̃, p̃)
e

(k)

(h̃, p̃)
= f

(k)

(h̃, p̃)
− K

(k)

(h̃, p̃)
ǎ

(k)

(h̃, p̃)
(3.33)

where ǎ
(k)

(h̃, p̃)
is interpolated using the original shape functions φ(h,p) that corre-

spond to the new set of nodal positions x(h̃, p̃) in the enriched local problem, yield-

ing

ǔ
(k)

(h̃, p̃)
:=φ(h,p)(x(h̃, p̃)) · a

(k)
(h,p)

(3.34)

The form in Eq. (3.33) is better than that in Eq. (3.29) in terms of data storage. Also,
computation of another integral for a modified stiffness matrix costs more than
interpolation of the displacement field u. However, the form in Eq. (3.29) provides
more flexibility in selecting the reference mesh. For the hierarchical approach, use
of the form in Eq. (3.33) is natural. This is because V(h,p) ∈ V(h̃, p̃), i.e. the existing

shape functions are preserved and completely separate themselves from the set
of additional degrees of freedom. Therefore, at the additional degrees of freedom,
a zero contribution is simply added to form the interpolated set of the primary

unknowns ǎ
(k)

(h̃, p̃)
.
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Figure 3.7 Examples of patch selection in existence of hanging nodes.

3.6.2 Irregular element connectivity

The requirement of overlapping patches may complicate the patch selection pro-
cess. An example is when hanging nodes exist. In such a case, the finite element
interpolation requires special constraints at the hanging nodes so that the shape
functions over the irregular partitioning are compatible.

It is obvious in the original h-version, where a patch consists of a part of each
element in the neighbourhood, that it is merely impossible to obtain the patching
scheme described in Figure 3.2. However, as an alternative, the patches which con-
stitute all neighbouring elements (as in the p-version, cf. Figure 3.6) may be selected
to include all involved parent-child relations (cf. Figure 3.7), i.e. the local problems
have to allow the element connecting to the hanging node to be in the part as well.

3.7 Performance analyses

One-dimensional problem

The first numerical example is a one-dimensional problem described by the ordi-
nary differential equation

−d2u

dx2
(x) = 6x2 − 3x (3.35)

in Ω =]0, 1[ and the Dirichlet boundary conditions are prescribed as u(0) = u(1) =
0 (see also Figure 1.1). The analytical solution for this problem is

u(x) =
(x3 − x4)

2
(3.36)

In order to investigate performances of the error estimator, we start with measur-
ing the capability of the local p-version in estimating the error in linear elements, in
comparison with the local h-version. In this problem, each patch is selected based
on one element, and, for the same reason as in [29], we assume that there exist only
interior residuals due to the superconvergence property of the problem.

In Figure 3.8, the local reference discretisation is varied from order 2 to order 6.
Based on h-extension, this means that the patch is subdivided into 2 to 6 subele-
ments. On the other hand, in the p-scheme, the order of interpolation is varied from
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Figure 3.8 Distribution of local effectivity index in the 1D problem with a 10-element discretisation,
based on h-version (left) and p-version (right) error estimates and varying order of local refinement
from 2 to 6.

p = 2 (quadratic) to p = 6 (hexic) interpolations. The quality of the estimates is
measured through an effectivity index, which is defined as

θe :=
‖e(h̃, p̃)‖

‖e‖ (3.37)

i.e. the ratio of the estimated and the exact error, e := u − u(h,p), measured in the
energy norm.

In Figure 3.8, the high effectivity index in all elements in the local p-version, es-
pecially when the local enrichment order is higher than two, reveals that the local
p-version performs better than the local h-version. This is partly due to the fact
that the exact solution is in the polynomial form and thus the higher-order polyno-
mial interpolation can capture the solution better than the element subdivision. It
is shown in Figure 3.9 that the estimators perform better in the more refined finite
element discretisation as, at the same degree of local refinement, the local reference
discretisation provides a closer representation of the exact solution.

One can notice that in Figure 3.10, where we use an odd number of elements,
the local effectivity index appearing in the middle elements shows how poorly the
estimation performs, in both h-version and p-version, especially when applying
the second order of local refinement. The improvement in effectivity index when
going to third order local refinement is significant. Moreover, Figure 3.11 reveals
that the error estimate of the middle element can become worse as the number of
degrees of freedom increases. We observe that, at the middle point (i.e. x = 0.5), the
curvature of the solution function changes from being convex to being concave and
that should be the main reason for the poor error estimates in the element including
such a transition point. Apparently, the smaller the middle element is, the bigger the
relative effect of the curve transition is on the error estimate. However, the failure
in the local error estimation does not affect the global measurement significantly.
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Figure 3.9 The global effectivity index obtained by different orders of h- and p-local refinement schemes
in the 1D example with 2-element, 10-element and 20-element discretisations.
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Figure 3.10 Distribution of local effectivity index in the 1D problem with an 11-element discretisation,
based on h-version (left) and p-version (right) error estimates and varying order of local refinement from
2 to 6. The number of subelements is denoted as ”ns”.
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indices shown are those of the middle elements only.
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Patch test

The error estimation is now applied to a two-dimensional problem domain. The
quadratic stress patch is modelled as in Figure 3.12 (left). A patch of 1 mm × 1 mm
is modelled in the plane stress condition with Young’s modulus E = 1 MPa and
Poisson’s ratio ν = 0.25. We model this problem by setting the non-homogeneous
Dirichlet conditions of the exact solution

ux(x, y) =
x2 y

2E
+

νy3

6E
− (1 + ν)y3

3E
(3.38)

uy(x, y) = −νxy2

2E
− x3

6E
(3.39)

on the whole boundary. The finite element solution is obtained by a linear interpo-
lation.

We start our investigation with the local h-extension scheme. The error functions
plotted in Figure 3.13 apparently depend on how the patches overlap in the local
h-refinement scheme [29]. In terms of performance, Figure 3.14 (left) reveals a bet-
ter estimation and effectivity in case of all local p-enrichments. In this example, a
triangular element is subdivided into 27 subelements, adding 68 degrees of free-
dom for the elemental computation in the h-version. Conversely, a set of quadratic
polynomials is added to each element in the p-scheme, adding 3 degrees of freedom
per element. If considering a patch of maximum 6 elements, we need to solve only
38 equations in each local computation. Yet, the global error estimate based on the
local p-enrichment, in comparison to the local h-refinement, shows a closer estima-
tion to the exact error computed based on the analytical solution in Eqs. (3.38) and
(3.39).

The quadratic enrichment is, of course, not the most accurate choice for estimat-
ing the error in linear elements. It is, however, sufficient since the errors are much
smaller in comparison to the original linear interpolation. Furthermore, enriching
to a higher-order polynomial does not provide a great improvement to the error
estimation, considering the fact that the number of local equations is greatly in-
creased. However, it still provides the possibility to set the local reference solutions

y

x 1.0

4.0

p = 0.2

Figure 3.12 The patch test (left) and the disk test (right).
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Figure 3.13 The estimated and exact error functions in x- and y-directions of the quadratic patch test.
The mesh (thick line) and the overlapping patches (thin line) are shown on the left.

from higher-order polynomials, if highly accurate error solutions are necessary. In
Figure 3.14 (right), the global error estimates based on different orders of interpo-
lation are compared.

Before moving further to investigate the performance of error estimation in
higher-order elements, let us consider the actual error trend of the quadratic stress
patch test, as shown in Figure 3.15. Evidently, the exact solution can be obtained by
applying cubic interpolation in the finite element modelling, but not by the same
number of equations in the element subdivision scheme. Comparing the same num-
ber of degrees of freedom, the polynomial enrichment shows a more efficient trend.
For this reason, the local p-enrichment scheme is more efficient than the local h-
subdivision. However, if cubic polynomials, which represent the exact solution, are
employed, why can the estimator not exactly predict the actual error? (See Figure
3.14 (right)).

To provide an explanation, we refer back to the basic concept in Subsection 3.3.2,
i.e. the error is prescribed as zero on ∂Ωk\(∂Ωk ∩ Γn). This means, the error on
the boundary, which is linearly-interpolated, is assumed null, while the real error
should in fact be cubically-interpolated. A good proof for this point is shown by the
local error plot in Figure 3.16, where the estimated and the actual error functions
along the boundary differ. Based on this interpretation, the estimator can never
recover the exact error unless the primary solution on the boundary contains the
polynomial order that interpolates the exact solution.

We investigate further the error estimate in higher-order elements. Following the
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Figure 3.14 Comparison of estimated error in energy norm by different local enrichment schemes in
the quadratic stress patch test.
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Figure 3.15 Convergence analysis of quadratic stress patch problem based on global h-refinement and
global p-enrichment.

same strategy, a set of higher-order terms is added for each displacement mode. As
mentioned earlier, for each polynomial order of the displacements, the error is esti-
mated with one higher polynomial order. The quadratic stress patch is again tested
and the results are shown in Table 3.2, where the global performance is measured
in terms of the effectivity index. As shown, the effectivity index is greatly reduced
when the element polynomial order increases. This is not a surprising phenomenon
in this problem, which consists of non-homogeneous Dirichlet boundary condi-
tions. In this case, it is rather difficult to directly impose the exact displacements
along the boundary. The higher-order polynomials along the boundary edges are
dropped out and the global boundary conditions are, instead, represented by lin-
ear interpolation. Obviously, the reference model, in this case, cannot resemble the
actual model, thus leading to failure of the error estimation.

If the prescribed displacements are imposed exactly, we should be able to obtain
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Estimated Exact

Figure 3.16 Comparison between the estimated error function(left) and the exact error function(right),
based on analytical solutions, in the x-(top) and y-(bottom) direction of the linearly-interpolated patch.

Estimated Exact

Figure 3.17 Comparison between the estimated error function(left) and the exact error function(right),
based on analytical solutions, in the x-(top) and y-(bottom) direction of the quadratically-interpolated
patch.
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a good error estimate in the patch problem. The proper enforcement of boundary
conditions is made possible by adding Lagrange multipliers or penalty terms in the
variational formulation. As a result, Eq. (3.6) is replaced by

B∗(u(h,p), v(h,p)) = L(v(h,p)) ∀v(h,p) ∈ V(h,p) (3.40)

where B∗(·, ·) is equivalent to the original B(·, ·), further including the already pre-
scribed Dirichlet boundary conditions. The displacements on the boundary edges
can then be properly imposed. As a consequence, the error estimation with penalty
functions provides a better estimate than the error estimation with the direct impo-
sition model, as shown in Table 3.3. The errors are better estimated in the higher-
order elements because, firstly, the reference model contains a better solution, i.e.
the reference error becomes closer to zero. Secondly, the errors on the global Dirich-
let boundary become closer to zero, thus closer to the basic assumption of this error
estimation.

Figures 3.16 and 3.17 present the local error distribution for the 8-element patch.
The comparison between the estimated errors (left) and the actual errors (right)
yields very similar profiles, especially in the case of higher-order elements. It can

model DOFs reference ‖e‖ ‖e‖ex
θe

p = 1 18 p = 2 0.1885 0.2223 84.8%
p = 2 50 p = 3 0.0522 0.1176 44.4%
p = 3 98 p = 4 0.0199 0.1051 18.9%

Table 3.2 Global error in energy norm obtained in quadratic stress patch test. Dirichlet boundary con-
ditions are imposed by direct imposition scheme in the standard p-finite element modelling.

model DOFs reference ‖e‖ ‖e‖ex
θe

p = 1 18 p = 2 0.1885 0.2223 84.8%
p = 2 50 p = 3 0.0234 0.0249 94.0%
p = 3 98 p = 4 0.0000 0.0000 100.0%

Table 3.3 Global error in energy norm obtained in quadratic stress patch test. Dirichlet boundary con-
ditions are imposed by penalty formulation in the standard p-finite element modelling.

model DOFs reference ‖e‖loc ‖e‖glob

p = 1 50 p = 2 0.0872 0.0897
p = 2 162 p = 3 0.0176 0.0176
p = 3 338 p = 4 0.0101 0.0101
p = 4 578 p = 5 0.0087 0.0087

Table 3.4 Global error in energy norm obtained in circular disk problem.
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be seen that, since the displacements are prescribed along the whole domain, the
errors are forced to zero. This, of course, affects the error distributions in the bound-
ary zones. The error contour in the case of quadratic elements in Figure 3.17 ap-
parently reveals a closer estimate to the actual error distribution. Even better, the
estimate in the cubic elements shows zero error in the whole domain, which is the
same as the exact error plot.

Disk problem

Finally, consider a disk being pulled uniformly at the outer boundary, as shown in
Figure 3.12 (right). We neglect the discretisation error due to the geometrical mod-
elling by assuming that the disk is not circular but composed of linear boundary
segments. In this example, we would like to study the effect of the missing global
part in local error estimation scheme. To this end, we compare the estimated error
(‖e‖loc) and the error obtained by the difference between two sets of global finite
element solutions, the original and the reference, (‖e‖glob), defined as

‖e‖glob =





∫

Ω

(ε(p+1) −ε(p))
T : D : (ε(p+1) −ε(p)) dΩ





1
2

(3.41)

where ε(p) and ε(p+1) represent the set of strain components computed using (p)-

order and (p + 1)-order interpolation, respectively. In other words, Eq. (3.41) pro-
vides the error computed via the global stiffness matrix, and this reference error is
used to calibrate the locally computed error estimate.

The global results in Table 3.4 exhibit good agreement between the errors based
on the local computation ‖e‖loc and those based on the global computation ‖e‖glob,
especially in the case with higher-order elements. This suggests that, in this prob-
lem, error solutions from a coarse mesh may be sufficiently recovered by the local
computation, which is definitely much cheaper than the global computation un-
derlying Eq. (3.41). Also, this implies that the missing global part is of a marginal
magnitude. The local contour plots in Figure 3.18 again show a good agreement.

It should be noted here that, in order to obtain a good error estimate, a refined lo-
cal patch must resemble the (reference) refined global system as much as possible.
For example, a circular disk can be modelled by either prescribing displacements or
prescribing forces along its outer boundary. The displacement control model (Fig-
ure 3.19 (B)) provides different error patterns than the force control model (Figure
3.19 (C)), since we assume exact displacements along the global Dirichlet boundary,
i.e. e(x) = 0, ∀x ∈ Γd. This means, displacements or forces must be correctly pre-
scribed on the local boundary and must resemble the real globally-refined model.
In this example, if one fails to correctly prescribe the interpolated forces along the
outer boundary, instead of Figure 3.19(C), an obviously wrong estimation can be
obtained, as shown in Figure 3.19 (D).
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Estimated Reference

Figure 3.18 Comparison between the estimated error function(left) and the reference error func-
tion(right), based on solutions from a higher-order interpolation scheme, in the x-direction of the cir-
cular disk. The polynomial basis is varied from p = 1 to p = 3 as shown in uppermost to lowermost
subfigures.
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Figure 3.19 Functions of error in x-displacement of the circular disk problem: (A) expected error, (B)
estimated error in the prescribed displacement model, (C) estimated error based on the prescribed force
model and (D) estimated error based on prescribed force model (improper modelling).

3.8 Remarks

In this chapter, the error estimator to be used in this thesis has been presented. The
method, based on enhancing each local domain with a higher-order polynomial in-
terpolation, has shown a good performance in estimating the error. Even then, the
quality of the error estimate depends on the finite element discretisation. The error
estimate of the element where there is a change of the solution curvature can be
very poor, and a sufficiently-high order of local refinement/enrichment should be
applied. It has also been found that the estimate is very sensitive to how the refer-
ence mesh is set, especially the description of the boundary conditions. Without a
correct reference discretisation, the estimated error can be far from the exact error.

The performance analyses carried out in this chapter do deliberately not include
nonlinear problems. Our intention is to examine the quality of our p-version error
estimator (cf. Section 3.4) to be used throughout this research work. Thus the test
problems are chosen to be simple, as they can provide a basic understanding about
the error estimators, in implementational as well as performance aspects.



CHAPTER

FOUR

Error estimation for specific goals

In the previous chapter, we computed the error measured in the energy norm. Al-
though this gives a good indication of the overall error, it may also be relatively
insensitive to certain local values of the state variables and their accuracy. In other
words, a slight error in energy norm does not always guarantee that the local quan-
tities of interest, such as stresses or damage profile in a critical region, are suffi-
ciently accurate. For the problems where there are some specific goals in mind, es-
timation of error of such specific quantities can provide more relevant information
for the adaptive finite element process.

Therefore, in this chapter, we concentrate on estimating the error in chosen quan-
tities of interest in any local domain. At some extra cost, the so-called goal-oriented
error estimation can be set and applied at the end of any computational steps in the
finite element analysis. Techniques for the goal-oriented error measurement make
use of the concept of influence function, which in the context of error estimation in-
dicates how the discretisation error affects the specific quantity of interest. That is,
to measure such an error quantity, an additional boundary value problem needs
to be solved. This so-called dual (adjoint) problem is constructed in a dual argument
setting and makes use of Maxwell’s reciprocal theorem. Once the dual problem is
solved, the discretisation residuals can be redistributed according to the influence
function to provide a proper error measure to the selected goal quantity.

In this chapter, the above mentioned ingredients will be presented to provide an
introduction to the goal-oriented error estimation in linear and nonlinear analyses.
In addition, some error measures will be studied and selected for use in the next
chapter, which involves setting of adaptive and optimality criteria to be used in the
rest of the thesis.
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4.1 Quantities of interest

As mentioned earlier, accuracy of the conventional energy norm does not always
guarantee accuracy of a local quantity of engineering significance. Especially in
problems with some specific goals, relevant quantities must be accurately achieved.
For instance, in linear elastic fracture mechanics, the most important variable may
be the stress intensity factor, which heavily relies upon the accurate computation
of the J -integral [77] in the vicinity of the crack tip. In many occasions, we also
find that engineers would prefer to have an accurate calculation of stress in some
critical regions, rather than the accurate overall energy norm measurement. These
quantities can be considered as the quantities of interest and, hence, achieving high
accuracy of these quantities is a specific goal in finite element analysis.

Basic rules

The most crucial point of the goal-oriented error measurement is how to choose
the quantity of interest such that it can be analysed straightforwardly. Basically,
the choice depends on the model problem to be analysed and may be chosen in
the forms of domain integrals, contour integrals or pointwise quantities. Two im-
portant features of the quantity of interest to be used in a duality argument are as
follows.

• The quantity of interest must be a function of the primary unknown u, such
that it can be defined as Q(u).

It is convenient to choose the quantity of interest as an as-simple-as-possible
function of u. For instance, in linear elastic fracture analysis, it is efficient
to express the stress intensity factor K as K(u) = K(J (u)) and use the J -
integral J (u) as the quantity of interest [38, 39, 81, 82] – any error measure-
ment in J (u) can then be translated straightforwardly in error measurement
of K(u).

• Ideally, Q(u) is a linear functional; if not, one of the linearization techniques
[51, 80, 83] should be applied. Essentially, the linear functional Q(u) must be
bounded [4, 75]. The boundedness of a functional guarantees convergence of
the solution, thus providing a meaningful norm measurement.

Some examples

• Primary unknown

The simplest form of the quantity of interest is a function of the primary un-
known itself, not its derivatives. For instance, one may choose the quantity of
interest in the form

Q(u) =
∫

Ωs

ϕ(x) u(x) dΩ (4.1)
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which is the integral of the weighted primary unknown u in the local region
Ωs. Choosing such a quantity as the quantity of interest implies that we con-
trol, in the local region, the primary unknown in an averaged sense. In other
words, the quantity at each point in the selected domain Ωs may not be of
interest but the average of all is. The weight function ϕ(x) may be constant or
spatially varied.

For a pointwise measure at a point x0, where the quantity of interest

Q(u) = u(x)|x=x0 = u(x0) (4.2)

is not bounded on the space of admissible displacements (H1-space), the mol-
lification technique may be applied to slightly smear out the quantity of in-
terest in a small region surrounding the point of interest instead of the single
point itself [75]. The quantity of interest (cf. Eq. (4.2)) may then be written in
an averaged/mollified format. Considering Eq. (4.1), ϕ(x) can be chosen as
the mollifying function [75] to ensure the goal quantity of a bounded linear
functional.

• Derivatives of the primary unknown

In strength computations, it is important to ensure accuracy of the stresses in
the specific region of interest. This quantity may be infinite in some regions,
such as at the crack tip or at the re-entrant corner. Hence, the quantity of
interest in a weighted average form (in Ωs) of the stress σ(u)

Q(u) =
∫

Ωs

ϕ(x)σ(u(x)) dΩ (4.3)

may be chosen.

4.2 Setting of duality argument

Measurement of the error in a quantity of interest requires solving another set of
equations, besides those from the primal problem mentioned earlier in the previ-
ous chapters. This so-called dual or adjoint problem is different from the standard
primal problem as it is defined in terms of influence function (Green’s function),
instead of the primary unknown (e.g., displacement). Basically, the influence func-
tion measures the influence of any external loading to the local quantity of interest.
However, if the function is applied in the framework of error estimation, it is pos-
sible to determine the influence of the discretisation residuals to the quantity of
interest.
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f (xp)

u(xq; f (xp))u(xp ; f (xq))

f (xq)

Figure 4.1 Illustration of the reciprocal theorem

4.2.1 The influence function

To explain the basic idea about the dual problem, it is important to understand
what the influence function is. Let us consider the quantity of interest

Q(u) = u(xp) (4.4)

defined as the pointwise displacement at point xp. To measure the magnitude of
the displacement at xp when the system is subjected to a unit point load at xi, we
can define the value of the influence function of the quantity Q(u) at point xi as

w(xi) := u(xp; δxi
) (4.5)

i.e., the displacement at point xp subjected to a unit force at point xi, denoted as
δxi

. If there exists only one point load at xi acting on the structure, Eq. (4.4) can be
written as

Q(u) = u(xp) = f (xi) w(xi) (4.6)

where the influence function w has a dimension of length per unit force.
In order to determine the influence function at any point w(x) in a much simpler

way, the Maxwell’s reciprocal theorem may be applied. Based on the equivalent work
done, the theorem states that

”The work done by one set of forces in undergoing the corresponding displacements
caused by the second set of forces is equal to the work done by the second set of forces

in undergoing the corresponding displacements caused by the first set of forces”.

This is explained in Figure 4.1, where we can set

f (xp) u(xp; f (xq)) = f (xq) u(xq; f (xp)) (4.7)

If the forces are of a unit value, Eq. (4.7) becomes

u(xp; δxq) = u(xq; δxp) (4.8)

That is, the displacement at coordinate xp due to a unit force at coordinate xq is
equal to the displacement at coordinate xq due to a unit force at coordinate xp.
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Let us go back to our quantity of interest Q(u) = u(xp) (cf. Eq. (4.4)). Apply-
ing the reciprocal theorem to Eq. (4.5), the influence function at any point x in the
problem domain reads

w(x) = u(x; δxp) (4.9)

That implies solving the problem only once in order to obtain the influence function
of the quantity of interest Q(u).

4.2.2 The dual problem

Generally, the quantity of interest may be written in terms of the influence function,
denoted as w for a multi-dimensional problem. Subjected to a set of body forces q
and tractions g, the quantity of interest is represented in a general form

Q(u) =
∫

Ω

q · w dΩ +
∫

Γn

g · w dΓ (4.10)

Recalling the right-hand side of the primal problem (cf. Eq.(2.3)), we can write

Q(u) = F (w) = B(u, w) (4.11)

Thus the influence function w can be determined by solving the dual problem

B(v, w) = Q(v) ∀v ∈ V (4.12)

where V := {v ∈ H1(Ω); v = 0 on Γd}, and the boundary condition is set as w = 0

on Γd.

4.3 Goal-oriented error estimation

The influence function obtained from solving the dual problem (cf. Eq. (4.12)) can
be regarded as a weight function to transfer the loading to a specific quantity of in-
terest and is also known as the extractor. In this context, this loading may refer to
a contribution of the external forces as aforementioned in the previous chapter, as
well as a contribution of the discretisation residuals from the finite element compu-
tation. The latter is what we focus on in this section.

4.3.1 Setting of error in the goal quantity

As our goal is to assess the error in a specific quantity, it is necessary to give its clear
definition. Considering the quantity of interest Q(u), we can define the discretisa-
tion error of this quantity as

E := Q(u) − Q(u(h,p)) (4.13)
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global stiffness matrix

Factorisation of

global stiffness matrix

Backward substitution

for solution of primal problem

Error estimationError estimation

of primal solution of dual solution

Goal−oriented error estimation

Backward substitution

for solution of dual problem

Primal load vector Dual load vector

Figure 4.2 Goal oriented error estimation procedure.

If Q(u) is a linear functional, the error of the goal-oriented quantity can be rewritten
as

E = Q(u) − Q(u(h,p)) = Q(u − u(h,p))
= Q(e)

(4.14)

where Q(e) denotes the discretisation error of the finite element analysis (primal
problem) measured in the quantity of interest. Recalling Eq. (4.12), Q(e) can be
obtained by selecting v = e. The equation then becomes

Q(e) = B(e, w) (4.15)

which implies that the influence function acts as a weight function for distribution
of the discretization error e to the quantity Q in an energy norm measure.

In finite element analysis, Eq. (4.15) is replaced by the discretised system of equa-
tions. The quantity of the error, where e ≈ e(h̃, p̃), becomes

Q(e(h̃, p̃)) = B(e(h̃, p̃) , w(h̃, p̃))

= B(e(h̃, p̃) , w(h,p) +ǫ(h̃, p̃))

= B(e(h̃, p̃) , w(h,p)) + B(e(h̃, p̃) ,ǫ(h̃, p̃))

= B(e(h̃, p̃) ,ǫ(h̃, p̃))

(4.16)
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Here, ǫ denotes the discretisation error in the dual problem. It is worth noting that
B(e, w(h,p)) = 0, ∀w(h,p) ∈ V(h,p) in order to satisfy the Galerkin’s orthogonality
property of the finite element analysis∗.

Figure 4.2 shows the procedure in the goal-oriented error estimation. Two global
sets of equations, namely the primal and the dual problems, are solved. However,
one can utilise the factorised global stiffness matrix, which is formed during the
solving of the primal problem, also in the dual problem. This factorisation, in fact,
is the main computation in solving the global equations. Thus, back-substitution to
the factorised matrix to obtain the solution of the dual problem can save consider-
able computational time.

4.3.2 Error assessment in the dual problem

As an ingredient in the goal-oriented error estimation, the error from solving the
dual problem

ǫ := w − w(h,p) (4.17)

must be estimated. Consider the discretised dual problem

B(v(h,p), w(h,p)) = Q(v(h,p)) ∀v(h,p) ∈ V(h,p) (4.18)

the error of the discretised dual problem can be approximated as

ǫ ≈ ǫ(h̃, p̃) = w(h̃, p̃) − w(h,p) (4.19)

Similar to the error estimation in the physical (primal) framework, the error of
the dual problem can be computed from

B(v(h̃, p̃),ǫ(h̃, p̃)) = Rw(v(h̃, p̃))

= Q(v(h̃, p̃))− B(v(h̃, p̃), w(h,p)) ∀v(h̃, p̃) ∈ V(h̃, p̃)
(4.20)

Again, instead of solving the equation globally, the local error equations set as

Bk(v(h̃, p̃),ǫ(h̃, p̃)) = Qk(v(h̃, p̃))− Bk(v(h̃, p̃), w(h,p)) ∀v(h̃, p̃) ∈ Vk(h̃, p̃) (4.21)

are solved. The detailed procedure of the error estimation follows the error estima-
tion described in Subsection 3.3.2.

∗The orthogonality B(e(h̃, p̃) , w(h,p)) = 0 does not always hold, for instance, due to inexact numerical

integration. Nevertheless, the measured quantity B(e,ǫ) is still widely used as it efficiently indicates the
error in the quantity of interest.
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4.3.3 Choices of error measures in local domains

The globally-defined error quantity Q(e(h̃, p̃)) can be split into elemental contribu-

tions as

Q(e(h̃, p̃)) = ∑
k

(

Qk(e(h̃, p̃))
)

(4.22)

where

Qk(e(h̃, p̃)) = Bk(e(h̃, p̃), w(h,p)) + Bk(e(h̃, p̃),ǫ(h̃, p̃)) (4.23)

It should be noted that the first right-hand-side term of Eq. (4.23) does not neces-
sarily cancel since the Galerkin’s orthogonality property does not hold in this local
setting. Nevertheless, it has been proven that the second term can represent the
distribution of the error in the local region effectively [31].

To simplify the adaptive criteria, the non-negative value of the term is employed.
We have chosen the first measure as

E I
k := |Bk(e(h̃, p̃),ǫ(h̃, p̃))| (4.24)

which is chosen as our first alternative for representing the error in the elemental
region Ωk.

The second alternative is related to the first one by the Cauchy-Schwartz’s in-
equality†, i.e.

|Bk(e(h̃, p̃),ǫ(h̃, p̃))| ≤ ‖e(h̃, p̃)‖k‖ǫ(h̃, p̃)‖k (4.25)

leading to the local error measure [4, 31]

E I I
k := ‖e(h̃, p̃)‖k‖ǫ(h̃, p̃)‖k (4.26)

Replacing the use of Eq. (4.22), two corresponding global measures may be set by
summing up the local measures as

E I = ∑
k

E I
k (4.27)

and

E I I = ∑
k

E I I
k (4.28)

These two estimates (cf. Eq. (4.27)) can provide an easy setting for the adaptive
and optimality criteria, to be formulated in Chapter 5, as the global measures are
computed by directly summing up the local measures. The performance of both
choices will be studied later in this chapter.

†The Cauchy-Schwartz’s inequality holds if Bk(e, e) ≥ 0. In this case, the stiffness matrix must be
positive-definite.
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4.3.4 Nonlinear finite element analysis

In nonlinear finite element analysis, the Newton-Raphson iterative procedure is
generally applied to obtain the solution of the physical (primal) problem. This in-
cremental loading procedure is, however, not needed in the dual framework, as the
solution of the dual problem indicates the influence of the primal solution at a load-
ing step to the quantity of interest. In other words, a linear solution control should
be sufficient for analysing the dual problem.

During the nonlinear (primal) solution control, a set of discretised dual equations
may be set based on the tangent representation at the time of computation. The
influence function is obtained by solving

Btang(v(h,p), w(h,p)) = Q(v(h,p)) ∀v(h,p) ∈ V(h,p) (4.29)

Following the linear-elastic case, error analysis in the dual framework is then
straightforwardly carried out by means of the error equation

Btang(v(h̃, p̃) ,ǫ(h̃, p̃)) = Rw(v(h̃, p̃)) = Q(v(h̃, p̃))− Btang(v(h̃, p̃), w(h,p))

∀v(h̃, p̃) ∈ V(h̃, p̃) (4.30)

Again, the error is computed based on patches of elements and the computational
procedure follows the same procedure as described in Subsection 3.3.2.

4.4 Numerical examples

One-dimensional problem

The one-dimensional problem (cf. Section 3.7) is revisited within a goal-oriented
framework. We select our quantity of interest as

Q(u) =
∫

Ωs

ϕ(x)u(x)dx (4.31)

where Ωs denotes the subdomain of the range [x0 − r, x0 + r] around the center
point of interest x0. The weight function ϕ(x) is defined as

ϕ(x) =
(r − |x − x0|)2

r2
(4.32)

providing more attention at the finite element solution near the center point of in-
terest x0. In this problem, we select the center point of interest to be at x0 = 0.8 and
four sizes of the radius of influence to be investigated, namely r = 0.00, r = 0.05,
r = 0.10 and r = 0.20. Note that the first case with the radius of zero implies our
choice of a pointwise quantity. Figure 4.3 shows the weight functions used in all
cases, the corresponding influence functions and the finite element solution of the
physical (primal) analysis.
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Figure 4.3 Weight functions (left, ϕ(x)), the influence functions (middle, w(x)) and the exact solution
of the primary unknown (right, u(x)).
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Figure 4.4 Elemental distribution of error in goal-oriented measures, i.e. ‖e‖k‖ǫ‖k (solid line) and
|Bk(e,ǫ)| (dashed line).
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Figure 4.5 Convergence of error in primal problem (left) and dual problem (right).
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Figure 4.6 Convergence of the goal-oriented error measures.

Figure 4.4 shows the distribution of elemental errors, i.e. |Bk(e,ǫ)| and ‖e‖k‖ǫ‖k,
in the goal-oriented framework. The results agree with the Cauchy-Schwartz in-
equality that |Bk(e,ǫ)| ≤ ‖e‖k‖ǫ‖k. However, it is observed that the two quantities
get closer upon mesh refinement.

The case of r = 0 is not shown in Figure 4.4. For this pointwise quantity, the
goal-oriented error estimation does not reveal any error in the quantity of interest.
It appears that w = w(h,p) = w(h̃, p̃), and consequently B(e, w) = B(e,ǫ) = 0. In

fact, one can notice in this problem that the finite element analysis gives the exact
solution at the nodes. Thus the error of the solution u at x = 0.8 does not exist. If
we refer back to Section 3.7, the energy norm error in the primal problem appears
to be nonzero in the vicinity of x = 0.8. This goal-oriented error estimate clearly
gives the information that is more relevant to the quantity of interest which is not
pointed out in the norm measurement.

In this example, we employ linear elements in the finite element analysis. To
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capture the influence function accurately, three meshes of different discretisations
are considered. Clearly illustrated in Figure 4.4, using different mesh resolutions,
the error in the goal quantity can be very different, especially when r → 0 is applied
in the mesh of a low resolution. The global convergence plots, cf. Figures 4.5 and
4.6, also reveal slow convergence or even divergence of the estimated error when
an inadequate mesh resolution is used. Obviously, the element size should not be
smaller than the zone of interest, otherwise it will lead to a wrong representation of
the equivalent nodal load in the dual problem.

The global measures in Figure 4.6 (left) and (right) give similar trends according
to the error in energy norm (cf. Figure 4.5). However, it can be noticed that when the
mesh is sufficiently fine, the computed quantities B(e,ǫ) obtained from different
sizes of domain of interest tend to converge to the same value, unlike the case of
‖e‖‖ǫ‖. This phenomenon implies the superior control of the primal error e over
the dual error ǫ in the global computation of B(e,ǫ).

Punch problem

The Prandtl’s punch test is investigated as the second example. A rigid plate is
pushed into a confined linear elastic material. The detailed description of the model

0.25

y

x

Rigid plate

1.0

1.0

• Linear elastic material

(E = 1.0 MPa and ν = 0.25)

• Plane strain condition

• Right half modelled

Figure 4.7 The Prandtl’s punch test. Dimensions are in mm.

Mesh 0 Mesh 1 Mesh 2

Figure 4.8 Finite element meshes used in the computation. The shaded area is the area of interest Ωs.
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Figure 4.9 The displacement function and the influence functions, obtained using the reference mesh,
i.e. Mesh 2 with the quartic interpolation (p = 4).

problem is given in Figure 4.7‡. Three selected meshes, shown in Figure 4.8, are
used in this finite element analysis.

For this problem, we choose our goal quantity to be

Q(u) =
∫

Ωs

uy(x) dΩ (4.33)

where uy(x) denotes the displacement in the y direction at any point x, and the area
of interest Ωs is defined as the shaded area in Figure 4.8. A contant weight function
(cf. Eq. (4.1)) ϕ(x) = 1 in the subdomain Ωs is employed here. The solutions of the
primal problem, as well as those of the dual problem, are plotted in Figure 4.9.

Considering the elemental distribution of the estimated error in the quantity of
interest shown in Figures 4.10 and 4.11, it is observed that both elemental measures,
namely Bk(e(h̃, p̃) ,ǫ(h̃, p̃)) and ‖e(h̃, p̃)‖k ‖ǫ(h̃, p̃)‖k, are distributed in similar fashions.

Nevertheless, the latter choice gives a smoother distribution of error as clearly seen

‡Linear interpolation is not very good when ν → 0.5 because of locking problems; however in this case
of ν = 0.25, locking is not a problem.
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in the case of a linear mesh. The error distributions agree well with the profile of
the influence function shown in Figure 4.9, suggesting the residuals be distributed
towards the end point of the plate where the boundary conditions change abruptly.

In this example, both h-factor and p-factor of the finite element discretisation are
investigated. We examine three meshes, each of which is applied with four orders
of polynomial interpolation, ranging from linear interpolation (p = 1) to quartic
interpolation (p = 4). The convergence trends of the norms of the displacement, the
influence function and the quantity of interest are shown in Figure 4.12. Apparently,
all measures converge faster upon the p-extension than the h-extension. With no
surprise, the error estimates of the primal and the dual problem also follow the
same trends, as shown in Figure 4.13.

For goal-oriented convergence, four error measures, namely |B(e,ǫ)|, ‖e‖‖ǫ‖,

∑k |Bk(e,ǫ)| and ∑k(‖e‖k‖ǫ‖k), are investigated. In Figure 4.14, all error measures
show the same trends of convergence. It is found that the sums of our elemen-
tal contributions (Subfigures (c) and (d)) are suitable representations of the global
measures (Subfigures (a) and (b)). Providing straightforward contribution from the
elemental error data, we trust that the newly proposed global quantities can bring
about a good adaptive mesh discretisation.

4.5 Remarks

In this chapter, the basic concept of the goal-oriented error estimation has been pre-
sented for use in linear and nonlinear finite element analyses. The performance of
the error estimation has been examined only in linear problems as these provide
more in-depth understanding of the approach. Also, since the goal-oriented error
estimation is set based on the tangent representation at any computational step,
without involving the nonlinear counterparts, the estimation in the nonlinear anal-
ysis employs the same concept as in the linear framework. Hence, investigating the
performance of the goal-oriented error estimation in the linear setting is sufficient.

In order to set a proper error measure in the goal-oriented framework, besides
the fundamental error measures, we have also investigated two simple error mea-
sures that can be straightforwardly inserted in the adaptivity settings. It has been
found that both error measures can give a good indication of the error in the spe-
cific quantity and thus are suitable for setting of the adaptive and the optimality
criteria, which will be presented in the next chapter.
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Figure 4.10 Distribution of the elemental error measures in the framework of primal and dual problem,
as well as the goal-oriented framework. The linear interpolation in Mesh 1 is employed. Exponential
scaling is used.

Enorm

9.17E-04

6.53E-04

4.66E-04

3.32E-04

2.37E-04

1.69E-04

1.20E-04

8.56E-05

6.10E-05

4.35E-05

3.10E-05

2.21E-05

1.57E-05

1.12E-05

8.00E-06

(a) Quantity ‖e(h̃, p̃)‖k

Cnorm

1.70E-01

1.23E-01

8.84E-02

6.38E-02

4.60E-02

3.32E-02

2.39E-02

1.72E-02

1.24E-02

8.97E-03

6.47E-03

4.67E-03

3.36E-03

2.43E-03

1.75E-03

(b) Quantity ‖ǫ(h̃, p̃)‖k

Bec

1.31E-04

8.33E-05

5.31E-05

3.38E-05

2.16E-05

1.37E-05

8.75E-06

5.58E-06

3.55E-06

2.27E-06

1.44E-06

9.20E-07

5.86E-07

3.73E-07

2.38E-07

(c) Quantity |Bk(e(h̃, p̃) ,ǫ(h̃, p̃))|

ec

1.77E-04

1.11E-04

6.89E-05

4.30E-05

2.68E-05

1.67E-05

1.04E-05

6.50E-06

4.05E-06

2.53E-06

1.57E-06

9.82E-07

6.12E-07

3.82E-07

2.38E-07

(d) Quantity ‖e(h̃, p̃)‖k ‖ǫ(h̃, p̃)‖k

Figure 4.11 Distribution of the elemental error measures in the framework of primal and dual problem,
as well as the goal-oriented framework. The quadratic interpolation in Mesh 1 is employed. Exponential
scaling is used.



64 Chapter 4 Error estimation for specific goals

10 100 1000 10000

Number of degrees of freedom

0.00360

0.00370

0.00380

0.00390

0.00400

0.00410

0.00420

||
u
||

Mesh 0

Mesh 1

Mesh 2

(a) Quantity ‖u(h,p)‖

10 100 1000 10000

Number of degrees of freedom

3.50e−01

4.00e−01

4.50e−01

5.00e−01

5.50e−01

6.00e−01

||
w

||

Mesh 0

Mesh 1

Mesh 2

(b) Quantity ‖w(h,p)‖

10 100 1000 10000

Number of degrees of freedom

0.0031

0.0032

0.0033

0.0034

0.0035

0.0036

0.0037

|Q
(u

)|

Mesh 0

Mesh 1

Mesh 2

(c) Quantity |Q(u(h,p))|

Figure 4.12 Global convergence of the solutions in the primal problem, the solutions in the dual prob-
lem and the goal quantity.

10 100 1000 10000

Number of degrees of freedom

1e−04

1e−03

1e−02

||
e
||

Mesh 0

Mesh 1

Mesh 2

(a) Quantity ‖e(h̃, p̃)‖

10 100 1000 10000

Number of degrees of freedom

1e−02

1e−01

1e+00

||
e
p
s
||

Mesh 0

Mesh 1

Mesh 2

(b) Quantity ‖ǫ(h̃, p̃)‖

Figure 4.13 Energy norm of error in primal and dual problem.



4.5 Remarks 65

10 100 1000 10000

Number of degrees of freedom

1e−06

1e−05

1e−04

1e−03

|B
(e

,e
p
s
)|

Mesh 0

Mesh 1

Mesh 2

(a) Quantity |B(e(h̃, p̃),ǫ(h̃, p̃))|

10 100 1000 10000

Number of degrees of freedom

1e−06

1e−05

1e−04

1e−03

s
q
rt

(s
u
m

(|
|e

||
_
k
)*

s
u
m

(|
|e

p
s
||
_
k
))

Mesh 0

Mesh 1

Mesh 2

(b) Quantity ‖e(h̃, p̃)‖ ‖ǫ(h̃, p̃)‖

10 100 1000 10000

Number of degrees of freedom

1e−06

1e−05

1e−04

1e−03

s
u
m

(|
B

_
k
(e

,e
p
s
)|

Mesh 0

Mesh 1

Mesh 2

(c) Quantity ∑k |Bk(e(h̃, p̃)ǫ(h̃, p̃))|

10 100 1000 10000

Number of degrees of freedom

1e−06

1e−05

1e−04

1e−03

s
u
m

(|
|e

||
_
k
*|

|e
p
s
||
_
k
)

Mesh 0

Mesh 1

Mesh 2

(d) Quantity ∑k ‖e(h̃, p̃)‖k ‖ǫ(h̃, p̃)‖k
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CHAPTER

FIVE

Mesh adaptive strategies

Balancing maximum accuracy and minimum computational effort is the key theme
in mesh adaptive strategies. Clearly, one can get a very accurate result by using a
very high mesh resolution and a much enriched interpolation. This, however, leads
to a larger system of equations and consequently requires a high computational
effort. As a compromise, the mesh is considered optimally designed once it can pro-
vide an acceptably accurate result, while keeping the computational effort as low
as possible.

As the finite element solution is unknown a priori, designing an optimal mesh at
the beginning of the computation becomes a difficult if not impossible task, espe-
cially in a nonlinear analysis. An alternative to the optimal a priori mesh design is
the use of mesh adaptivity techniques that may be inserted in order to improve the
finite element solutions during the computation.

We make use of the error information described in Chapter 3 and Chapter 4,
and continue in this chapter with some criteria to consider if the finite element
mesh needs an enhancement and in which regions these enhancements should
take place. These adaptive criteria are defined for measuring the accuracy of the
finite element solution in a global sense. Besides this global criterion, its combina-
tion with the local criterion defines the problem area where the mesh should be
improved via adaptive techniques, such as mesh refinement (h-adaptivity), mesh
enrichment (p-adaptivity) and mesh gradation (r-adaptivity). Since the connectiv-
ity of element nodes is preserved in the second and the third techniques, these two
adaptive schemes simplify the adaptive process.

Another important issue to be presented in this chapter is how variables are
transferred from the previous to the new discretisation. Obviously, techniques of
variable transfer are necessary during nonlinear solution control so that the solution
path can be continued without restarting the computation. After each mesh change,
the primary unknowns as well as the state variables at the integration points must
be accurately transferred to the new system. This issue will be presented in the final
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section of this chapter.

5.1 Mesh quality and enhancement strategies

To objectively adapt the mesh, it is necessary to know to which extent the mesh
should be refined. The knowledge about a priori error estimation supplies infor-
mation about the convergence rate, i.e. how fast the error is reduced according to
changes of the finite element mesh, either by mesh refinement or mesh enrichment.

5.1.1 A priori error estimates

For a smooth solution, the error in displacement converges by order O(hp+1) and
thus the error in the first derivatives (i.e. strains and stresses) has convergence of
O(hp) [44, 93, 105]. The error in the energy norm ‖e‖, defined as the square root of
the product of stress error and strain error, is convergent in the order O(hp). Thus
the a priori error estimate for the standard (C0-continuous) finite element approxi-
mation can be described in the form

‖e‖ ≤ Chp (5.1)

where p is the polynomial order applied in the mesh, h is a characteristic size of the
element, C is a constant depending on distortion of the elements and is proportional
to the order of derivatives of the function u. It is worth noting that h is not the
real size of the elements since it must be less than one to validate the convergence
criteria. This characteristic size is generally used in a relative sense, for example, in
measurement of the desired element size with respect to the current element size.

The local error includes the element area of order O(hd), cf.

‖e‖2
k = Bk(e, e) =

∫

Ωk

(ε− εex)
TD(ε−εex) dΩk (5.2)

that is, the element area contribution to ‖e‖k is of order O(h
d
2 ). Here, d denotes the

number of spatial dimensions of the problem. Consequently, the local error con-
verges as

‖e‖k ≤ Ckh
p+ d

2
k (5.3)

In case of a non-smooth solution, the above assumptions are no longer valid [93].
In existence of singularities, the a priori estimate becomes

‖e‖ ≤ C⋆(u, p)hmin(p,q) (5.4)

where the constant C⋆ depends on the displacement and the order of interpolation.
Convergence of the finite element solutions indeed depends on the polynomial or-
der of the interpolation (p) and the solution smoothness (q > 0). The higher q, the
smoother the solution.
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5.1.2 Remarks on mesh adaptive algorithms

The a priori estimates give some clues which type of mesh enhancement should be
applied. The convergence of the solutions, as pointed out earlier, depends mainly
on the element size, the interpolation degree and the smoothness of the actual so-
lution.

In the following, we will discuss the expected performance of the adaptive tech-
niques. As aforementioned in Chapter 1, the adaptive techniques that are in our
scope include h-adaptity, p-adaptivity and r-adaptivity. The first two methods,
which are the main enhancement techniques in standard adaptive finite element
analysis, improve the solution by adding extra degrees of freedom to the system
of equations. The third method, i.e. r-adaptivity, provides mesh improvement at no
extra cost∗.

h-adaptivity

The h-extension improves the finite element solution by reducing the element size,
while keeping the interpolation at the same order. The mesh refinement increases
the local smoothness of the solution, hence it is often assumed that the smoothness
q (cf. Eq. (5.4)) has no effect on the h-convergence [93]. That is, the error converges
in the rate described in Equation 5.1.

By h-extension, one can choose either to refine the mesh elementwise (i.e., only
the problem elements are refined) or to refine the mesh totally (i.e., the whole mesh
is redesigned). Some comments for both methods are as follows.

• By hierarchical (elemental) refinement, a selected element is subdivided into
smaller sub-elements. If the subdivision is from edge to edge, there will be
some irregular connectivities between the subdivided element and some ad-
jacent elements. In existence of the so-called hanging nodes, it requires imposi-
tion of some special constraints to guarantee continuity of the finite element
solutions over the edges (where hanging nodes exist). Alternatively, one can
avoid the creation of hanging nodes by extending the subdivision to adjacent
elements and ending the subdivision at the vertex nodes. See Figure 5.1.

• By total mesh refinement, the mesh can be reconstructed totally by means
of a mesh generator. An obvious advantage of this version of h-adaptivity
over other adaptive methods is that the element size is not restricted by the
previous mesh. By the smooth solution assumptions, it is simple to redesign
the desired element size based on optimality criteria, which assemble error
information, adaptive criteria and the a priori convergence assumptions. (See
Section 5.3 for the setting of the optimality criteria.) To construct an optimally
designed mesh, both refining and coarsening of the mesh may be applied.

∗The extra cost, here, means that the number of degrees of freedom is not increased so the computational
costs involved with solving the global system of equations remain the same. It is assumed here that the
costs of designing a new finite element mesh by means of r-adaptivity are negligible.
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Original With hanging nodes Without hanging nodes

Figure 5.1 Examples of hierarchical h-adaptivity

p-adaptivity

p-adaptivity improves the mesh by enriching the degrees of interpolation without
changing mesh size and configuration. The a priori estimate defined in the last sub-
section (cf. Eq. (5.4)) implies that increasing the polynomial degrees of interpola-
tion (p-extension) is better than mesh refinement (h-extension) when the solution is
smooth (large q). On the contrary, the h-extension is more suitable in regions where
the solution becomes singular as its convergence does not depend on the smooth-
ness of the solution. It, however, depends on how well the mesh is graded. With
singularities, performance of the p-version finite element method depends on the
mesh. The performance will be much better when the mesh has been graded near
the singularity [93], increasing the local smoothness of the solution at the singular
region and allowing higher-order interpolation to work more effectively. Its combi-
nation to the h-adaptivity (i.e., hp-adaptivity) provides very high convergence rates.

By p-extension, the interpolation function is generally enriched to one higher or-
der at a time. Designing the optimal polynomial degree p is theoretically possible
but not very useful as the value of p needs to be a positive integer†.

By hierarchical enrichment, the higher-order modes can be added to the existing
counterpart easily. The enrichment can be different in each spatial direction [27] to
optimise the use of higher-order interpolation. However, to reduce the complexity
of the data structure in the p-approach, we choose to enrich the interpolation by the
same degrees in both directions as in [74]. The compatibility of the edge modes of
the adjacent elements will be satisfied by choosing the higher-order shape functions
between two adjacent elements sharing the same edge. This is for ease of compati-
bility enforcement.

r- adaptivity

r-adaptivity relocates the spatial nodal points toward the critical region without
changing mesh connectivity and interpolation order. In case of smooth solutions,
the r-adaptive technique alone can only improve the accuracy of the solution

†This situation is similar for the hierarchical h-refinement, where the number of element subdivision must
be a positive integer.
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slightly [7, 47], in comparison to h-adaptivity and p-adaptivity. However, the adap-
tive scheme is very efficient when applied to a non-smooth solution, for example,
when there exists a high stress gradient or strain localisation in a small region. With-
out adding any extra degrees of freedom and complicated remeshing‡, the mesh
gradation efficiently improves the local smoothness of the finite element solution.

To relocate the nodes, sophisticated techniques such as the moving finite element
formulation [15] or the arbitrarily Lagrangian-Eulerian techniques [6, 73] may be
applied to optimally locate the existing finite element nodes. These methods are
based on a kinematic framework and require solving a global system of equations.
As an alternative, a simple technique based on local weighted smoothing may be
applied. This smoothing-based local approach is employed in this research and will
be addressed in Section 5.4.

As the r-adaptivity improves the mesh by moving the nodes according to rel-
ative error information, use of error indication, which provides information in a
relative sense, is actually adequate [43]. The scheme must be carefully applied as
it may construct non-proportioned elements (i.e. element with large aspect ratio)
that bring about bad quality of the finite element mesh, and occasionally the prob-
lem of mesh tangling arises. For increased performances in adaptivity, the method
may be combined as an auxiliary adaptive technique to the h- and p- approaches.
The method can be more effective when properly combined with h-adaptivity (hr-
adaptivity [9]) or with p-adaptivity (rp-adaptivity [60]).

5.2 Adaptive criteria

An objective of adaptive strategies is to provide a finite element solution with an
acceptable level of discretisation error. As such, some criteria to judge whether or
not the mesh is sufficiently discretised are needed. The criteria must be set such that
the global error that is allowed to occur should be less than an acceptable value to
guarantee an acceptable solution, and the local error should be well distributed
throughout the problem domain. Combinations of both global and local criteria,
resulting in the so-called adaptive criteria, will be addressed in this section.

5.2.1 Energy norm based adaptive criteria

By global consideration, the mesh needs an enhancement when

‖e‖ > ζprim‖u‖ (5.5)

where ζprim is the amount of error allowed in comparison to the norm of the pri-
mary unknown u. It can be chosen, for example, as low as 1% or as high as 20%,
depending on the judgement of the user.

‡Remeshing in this context refers to the change in mesh configuration such as in h-adaptivity
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If the global criterion is satisfied, the error in some regions of the problem domain
may be much higher than the rest. Thus, it is suggested to consider the criteria to
properly distribute the error in each local region throughout the domain. Basically,
there are two distributing criteria;

• Based on uniform error distribution [53, 106]

‖e‖2
k =

‖e‖2

N
∀ k (5.6)

where N denotes number of elements in the mesh. The global error, ‖e‖2 =
∑N

k=1 ‖e‖2
k , should be equally distributed over each element. Combining this

local criterion (cf. Eq. (5.6)) with the global criterion (cf. Eq. (5.5)), the mesh in
the local region k must be enhanced when

‖e‖k >
ζprim‖u‖√

N
(5.7)

• Based on uniform error density distribution [40, 64]

‖e‖2
k

Ωk
=

‖e‖2

Ω
∀ k (5.8)

where Ωk refers to the area of the element k and ∑k Ωk = Ω. This condition
suggests that, for smaller elements, a smaller error is allowed. Again, combi-
nation of local criterion (cf. Eq. (5.8)) and global criterion (cf. Eq. (5.5)) results
in mesh enhancement when

‖e‖k > ζprim‖u‖
(

Ωk

Ω

) 1
2

(5.9)

It has been found that using the uniform error density distribution leads to a
much more expensive mesh than the uniform error distribution does [23, 30, 64].
An observation is that, for the region containing a singularity, the designed element
size can be very small. As the uniform error distribution rule leads to acceptable
results, in this study we will use the uniform error distribution.

5.2.2 Goal-oriented adaptive criteria

To decide whether or not the mesh should be enhanced, we may consider directly
the error in a quantity of interest

|Q(e)| > ζgoal|Q(u)| (5.10)

or

‖e‖‖ǫ‖ > ζgoal‖u‖‖w‖ (5.11)

In this research, to facilitate the combination of global and local refinement criteria,
we have selected two global refinement criteria.
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Adaptive criterion 1

Whenever

N

∑
k=1

|Bk(e,ǫ)| > ζgoal

N

∑
k=1

|Bk(u, w)| (5.12)

the mesh needs to be improved. It is noted that the measure |Bk(u, w)| is not equal
to zero as in the global measure |B(u, w)| in the displacement control algorithm.
Similar to the distribution of error in the energy norm, the error measure can be
distributed uniformly as

|Bk(e,ǫ)| =

N
∑

j=1
|B j(e,ǫ)|

N
∀ k (5.13)

And by combining this local criterion with the global criterion, the mesh in the local
region k must be enhanced when

|Bk(e,ǫ)| >

ζgoal

N
∑

j=1
|B j(u, w)|

N
(5.14)

Adaptive criterion 2

The mesh needs to be improved whenever

N

∑
k=1

(‖e‖k‖ǫ‖k) > ζgoal

N

∑
k=1

(‖u‖k‖w‖k) (5.15)

Again, the error measure can be distributed by uniform error distribution

‖e‖k‖ǫ‖k =

N
∑

j=1
(‖e‖ j‖ǫ‖ j)

N
∀ k (5.16)

Combining this local criterion with the global criterion, the mesh in the local region
k must be enhanced when

‖e‖k‖ǫ‖k >

ζgoal

N
∑

j=1
(‖u‖ j‖w‖ j)

N
(5.17)

Apparently, the global allowance in the framework of goal-oriented error estima-
tion ζgoal can be set as

ζgoal ≈ ζprimζdual (5.18)

where ζprim and ζdual are global allowances for the error in the primal problem and
for the error in the dual problem, respectively.
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5.3 Optimality criteria

From the last section, adaptivity takes place when the error exceeds the critical
value. How much the mesh should be refined, via the so-called optimality criteria, is
the main issue in this section.

Specially designed for an h-adaptive scheme, the mesh can be optimally designed
by mathematical derivation of the error in terms of its convergence with respect to
the element sizes. The first work has been proposed by Zienkiewicz and Zhu [106]
in the late 80s. Their optimality criterion is based on the global a priori estimate in
a generally smooth space with an assumption of uniform distribution of elemen-
tal error throughout the problem domain. A modification to the above criterion
has been suggested in [64], where the elemental error measure is distributed via
a uniform error density setting. Another distinguished criterion is formulated in
a relative manner [30] with two user-specified parameters for adjusting the error
distribution in the relative and absolute manner.

In this research, we choose to study the criterion introduced in [52, 53] as it can
produce the cheapest mesh via the a priori local error estimate (cf. Eq. (5.3)) and the
uniform error distribution. Whereas the criterion is originally set for use with the
energy norm error estimates, it can slightly be adjusted for use in the goal-oriented
setting as well.

5.3.1 Energy norm based optimality criteria

The critical value of the error in energy norm is the maximum of ‖e‖ described in
Eq. (5.3), i.e.

‖e‖k = Cprimh
2p+d

2
k (5.19)

Let us define the desired value of ‖e‖k as {‖e‖k}des, thus we obtain

{‖e‖k}des = Cprim{hk}
2p+d

2
des (5.20)

where {hk}des denotes the desired characteristic size of element k corresponding to
the local error quantity {‖e‖k}des.

Compare the two norms, we obtain

‖e‖k

{‖e‖k}des
=

(
hk

{hk}des

) 2p+d
2

(5.21)

Applying local error requirements as earlier mentioned, the uniform error criterion
leads to

{hk}des

hk
=

({‖e‖k}des

‖e‖k

) 2
2p+d

=

(

ζprim‖u‖√
N‖e‖k

) 2
2p+d

(5.22)
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Note that the characteristic size h is always measured in a relative sense.

As the number of elements may be changed during the mesh refinement, it was
suggested to reformulate Eq. (5.22) by replacing N with Nnew, the new number of
elements [53]. The new number of elements can be estimated from

Nnew =
N

∑
k=1

(
hk

{hk}des

)2

=

[
N

∑
k=1

( ‖e‖k

ζprim‖u‖

) 4
2p+d

] 2p+d
2p+d−2

(5.23)

5.3.2 Goal-oriented optimality criteria

In the goal-oriented estimation, following the error norm in the primal problem,
we can write the error in the dual problem as

‖ǫ‖k = Cdualh
2p+d

2
k (5.24)

and

{‖ǫ‖k}des = Cdual{hk}
2p+d

2
des (5.25)

It thus leads to

‖e‖k‖ǫ‖k = CprimCdualh
2p+d
k (5.26)

and

{‖e‖k‖ǫ‖k}des = CprimCdual{hk}2p+d
des (5.27)

Recall the Cauchy-Schwartz’s inequality

|Bk(e,ǫ)| ≤ ‖e‖k‖ǫ‖k (5.28)

the local quantity |Bk(e,ǫ)| can be related to ‖e‖k‖ǫ‖k by a factor λ in the range of 0
to 1. And thus the convergence rate of |Bk(e,ǫ)| can be written as

|Bk(e,ǫ)| = λ ‖e‖k‖ǫ‖k = λ CprimCdualh
2p+d
k (5.29)

Assuming that λ attains the same value for every element k, it follows that

{|Bk(e,ǫ)|}des = λ {‖e‖k‖ǫ‖k}des = λ CprimCdual{hk}2p+d
des (5.30)

Following [53], we can set the optimality criterion for goal-oriented measure-
ment, based on uniform error distribution, as follows.
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Based on adaptive criterion 1

From Eqs. (5.14), (5.29) and (5.30), the relative element size can be set as

{hk}des

hk
=

({|Bk(e,ǫ)|}des

|Bk(e,ǫ)|

) 1
2p+d

=

(

ζgoal ∑N
k=1 |Bk(u, w)|

Nnew|Bk(e,ǫ)|

) 1
2p+d

(5.31)

with the new number of elements Nnew defined as

Nnew =
N

∑
k=1

(
hk

{hk}des

)2

=





N

∑
k=1

(

|Bk(e,ǫ)|
ζgoal ∑N

k=1 |Bk(u, w)|

) 2
2p+d





2p+d
2p+d−2

(5.32)

Based on adaptive criterion 2

From Eqs. (5.17), (5.26) and (5.27), the relative element size is cast as

{hk}des

hk
=

({‖e‖k‖ǫ‖k}des

‖e‖k‖ǫ‖k

) 1
2p+d

=

(

ζgoal ∑N
k=1(‖u‖k‖w‖k)

Nnew‖e‖k‖ǫ‖k

) 1
2p+d

(5.33)

where the new number of elements Nnew is defined as

Nnew =
N

∑
k=1

(
hk

{hk}des

)2

=





N

∑
k=1

(

‖e‖k‖ǫ‖k

ζgoal ∑N
k=1(‖u‖k‖w‖k)

) 2
2p+d





2p+d
2p+d−2

(5.34)

5.4 Smoothing-based mesh gradation

The simple r-adaptivity applied in this research is modified from a mesh smoothing
concept. Error information stored at nodes in the neighbourhood is used to drive
the mesh movement algorithm so that the mesh is graded towards the critical re-
gion. As the technique does not require solving any global system of equations, it
requires less computational effort than the global techniques (for example, [15,73]).
Moreover, mesh tangling, which can often occur during conventional r-adaptivity,
does not appear in this simple relocation technique. This is because each node is
forced to move, at a time, within the limited distance in its corresponding patch
(see Figure 5.2). The details of the method will be addressed further in this section.

5.4.1 Mesh gradation strategy

The mesh gradation is modified from Laplace smoothing technique, which is

xi =

Ni

∑
j=1

x j

Ni
(5.35)
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For each grading loop

1. Compute weight factors, defined at nodes

2. Move node i, starting i = 1;

a) set patch, elements connected to node i,

b) move node i according to nodal weight factors, and

c) update weight factors due to change of nodal position.

3. Continue;

a) if i < number of nodes, i = i + 1, go to Step 2,

b) otherwise, i = number of nodes, go to next grading loop.

Table 5.1 Mesh gradation scheme based on weighted Laplace smoothing.

where Ni is number of neighbouring nodes j connecting node i. That is, each node
is relocated into the center of the corresponding patch of elements surrounding
the node. The node-by-node process goes on until all nodes do not move further,
resulting in a set of well proportioned elements (or a smooth mesh).

In order to apply the mesh smoothing technique to grade the mesh towards crit-
ical regions in the domain, grading weight factors containing error information
must be supplied. The resulting weighted Laplace smoothing technique can be set as

xi =
∑Ni

j=1 ̟ jx j

∑Ni
j=1 ̟ j

(5.36)

where ̟ j is the grading weight factor for node j. Obviously, the quality of the gra-
dation depends heavily on the choice of the weight factors. Basically, the selected
weight factor must not move the nodes too much nor too little, and should be re-
lated to error information. Table 5.1 shows the grading procedure based on the
weighted Laplace smoothing.

Choice of grading weight factors

The grading weight factor provides information how much and to which direction
the mesh should be graded. Certainly, the gradation should be towards the regions
of larger error, where a higher mesh resolution is needed, than the rest of the prob-
lem domain. In [43], it was suggested that the use of an error indicator is sufficient
and appropriate for driving mesh gradation (r-adaptivity) since the error informa-
tion is employed only in a relative sense. Yet, as our main focus in this study is
on error estimation, we select the ratio of the current element size over the desired
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Figure 5.2 A local approach to mesh gradation: original mesh (upper), after the first node moved (left)
and after the second node moved (right).

element size (here, named as refinement ratio [6])

Υ
elem
k :=

hk

{hk}des
(5.37)

to set the grading weight factor for this gradation.
According to the optimality criterion (cf. Section 5.3), the refinement ratio Υ

based on energy norm error estimate (cf. Eq. (5.22)) reads

Υ
elem
k =

(

‖e‖k

√
N

ζprim‖u‖

) 2
2p+d

(5.38)

Similarly, based on goal-oriented error estimates (cf. Eqs. (5.31) and (5.33)), we can
set

• Criterion 1

Υ
elem
k =

(

|Bk(e,ǫ)|
√

N

ζgoal ∑N
k=1 |Bk(u, w)|

) 1
2p+d

(5.39)

• Criterion 2

Υ
elem
k =

(

‖e‖k‖ǫ‖k

√
N

ζgoal ∑N
k=1(‖u‖k‖w‖k)

) 1
2p+d

(5.40)

It is noted here that using refinement ratios to form the grading weight factors
is a very reasonable choice as it accounts for the existing mesh order (i.e. order
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of polynomial interpolation). For an initial mesh (i.e. prior to any other adaptive
steps), a strong mesh gradation may be needed, whereas a mild gradation often
suffices if adaptivity has already been activated earlier in the analysis.

To provide the information at nodes, the element refinement ratios must be ex-
trapolated to the corresponding nodes. Based on finite element extrapolation and
nodal averaging, the elemental values are transferred to node i via the use of nodal
shape function φi(x) by

Υ
node
i =

∫
Ω

φi(x)Υ(x) dΩ

∫
Ω

φi(x) dΩ
(5.41)

It is assumed that the element refinement ratio is constant within each element.
Hence,

Υ(x) = Υ
elem
k if x is in Ωk (5.42)

Note that Υ > 1 in zones that need an improved discretisation and Υ < 1 if a
coarser discretisation is permitted. Ideally, Υ = 1 everywhere in the domain. The
rate of mesh gradation can be controlled by taking a power of Υ, by which the nodal
weight factor is defined as

̟i = (Υnode
i )m (5.43)

where m controls the mesh gradation rate and is user-specified. A small value of
m indicates a small move of the mesh in each grading step. For more significant
relocation, a large value may be used. A large value grades the mesh toward the
critical region better than a small value, however, it may also create finite elements
of large aspect ratio, resulting in a global stiffness matrix of bad conditioning. Fur-
thermore, too large movement can bring about an instability caused by the nodes
being moved back and forth in order to find their optimal positions. It is recom-
mended here to use the value between 0.5 to 2.0 depending on how much mesh
movement is preferred.

Weight update scheme

It is necessary to update the grading weight factors during mesh gradation. Every
time a node is moved from its old position, the refinement information is obviously
changed. Unless updating is included in the algorithm, the gradation may continue
forever without the nodes reaching their optimal positions.

The main idea is to keep the set of elemental refinement ratios Υ
elem prior to

the mesh gradation during the gradation. To update the elemental refinement ra-
tios, the stored refinement ratios are transferred to the new elements according to
the overlapping area. As these overlapped regions can be of any polygon forms, it
requires complicated element partitioning and thus should be avoided.
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Figure 5.3 The weight update scheme.

An alternative way is to set integration points in the relocated mesh. The refine-
ment ratios are then transferred from the old mesh to the new integration points.
As more integration points are used, a more accurate transfer is expected. The val-
ues in the new set of integration points are again transferred to nodes by the finite
element extrapolation (cf. Eq. (5.41)). The scheme is illustrated in Figure 5.3.

5.4.2 Auxiliary techniques

Mesh quality check

It may happen that the mesh movement does not improve the error solution. Two
alternatives can be applied to detect the error trend before and after the mesh move-
ment. The first scheme is based on error estimation. Once the error is computed, the
mesh is temporarily moved to the new location. Then the error is estimated again.
The algorithm implies that for every r-adaptive step, the computational cost for
error computation is doubled.

An alternative scheme is to make a rough estimate of the error in the newly-
designed mesh§. This algorithm is based on rearranging Eq. (5.38). Once the ele-
mental refinement ratio Υ

elem is updated corresponding to the new mesh, the error
of this new mesh is roughly estimated as

{‖e‖k}approx =
(Υelem

k )
2p+d

2 ζ‖u‖√
N

(5.44)

for each element k. Combining the elemental errors together, we find

{‖e‖}2
approx =

N

∑
k=1

{‖e‖k}2
approx (5.45)

And the nodes will be relocated only if

{‖e‖}approx < ‖e‖ (5.46)

§This estimate takes place before the mesh is actually graded.
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This is to avoid bad mesh gradation, which in our experience can lead to instability
of the solution during a nonlinear analysis. This rough estimation of the error norm
does not detect the possible error that is caused by a too large aspect ratio.

The checking in case of goal-oriented measurement can be set in the same fashion
as

• Criterion 1

{‖e‖k‖ǫ‖k}approx =
(Υelem

k )2p+dζgoal ∑N
k=1(‖u‖k‖w‖k)

N
(5.47)

for each element k. Combining the elemental error together, the nodes will be
relocated only if

N

∑
k=1

{‖e‖k‖ǫ‖k}approx <
N

∑
k=1

(‖e‖k‖ǫ‖k) (5.48)

and

• Criterion 2

{|Bk(e,ǫ)|}approx =
(Υelem

k )2p+dζgoal ∑N
k=1 |Bk(u, w)|

N
(5.49)

for each element k. Combining the elemental error, the nodes will be relocated
only if

N

∑
k=1

{|Bk(e,ǫ)|}approx <
N

∑
k=1

|Bk(e,ǫ)| (5.50)

Control of element aspect ratio

After mesh gradation, a problem that is often found is that of non-proportioned
elements. Following [6], we define the aspect ratio Λ as

Λ :=
(maxi hside

i )2

A
(5.51)

where hside
i refers to length of the element side i. A large aspect ratio implies a thin

element which does not perform well in the finite element analysis, especially when
linear interpolation applies. It is suggested that the aspect ratio should be well con-
trolled. A threshold aspect ratio of four was used in [6]. However, in higher-order
meshes, a higher ratio may be used as the performance of the thin elements is im-
proved. Here, for our convenience, we control the element aspect ratio not to be
larger than 6 for all cases.

When the gradation shows the aspect ratio equal to the threshold value, the gra-
dation algorithm should stop. Actually, the element aspect ratio can be improved,
for example, via a directional element subdivision or an element edge swapping
scheme (see Figure 5.4). However, the analysis of such improvement techniques is
not in the scope of this study.
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Figure 5.4 Edge swapping

5.4.3 Examples

Figure 5.5 shows some results from the mesh gradation technique applied to a lin-
ear elastic central crack problem. It is obvious that the choice of parameter m affects
patterns of the graded mesh. In all cases, most of the mesh improvement occurs
with the first gradation of the mesh, whereas further reduction of the error in sub-
sequent steps is less significant. This example proves that, in case of singularity, the
mesh gradation can even cut the error by half.

In another example, the r-adaptive scheme is applied to the Prandtl’s punch test
(Figure 5.6). As the solution is smoother, the finite element result does not show
great improvement upon r-adaptivity as in the first example. With m > 2.0, the
graded mesh exhibits large aspect ratios in some elements. This problem can be
slightly improved by allowing boundary nodes to move freely along the boundary.

5.5 Variable transfer algorithms

During nonlinear solution control, the discretisation error may be measured and
the finite element mesh can be improved accordingly. After each mesh change, one
can choose either

• to continue the computation in the next step

• to recompute the solution at the current step and continue to the next step

• to restart the whole computation.

Generally, the third choice is not popular in nonlinear analysis as the computational
effort applied in the earlier steps of computation is lost. Choosing to continue the
computation, either by the first or the second choice requires an accurate variable
transfer.

Values of the state variables, such as stresses, are generally stored in the integra-
tion points. Once the mesh is upgraded, either by mesh refinement, mesh enrich-
ment or mesh gradation, the integration points are increased in number and/or re-
located from their old positions. The values stored at these integration points need
to be transferred to the new integration points, so that the nonlinear computation
can be continued without restarting the whole computation.
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1 mm

0.5 mm
1 mm

• Linear elastic material
(E = 1000.0,ν = 0.00)

• Plane stress condition

• Quadratic interpolation

• Upper right quarter modelled

Original (95.55%)

m=0.5

Step 1 (74.42%) Step 2 (68.57%) Step 3 (66.57%) Step 4 (66.00%)

m=1.0

Step 1 (62.98%) Step 2 (54.78%) Step 3 (53.52%) Step 4 (53.27%)

m=2.0

Step 1 (55.25%) Step 2 (47.88%) Step 3 (44.56%) Step 4 (44.56%)

Figure 5.5 The graded mesh with parameters of m = 0.5, m = 1.0 and m = 2.0. Numbers in the
brackets refer to the ratio ‖e‖/‖u‖. Levels of the elemental error are indicated: darker color refers to
higher level of error.
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Original

(27.06%)

m = 0.5

(25.74%)

m = 1.0

(24.64%)

m = 2.0

(24.72%)

m = 3.0

(28.46%)

m = 4.0

(31.73%)

m = 0.5

(24.48%)

m = 1.0

(22.46%)

m = 2.0

(20.62%)

m = 3.0

(23.49%)

m = 4.0

(29.17%)

Figure 5.6 The Prandtl’s punch test (cf. Figure 4.7) with uniform linear interpolation. The second row
restricts the boundary nodes whereas the third row allows nodes on the left and upper edges to move
freely. Only the first remeshing step is considered. Numbers in the brackets refer to the ratio ‖e‖/‖u‖.
Levels of the elemental error are indicated: darker color refers to higher level of error. Note that the
element aspect ratio is not controlled in this example.
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Figure 5.7 The closest point transfer algorithm [69].

5.5.1 Transfer of state variables

There are many techniques for variable transfer, two of which will be investigated
in this research as they are simple and widely used.

Direct transfer

In a selected subdomain surrounding the target point, the data from an integration
point in the old mesh (source, f (x j)) can be transferred to an integration point in
the new mesh (target, f (xtarget)) by

f (xtarget) =
∑n

j=1 ̟(x j, xtarget) f (x j) dΩ

∑N
j=1 ̟(x j, xtarget) dΩ

. (5.52)

where n refers to a number of the source points in the neighboorhood Ωs. The
scaling factor ̟ may be selected as a function of the distance from the source point
x j to the target point xtarget

̟(x j, xtarget) =
r − |xtarget − x j|

r
(5.53)

The local domain Ωs is defined by a user-specified distance (or a radius) from the
target point r.

It is worth noting that this type of transfer is independent of both old and new
element connectivity and requires very low computational effort.

As an alternative, the data from the closest source point may simply be trans-
ferred to the target point with no scaling, i.e.

f (xtarget) = f (xclosest) (5.54)

where xclosest refers to the point which is the closest to the target point xtarget. This
method, known as the closest point transfer [69], can provide an acceptably accurate
transfer by its very low diffusion property, which may be very important in cap-
turing narrow regions with steep gradients, such as where strain localisation takes
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place. Moreover, with its low computational cost, it is preferred to the Least-Squares
fitting which requires solving the solution of small system of equations [69]. Figure
5.7 shows how the data is transferred by this method.

Shape function remapping transfer

As a typical method in adaptive finite element analysis, the state variables can be
transferred between the meshes via the use of the finite element shape functions [56,
69]. First, data at the source points are mapped to nodes by extrapolation combined
with nodal averaging. Then, the nodal data in each element are interpolated to the
new integration points (See Figure 5.8 – path A).

The technique of extrapolation and nodal averaging, in fact, follows a similar
idea as in the formation of consistent nodal forces, except that the data is scaled at
nodes. The data at each integration point x are transferred to nodes (or modes in
hierarchical concept) xI via the use of nodal shape function φI(x) by

f I =

∫
Ω

φI(x) f (x) dΩ

∫
Ω

φI(x) dΩ
(5.55)

The technique is frequently used for contour plots which are usually based on the
values at nodes. However, the extrapolated values from this nodal averaging are
generally not as accurate as the values stored at the integration points. By this
smoothing-out technique, the transfer to nodes may lead to a considerable loss in
accuracy in the presence of high stress/strain gradients.

There is, indeed, a complication due to a need of an inverse mapping algorithm
in case of quadrilateral elements. The inverse mapping can then be avoided by in-
terpolation of the variables from the old nodes to the new nodes and subsequently
from the new nodes to the new set of integration points. This procedure is con-
sidered as the second alternative to the one aforementioned, and is illustrated in
Figure 5.8 – Path B.

5.5.2 Transfer of primary variables

Not only variables at integration points need to be remapped, the values corre-
sponding to each degree of freedom must also be transported. As compared to
the Lagrange elements where nodal locations are well-defined, the Legendre shape
function can add another level of complication.

There are two techniques to deal with this problem, namely Lagrange-
equivalence transfer and Least-squares fitting.

The first technique utilises the advantage of the Lagrange elements (isoparamet-
ric elements), which is missing in the Legendre elements (hierarchical shape func-
tions). As the higher-order modes in the hierarchical framework cannot be located
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B1

A

B2

Figure 5.8 Transfer of variables at the integration points by shape function remapping algorithm.

at fixed points, the interpolation of these shape functions can be very difficult, if
possible at all.

To be able to remap the hierarchical modes to the new mesh, a set of sample
points is selected. These sample points are on the edges and the interior of each
element and are picked according to the standard Lagrange elements of the same
polynomial order. Once those Lagrange-equivalence points are set, the interpolation
from the old mesh to the new mesh can be applied naturally (See Figure 5.9).

The values stored at the sampling points must then be mapped to the correspond-
ing hierarchical modes. Since

u(x) =
n

∑
i=1

φi(x)ai, (5.56)

it is possible to remap the Lagrangian modes (at sample points) back to the Legen-
dre scheme by seeking ai, i = 1, .., n, where n denotes the number of nodes, from
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Figure 5.9 Transfer of nodal variables by mapping to equivalent Lagrange elements. The left subfigure
refers to interpolation from the nodes in the old mesh to those in the new mesh in the standard Lagrange
elements. The right subfigure shows the equivalent transfer from hierachical modes to the Lagrange-
equivalent points (indicated by the squares).

where n refers to the number of Lagrange-equivalence points, which is also equal
to the number of the shape functions. Only the element shape functions in each
direction are considered in the matrix inversion. Thus, the computational cost for
the remapping is considerably low.

The accuracy of the transfer via the second technique, i.e. Least-squares fitting,
depends on the number of sampling points, which may be based on integration
points or Lagrange-equivalence nodes. If the latter choice is considered, the optimal
answer would be the same as the first technique where simple interpolation and the
equivalence transfer are applied.

Of course, the more sampling points we use, the more computational effort is re-
quired in the matrix inversion in the Least-Squares fitting. Also, employing a num-
ber of sampling points higher than the number of shape functions may be beyond
necessity. In this research, the sampling points are set equal to the number of dis-
placement modes and thus Lagrange-equivalence transfer is our choice.

5.6 Remarks

In this chapter, the adaptive techniques to be used in this thesis have been intro-
duced. The a posteriori error estimates, i.e. the energy-norm based error measure as
well as the two goal-oriented error measures presented in the previous chapters,
have been employed in setting of adaptive and optimality criteria. Also based on
the a priori error estimates and uniform error distribution assumptions, the criteria
can be formulated straightforwardly. Particular attention has been paid to the for-
mulation of mesh gradation schemes in which the aim is to concentrate elements in
zones of large error while at the same time controlling the element aspect ratio.
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During a nonlinear analysis, the finite element computation may be continued or
restarted from the beginning after a mesh change. If the former choice is applied,
it is necessary to correctly transfer the variables including those stored at nodes
and at the integration points. To provide a considerably accurate and reasonably
inexpensive transfer, the variable transfer techniques that will be studied in the
next chapter include all techniques mentioned in this chapter.





CHAPTER

SIX

Mesh adaptivity for continuous failure

Quasi-brittle materials such as plain concrete exhibit so-called strain softening be-
haviour. Once damage is initiated, these materials are still able to carry load while
gradually losing their strength. During such processes, deformation tends to con-
centrate in some parts of the material, subsequently forming cracks which finally
leads to failure.

The phenomenon can be suitably modelled by means of damage mechanics. The
formation and growth of a microstructural crack is modelled via continuous dam-
age variables, such that failure can be simulated entirely within a continuum me-
chanics framework. During damage growth, the material gradually loses its in-
tegrity and its stored energy is dissipated. Unfortunately, a straightforward inclu-
sion of a damage-driven dissipation results in mathematical ill-posedness in the
post-peak regime of the structural response, causing a zero width of the localisa-
tion zone and subsequently zero energy dissipation. As a result, the finite element
size controls the localisation width, leading to so-called mesh dependence [72] in the
sense that the numerical results do not converge when the discretisation is refined
in finite element modelling. Error estimation and adaptivity would consequently
not give meaningful results.

Information on microscopic material behaviour must be taken into account in
the continuum model. This can be achieved by enhancing the continuum model
with an intrinsic length scale to avoid the loss of ellipticity. As a regularised model,
the implicit gradient-enhanced damage model [70] is chosen for this study. Even
though the numerical results converge upon refinement of discretisation, the finite
element modelling requires an adequate mesh discretisation in order to accurately
describe the fracture processes. We will show in this chapter the importance of a
good finite element mesh in damage modelling.
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6.1 The gradient-enhanced damage model

Within the context of continuum damage mechanics, material gradually loses its
load-carrying capacity as a result of the appearance of microstructural cracks. This
material degradation process, described here in the continuum damage mechanics
concept by the introduction of a scalar damage parameter ω, is cast in a stress-strain
relation written as

σ = (1 −ω)De : ε (6.1)

where σ and ε denote stresses and strains. As the model is formulated based on
elasticity, the linear-elastic constitutive tensor De is employed. The damage param-
eter ω ranges from 0 (for virgin condition) to 1 (for fully damaged condition) and
is defined as a function of a history parameter κ, i.e. ω := ω(κ).

Representing the largest value of the deformation in the loading history, κ is ob-
tained from

κ = max(κ0,εeq) (6.2)

whereκ0 is a user-specified damage threshold and εeq refers to an equivalent strain,
which is a scalar invariant representing the strains. Some definitions of this equiv-
alent strain are, for example,

• Mazars definition [55]

εeq =

√
√
√
√

3

∑
i=1

〈εi〉2 (6.3)

where εi denotes the principal strain and the positive principal strain 〈εi〉 is
defined as

〈εi〉 =
εi + |εi|

2
(6.4)

• Modified von Mises definition [26]

εeq =
k − 1

2k(1 − 2ν)
I1 +

1

2k

√

(k − 1)2

(1 − 2ν)2
I1

2 +
12k

(1 + ν)2
J2 (6.5)

where k is the ratio of the compressive and tensile strength, and the strain
invariants I1 and J2 are defined as

I1 = εxx + εyy +εzz (6.6)

J2 =
(ε2

xx +ε2
yy + ε2

zz − εxxεyy −εyyεzz −εzzεxx)

3
+ ε2

xy +ε2
yz +ε2

zx (6.7)
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Damage evolves when the Kuhn-Tucker conditions

f ≤ 0, κ̇ ≥ 0, κ̇ f = 0 (6.8)

are satisfied. The loading function f is defined as

f = εeq −κ (6.9)

By means of softening laws, the damage growth can be described. Two examples
of such laws are

• Linear softening law

ω = 1 − κ0

κ

κc −κ

κc −κ0
if κ0 ≤ κ ≤ κc (6.10)

where the damage is fully developed (ω = 1) when κ > κc (ultimate strain).

• Exponential softening law [71]

ω = 1 − κ0

κ
(1 −α +α exp(−β(κ −κ0))) if κ ≥ κ0 (6.11)

where α and β are material parameters controlling the residual stress and the
damage growth rate, respectively.

Implicit gradient formulation

The above formulation can be referred to as the standard local damage model.
As mentioned above, due to a lack of microstructural information, the localisation
zone tends to have a zero width. The above model suffers from mathematical ill-
posedness and, consequently, a severe mesh dependence [72]. To overcome these
problems, some techniques have been introduced. In this study, we employ regular-
isation based on replacing the local equivalent strain εeq by the nonlocal equivalent
strain ε̆eq in Eqs. (6.2) and (6.9).

By averaging the local equivalent strain in the gradient form, the nonlocal equiv-
alent strain can be defined as an implicit gradient enhancement form

ε̆eq − c2∇2ε̆eq + c4∇4ε̆eq − c6∇6ε̆eq + c8∇8ε̆eq − . . . = εeq (6.12)

where ci are material parameters based on the intrinsic length scale lint and are
defined as

c2n =
1

n!

(
lint

2

)2n

n = 1, 2, 3, . . . (6.13)

The intrinsic length scale has the dimension of length and it is a representation of
the underlying microstructure of the material. Inclusion of an internal length scale
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as done in Equation (6.12) ensures that the failure zone has a finite width, which in
turns guarantees a non-zero energy dissipation upon mesh refinement. Thus, the
problems of the local damage model are overcome [70, 71].

Using a truncation after the second order term (cf. Eq. (6.12)), the implicit
gradient-enhanced model is formulated by adding another set of equations

ε̆eq − c2∇2ε̆eq = εeq (6.14)

to the standard finite element formulation. Applying integration by parts, the im-
plicit gradient enhancement formulation can be cast in a weak form as

∫

Ω

δε̆eqε̆eq dΩ +
∫

Ω

∇δε̆eqc2∇ε̆eq dΩ =
∫

Ω

δε̆eqεeq dΩ (6.15)

with a set of homogeneous natural boundary conditions [70]

∇ε̆eq · n = 0 on ∂Ω (6.16)

where n is the outward unit normal on the boundary Γ . Note that to improve the
conditioning of the stiffness matrix, using Young’s modulus (E) as a multiplying
(scaling) factor for both sides of Eq. (6.15) may be considered. For a discussion on
the finite element implementation of the model, the reader is referred to [86, 88].

6.2 Error analyses

The gradient-enhanced damage model formulated in the last section requires two
sets of unknowns, namely the displacement field and the nonlocal equivalent strain
field. For the second-order implicit gradient formulation, cf. Eq. (6.14), C 0 shape
functions are required. We define here the set of unknowns

ŭ = {u, ε̆eq} (6.17)

which is the solution of the system of equations

Btang(∆ŭ(h,p), v(h,p))|(t−1:t) = ∆F (v(h,p))|(t−1:t) (6.18)

and ŭ is updated during the Newton-Raphson iterative scheme, i.e.

ŭ(h,p)|(t) = ŭ(h,p)|(t−1) + ∆ŭ(h,p)|(t−1:t) (6.19)

It is natural to include all unknown degrees of freedom existing in the formulation
in the error analysis, as all of them are primary unknowns in the finite element
computation∗. We seek the error solution ĕ = {eu, eε̆} by solving a set of error

∗The system of error equations is different from the case of nonlocal integral-based damage formulation
[20,72] and the explicit gradient-enhanced damage formulation [19]. In those schemes, the displacement
field is the only primary unknown in the finite element computation.
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equations

Btang(ĕ(h̃, p̃), v)|(t) = Rŭ(v(h̃, p̃))|(t)

= F (v(h̃, p̃))|(t) −B(ŭ(h,p), v(h̃, p̃))|(t)
(6.20)

The error computation follows the process described in Chapter 3, whereby a series
of patch-based computations is solved instead of a global computation.

Setting a proper norm

The finite element discretisation leads to a consistent tangent stiffness matrix of the
form

Ktang = Btang(φ̆, φ̆) =

[
Kuu Kuε̆

Kε̆u Kε̆ε̆

]

(6.21)

The components of the stiffness matrix, addressed in Eq. (6.21), are defined as

Kuu =
∫

Ω

∇φu : (1 −ω)De : ∇φu dΩ (6.22)

Kuε̆ = −
∫

Ω

∇φu : suε̆ :φε̆ dΩ (6.23)

Kε̆u = −
∫

Ω

φε̆ : sε̆u : ∇φu dΩ (6.24)

Kε̆ε̆ =
∫

Ω

(φε̆ :φε̆ + ∇φε̆ : c2∇φε̆) dΩ (6.25)

where

sε̆u =
∂εeq

∂ε
and suε̆ =

∂ω
∂ε̆

Deε (6.26)

Note that different shape functions φu and φε̆ are used for the two sets of un-
knowns.

By using a softening model, it is possible that the computation of the error norm
via the use of the consistent tangent stiffness matrix Ktang leads to a negative value
and thus the norm defined in Chapter 3 becomes meaningless. To avoid such prob-
lems, we employ here only those parts of the stiffness matrix which include Kuu

and Kε̆ε̆. It is noticeable from the discretised equations that the terms Kuε̆ and Kε̆u

do not always provide positive-definite contributions to the global stiffness matrix.
On the other hand, Kuu and Kε̆ε̆ remain positive definite in the whole loading pro-
cess. To maintain a mathematically meaningful norm for the error, the interaction
between the two sets of degrees of freedom (i.e. u and ε̆eq) is neglected, thus avoid-
ing the occurrence of a negative-definite matrix in the error norm computation. The
modified stiffness matrix for the norm computation reads

Ktang+
= Btang+

(φ̆, φ̆) =

[
Kuu 0
0 Kε̆ε̆

]

(6.27)
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Note that Kuu is also the secant stiffness matrix. The energy norm of solution and
error can then be written, respectively, as

(‖ŭ‖tang+
)2 = Btang+

(ŭ, ŭ) = (‖u‖tang+
)2 + (‖ε̆eq‖tang+

)2

= u : Kuu : u + ε̆eq : Kε̆ε̆ : ε̆eq
(6.28)

(‖ĕ‖tang+
)2 = Btang+

(ĕ, ĕ) = (‖eu‖tang+
)2 + (‖eε̆‖tang+

)2

= eu : Kuu : eu + eε̆ : Kε̆ε̆ : eε̆

(6.29)

These norms will be used in this chapter, in setting the adaptive criteria and driving
mesh adaptivity.

6.3 Central transverse crack test

The first numerical example is the central transverse crack test, described in Fig-
ure 6.1. Due to symmetry, only the upper right quarter is modelled under a plane
stress condition. We apply the displacement control algorithm with a proportion-
ally prescribed displacement of u = 0.00001 mm for each incremental step in the
full Newton-Raphson iterative scheme.

To investigate the h-factor of the finite element discretisation, we select three uni-
form triangular meshes, namely Mesh 0, Mesh 1 and Mesh 2 (cf. Figure 6.2). For
investigation of the p-factor, four orders of interpolation, ranging from linear order
(p = 1) to quartic order (p = 4), are applied in a hierarchical manner. Details of
these reference meshes are given in Table 6.1.

6.3.1 Preliminary investigation

Effects of mesh discretisation on FE solutions

To examine the effects of mesh discretisation on finite element results, preliminary
tests are carried out based on uniform meshes with uniform orders of interpolation.
It is shown in Figure 6.3 (left) that the load-displacement relation for the coarsest
mesh (Mesh 0) with linear interpolation (p = 1) is significantly different from the

1 mm

0.5 mm
1 mm

• Gradient-enhanced damage model [70]

(E = 1000.0 MPa, ν = 0.00)

• Plane stress condition

• Thickness = 1 mm

• Exponential softening damage law (cf. Eq.(6.11))
(κi = 0.0003, α = 0.99, β = 1000.0)

• Mazars equivalent strain definition (cf. Eq.(6.3))

• Upper right quarter modelled

Figure 6.1 The central transverse crack test.
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Mesh 0 Mesh 1 Mesh 2

Figure 6.2 Meshes used in the finite element analysis of the central transverse crack test.

Mesh No. of Nodes No. of Elements p-order NDOFs

1 147
0 49 72 2 507

3 1083
4 1875
1 363

1 121 200 2 1323
3 2883
4 5043
1 1323

2 441 800 2 5043
3 11163
4 19683

Table 6.1 Information of fixed meshes used in the central transverse crack test.
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Figure 6.3 Load-displacement relations (left) and corresponding dissipated energy (right) for the cen-
tral transverse crack test. The abbreviation FX refers to the fixed computational mesh, i.e. no mesh adap-
tivity is activated. The abbreviation REF denotes the result obtained from the reference mesh, i.e. Mesh
2 with quartic interpolation.
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Figure 6.4 Evolution of local equivalent strain, nonlocal equivalent strain and damage obtained from
Mesh 2 with quartic interpolation.

rest of the results. We observe that the finite element computation is likely to over-
estimate the reaction forces corresponding to the prescribed displacements. Both h-
factor and p-factor can, indeed, improve the accuracy of the solution in this global
sense. As an additional observation in Figure 6.3 (right), the response obtained by
p-extension appears to improve the finite element solution slightly faster than the
h-extension, if considered at the same computational costs.

We select Mesh 2 with quartic interpolation to describe evolutions of the damage
parameter and the equivalent strain during the softening process. It is evident that
damage appears initially before the peak load is reached (precisely, incremental
step 26 or u = 0.00026 mm). The material is still able to carry more load up to Step
30 (u = 0.00030 mm), followed by a global softening. In Figure 6.4, it can be seen
that, in the post peak regime, the strain localises ahead of the crack tip in a small
zone and the damage grows accordingly.

Profiles of the damage and the equivalent strain at a cut section x = 1.0 mm,
shown in Figure 6.5, reveal the influence of mesh discretisation in the damage
analysis. The meshes under investigation are Mesh 1 and Mesh 2 with linear and
quadratic interpolations. We compare two mesh improvement approaches by up-
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Figure 6.6 Contribution of all degrees of freedom to norm measure, using Mesh 1 with linear interpo-
lation.

grading Mesh 1 with linear interpolation using similar additional numbers of de-
grees of freedom (i.e. Mesh 1 with quadratic interpolation and Mesh 2 with linear
interpolation). As can be seen in Figure 6.3 (left), both the h-factor and the p-factor
can improve the damage and equivalent strain profiles at the selected cut section.
Nevertheless, improving the mesh by applying higher-order interpolation depends
largely on the topology of the mesh. If the mesh possesses an insufficient resolution
at the region of high-gradient solutions, using higher order interpolation (p-factor)
can only improve the local solution up to a limited extent.



100 Chapter 6 Mesh adaptivity for continuous failure

Analysis of error information

As mentioned in the last section, we estimate the errors of all primary unknowns in
the discretised equations. Recalling Eq. (6.29), the total error estimate ‖e‖tang+ con-
sists of two independent contributions, namely the error in the displacement field
‖eu‖tang+ and the error in the nonlocal equivalent strain field ‖eε̆eq‖tang+. These two
contributions to the error estimate do not have the same dimension, thus the com-
puted error norm is no longer an energy measure. However, by the fact that both
unknown fields are discretised and solved via the finite element analysis, both two
contributions should be taken into account in the error analysis.

Figure 6.6 shows individual contributions of the error estimates obtained at the
end of each loading step in the finite element computation. To observe the trend
of both error contributions, in Figure 6.6 (left), we present each contribution by
normalising it with respect to the value at the end of the loading process (u = 0.001
mm). It appears that both contributions increase at higher rates after the peak in
the load-displacement response is reached. This does not hold anymore towards
the end, where the estimated error in the displacement field is decreasing while the
estimated error in the nonlocal equivalent strain field grows increasingly till the
end.

It is, however, observed in Figure 6.6 (right) that the error in the nonlocal equiva-
lent strain field provides much less contribution to the total error measure than the
one in the displacement field†. Thus, an economical alternative of this error estima-
tion would be to assess the error in the displacement field only, disregarding the
error in the nonlocal equivalent strain field. Despite such observation, we employ
in this study the contributions of both fields in estimating the error of the finite
element computation, as the programming for the error estimation part should be
general for use in various applications.

6.3.2 Mesh adaptive tests

In the central transverse crack test, the discretisation error is approximated at the
end of each numerical step. Filtered by the adaptive criteria (cf. Section 5.2), some
regions in the finite element mesh may be improved via h-adaptivity, r-adaptivity
or p-adaptivity. Comparisons between the three methods, in terms of performance,
will be discussed in this subsection. We control the error not to be beyond 15% of
the solution norm (cf. Eq. (6.28)) for all adaptive tests‡.

†Note that this is not caused by the different dimensions of the two solutions since each is normalised
separately prior to this summation.

‡However, for r-adaptivity, this critical value is merely a control parameter for mesh movement. Whether
or not the mesh is sufficiently improved to reach the critical value depends on the original mesh arrange-
ment.
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Mesh Damage
Nonlocal
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Figure 6.7 Meshes used in the h-adaptivity Scheme 3 and the corresponding state variables obtained at
the end of the computation (ū = 0.001 mm). The computation is restarted from the beginning for every
mesh change.

h-adaptivity

In h-adaptivity, the element sizes can be designed via the optimality criterion
relying on the a priori convergence assumption (cf. Section 5.3). However, the
capabilities of the used mesh generator determine the quality of the resulting
mesh. Different meshes are obtained via different generators. Here, we use the
mesh generator NeGe§, which is based on an advancing front method, and insert it
as an interface to the finite element computation. Some important points, regarding
h-adaptivity in the gradient-enhanced damage model, are studied in the following.

(A) Comparisons of h-adaptive schemes after mesh change
As mentioned in Section 5.5, the subsequent process after a mesh change can

either be to continue the computation in the next step (Scheme 1), to recompute
the solution in the current step (Scheme 2), or to restart the whole computation
(Scheme 3). For simplicity, we do not consider the second choice, as its results are
expected to be quite similar to those of Scheme 1, and compare the other two. We
measure the error in the first scheme at the end of each computational step, while

§The program was originally developed by Johann Sienz, University of Wales Swansea, United Kingdom.
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Figure 6.8 Meshes used during the h-adaptivity Scheme 1 and the corresponding state variables during
the computation. The computation is continued after the variable transfer by the closest point approach.
This test is referred to as H-CPT.

the error is measured once at the end of the computation in the third scheme. The
results from both strategies are shown in Figure 6.7 and Figure 6.8, where the final
meshes at the final step of the computation show great similarity. Note that, via
using the third adaptive scheme (cf. Figure 6.7), the original mesh (denoted as H-

Original) is re-designed to H-Remesh I and subsequently to H-Remesh II after two
whole computations.

Of course, an obvious advantage of Scheme 3 is that it does not require history
variable transfer during the computation, thus avoiding another error¶. A disad-
vantage of the strategy, however, is that the solution path depends greatly on the
designed mesh that relies upon only one error analysis. If the initial finite element

¶Here, we refer to the error due to the transfer of history variables during the nonlinear computation.



6.3 Central transverse crack test 103

0 0.0002 0.0004 0.0006 0.0008 0.001

Prescribed displacement (mm)

0

0.2

0.4

0.6

0.8

||
e
||
/|
|u

||

H−Original

H−Remesh I

H−Remesh II

H−CPT

H−SFT

0 0.0002 0.0004 0.0006 0.0008 0.001

Prescribed displacement (mm)

0

1000

2000

3000

4000

N
D

O
F

H−Original

H−Remesh I

H−Remesh II

H−CPT

H−SFT

Figure 6.9 Comparison of the estimated error (left) and the number of degrees of freedom used (right)
between different h-adaptive schemes during the computation. Linear interpolation (p = 1) is used.
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Figure 6.10 Comparison of the load-displacement relations between different h-adaptive schemes dur-
ing the computation. Linear interpolation (p = 1) is used.

discretisation is inadequate, a completely wrong failure mechanism may be trig-
gered, and the error at the end of the analysis, dominated by the steep gradients in
the failure zone, may lead to completely wrong adaptive information. Such a prob-
lem, fortunately, does not appear in this very test. Superiorly however, measuring
the error during the computation (Scheme 1) makes sure that the error information
is more relevant to where the discretisation should be more needed at that stage of
the computation.
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Figure 6.11 Comparison of the number of elements (left) and the number of degrees of freedom (right)
used between meshes of different orders during the computation with h-adaptivity scheme 1.

(B) Efficiency of the h-adaptive schemes
A global performance of the two h-adaptive schemes (i.e., Scheme 1 versus

Scheme 3) can be comparatively considered in terms of the number of degrees of
freedom. Via different adaptive schemes, Figure 6.9 shows how the discretisation
errors are reduced and the corresponding number of degrees of freedom used dur-
ing the computation. Note that H-Remesh I and H-Remesh II refer to the two meshes
used during Scheme 3. The adaptive meshes H-CPT and H-SFT, respectively based
on the closest point transfer (CPT) and the shape function remapping transfer (SFT),
refer to Scheme 1.

Evidently in this test, both schemes finally employ almost the same number of
degrees of freedom at the end of the computation. The load-displacement curves
in Figure 6.10 also show similar responses. The mesh providing the most accurate
response, regardless of the number of degrees of freedom used, in comparison to

the reference mesh‖, is probably the final mesh obtained from Scheme 3, where the
mesh is rearranged prior to each computation to capture the damage path obtained
at the final stage of computation.

(C) Interpolation order of the mesh
The examples shown above are based on a linear interpolation. We investigate

in Figure 6.11 the efficiency of the h-adaptive technique (Scheme 1) as higher-
order interpolations are applied. As expected, the number of elements used in
the h-adaptivity in order to maintain the error below 15% becomes less as the
higher-order mesh is used. However, it appears that, considering the number of
degrees of freedom, the higher-order meshes require higher computational cost
for the analysis, especially when strain localisation becomes dominant. This is

‖We refer here the response obtained by using Mesh 2 (cf. Figure 6.2) with quartic interpolation.
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Figure 6.12 Comparison of damage profiles between different techniques of variable transfer used in
h-adaptivity during the nonlinear computation. The plots are of the end of the loading process (Step 100,
u = 0.001).

understandable as we found in the preliminary tests, which also agreed with the
discussion in [69], that a sufficient mesh resolution is still needed to capture the
localisation zones, even though the higher-order interpolation is used.

(D) Performance of history transfer operations

Figure 6.12 shows the final damage profiles obtained after h-adaptivity based on
linear, quadratic and cubic meshes. Comparing different transfer techniques, the
damage seems to expand slightly more when applying the shape function remap-
ping transfer (SFT) than the closest point transfer (CPT). The higher the mesh order,
the more expanded the damage profile is.

We can simply explain this observation by the smearing-out feature of the SFT
approach, which becomes more apparent when the element size of the variable-
transfer zone is larger. Of course, by applying higher-order interpolation, the ele-
ment sizes are allowed to be slightly bigger, thus the damaged zone is dispersed
accordingly.

r-adaptivity

As an alternative to h-adaptivity, r-adaptivity based on a weighted Laplace smooth-
ing algorithm is investigated. Being the simplest version of all improvement tech-
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Figure 6.13 Comparison between the estimated errors obtained during r-adaptivity and those obtained
in the fixed reference meshes.

niques, the number of degrees of freedom, element connectivities, as well as order
of interpolation are fixed during the application of an r-adaptive scheme. We expect
an improvement of what is already available by relocating the nodes to where they
are needed most.

As introduced in Section 5.4, we control the speed of mesh gradation by the user-
specified parameter m (cf. Eq. (5.43)). Here, the default value of m = 1 will be used
in this analysis. The nodes on the edges x = 1.0 mm and y = 1.0 mm are allowed
to move freely in the vertical and the horizontal directions, respectively. Exceptions
are those nodes located at the corners and the crack tip, which must be fixed to
maintain the geometry of the test.

For this test, we choose to continue the computation after each mesh movement,
according to the error measure at the end of each loading step. Some interesting
observations are made as follows.

(A) Efficiency of weighted-smoothing-based r-adaptivity
The improved results after applying r-adaptivity can be measured relatively by

comparing them with the results from our reference meshes. In Figure 6.13, it is
shown how the results are improved by their estimated error during the compu-
tation. There, we activate the adaptivity in the initial Mesh 0, and two reference
meshes, namely Mesh 0 and Mesh 1, are for comparisons. Uniform linear interpo-
lation is applied in this test. It is evident that, by only relocating the nodes, the mesh
can be improved from the original mesh (cf. Figure 6.13 (left)), and the movement
is so efficient that the mesh even becomes of better quality than our reference Mesh
1 (cf. Figure 6.13 (right)). The nodes are relocated towards the damage region, as
can be seen in Figure 6.14.
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Figure 6.14 Evolution of the linear mesh during r-adaptivity, based on different variable transfer tech-
niques.
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Figure 6.15 Comparison between the damage profiles obtained by using different data transfer tech-
niques during r-adaptivity.

(B) Performance of history transfer operations

As the nodal points are relocated, the history variables again need to be trans-
ferred to the new discretisation in order to enable continuation of the finite element
computation. The mesh movements in Figure 6.14, resulting from the CPT and the
SFT approaches, are shown to be quite similar. Nevertheless, we can still notice a
denser set of elements at the lower edge when applying the CPT technique than
when applying the SFT technique. This is what we can expect when the SFT ap-
proach slightly spreads out the history variables for every mesh change. With con-
tinuous use of this transfer technique, the spreaded values continue spreading out
and thus the strain is not as localised as it should be. This cumulative transfer error
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Figure 6.16 Comparison between the load-displacement diagrams obtained by applying different vari-
able transfer techniques.

can result in a very different final damage profile shown in Figure 6.15. As an un-
desired consequence, the less localised solutions lead to a more ductile responses
in the post peak regime. This phenomenon is observed in Figure 6.16 (right), in
comparison to Figure 6.16 (left).

The choice of transfer technique affects the mesh undergoing r-adaptivity signif-
icantly, as the element sizes in the vicinity of the critical regions can be rather large,
as compared to the ones from the use of h-adaptivity. Thus application of the SFT
technique during r-adaptivity should completely be avoided.

p-adaptivity

The basic idea of p-adaptivity differs from other mesh improvement techniques,
such as h-adaptivity or r-adaptivity. Instead of reducing element sizes, p-adaptivity
improves finite element solutions by upgrading the finite element shape functions,
such that they can better capture the finite element solution, while the mesh geo-
metry is unaltered.

For simplicity, we allow the degrees of interpolation for this test not to exceed
4, i.e. quartic interpolation. p-adaptivity is activated whenever the critical error
threshold is exceeded. The interpolation function is upgraded to one higher
polynomial order at a time and no degrading of the mesh is allowed. Applying
p-adaptivity on three different base meshes leads to the following remarks.

(A) Efficiency of p-adaptivity
We investigate efficiency of p-adaptivity in terms of computational cost and accu-

racy. For modelling of strain localisation phenomena, upgrading the order of inter-
polation seems to provide a high global accuracy, as examined in the preliminary
tests, while the ability to capture the localised quantities relies very much on the
base mesh.
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Figure 6.17 Evolution of the interpolation orders during p-adaptivity, based on three different base
meshes.

0 0.0002 0.0004 0.0006 0.0008 0.001

Prescribed displacement (mm)

0.05

0.1

0.15

0.2

0.25

||
e

||
/|
|u

||

P−mesh0

P−mesh1

P−mesh2

0 0.0002 0.0004 0.0006 0.0008 0.001

Prescribed displacement (mm)

0

500

1000

1500

2000

2500

3000

N
D

O
F

Mesh 0

Mesh 1

Mesh 2

Figure 6.18 The normalised error estimates and the number of degrees of freedom used during p-
adaptivity: comparisons between three base meshes.



110 Chapter 6 Mesh adaptivity for continuous failure

0 0.0002 0.0004 0.0006 0.0008 0.001

Prescribed displacement (mm)

0

0.05

0.1

0.15

0.2

0.25

R
e
a
c
ti
o
n
 f
o
rc

e
 (

K
N

)

P−mesh0

P−mesh1

P−mesh2

Figure 6.19 The load-displacement relations during p-adaptivity: a comparison between three base
meshes.

Here, we apply p-adaptivity in the three selected base meshes. In Figure 6.17,
evolutions of the local polynomial upgrade in those meshes reveal that, even in the
coarsest mesh of all three (Mesh 0), the lowest order of interpolation is sufficient in
most of the domain. It appears in Mesh 2 that higher-order interpolation is actually
needed the most where high strain gradients exist, not where the highest damage
level appears. This observation is less apparent when using h-adaptivity (cf. Figures
6.7 and 6.8) and visually absent when using r-adaptive scheme (cf. Figure 6.14).

Controlled by the 15% error allowance, Figure 6.18 (left) reveals that a higher
order of interpolation than 4 is required in order to achieve the control value based
on Mesh 0. In contrast, for the other two (finer) meshes the maximum quartic
interpolation is adequate, or even too much in Mesh 2 where the cubic interpola-
tion is the maximum order needed. It is unfortunate that the polynomial degree
must be an integer, as upgrading one order higher may be excessive in reducing
the discretisation error at a time. However, considering the number of degrees
of freedom in Figure 6.18 (right), p-adaptivity can save a lot of computational
cost comparing to that employed in the uniform higher-order meshes (cf. Table
6.1). Even though the computational cost is much reduced, the finite element
approximation can still provide highly accurate global responses, as shown in
Figure 6.19.

(B) Effect of the initial mesh resolution
Although a high mesh resolution is recommended for a better capturing of state

variables, it is only needed in some regions in the problem domain, in particular
where the strain localisation takes place. As a result, the underlying mesh for the
rest of the domain (beyond those so-called process zones) can be constructed by ele-
ments as big as those in Mesh 0 (cf. Figure 6.17), where linear interpolation suffices.
Figure 6.18 (right) actually shows an increasing trend of the number of degrees of
freedom exploited in the analysis upon the increasing resolution of the underlying
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mesh. Those increased number of degrees of freedom are due to an excessive mesh
resolution (implying too small element sizes) used in the areas outside the process
zone, rather than capturing the strain localisation phenomena inside the process
zone.

In fact, the finite element analysis can benefit greatly from using p-adaptivity
if the various element sizes are designed according to the needs. This, of course,
refers to mixed adaptive approaches such as rp-adaptivity or hp-adaptivity, which
are beyond the scope of this research.

(C) Transfer of history variables
When some parts of the mesh are upgraded, the number of integration points

used in the elements in those parts generally needs changing. The higher the order
of interpolation is, the more integration points are needed. For those upgraded el-
ements, the history variables must be transferred from the old to the new sets of
integration points located in the same element, so that the computation can go on
without having to restart it.

To avoid complications, we employ a fixed set of integration points in each ele-
ment, implying that our p-adaptivity can go up to the highest interpolation orders
without any need to change the set of integration points. However, even if the trans-
fer is needed, the direct transfer, especially the CPT approach, seems to be natural
as it can be done elementwise. Considering the results from the other adaptive ap-
proaches∗∗, it is expected that the use of the SFT technique during the p-adaptivity
will result in a slightly larger expansion of the localisation zone, as the element sizes
are not reduced, than in the case of the h-adaptivity. However, the expansion will
not be as pronounced as in the case of r-adaptivity where the element sizes in the
vicinity of the process zones are growing.

Goal-oriented mesh adaptivity

The adaptive studies addressed earlier are based on the error measures in the solu-
tion norms. However, if one has a specific local quantity of interest, the adaptivity
should be driven by the error of such a quantity instead of the error in the global
solution. In this study, the performance of the goal-oriented adaptive computation
is investigated via h-adaptivity as it is the easiest, among the three approaches, to
visualise the adaptive level during the finite element computation.

We choose here the crack mouth opening displacement (CMOD) as our quantity
of interest. A half of this quantity can be measured as the displacement in the
y-direction at the lower left corner of the problem domain. Some observations can
be made as follows.

(A) Analysis of influence functions
We have learned from Chapter 4 that influence functions give information on

∗∗We refer back to the results from h-adaptivity (pp. 101–105) and r-adaptivity (pp. 105–108).
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Figure 6.20 Influence functions corresponding to the crack opening displacement, obtained from Mesh
2 with quadratic interpolation.

how a unit change of loading at each degree of freedom in a finite element model
affects a specific quantity of interest. In this context, this loading refers to the resid-
uals resulting from the finite element discretisation. Thus, in order to measure how
the residuals affect our quantity of interest, the corresponding influence functions
need to be determined.

As earlier addressed in Section 4.2, the influence functions can be obtained by
solving a dual problem. In nonlinear analysis, a question arises on how this dual
problem should be set, since the finite element solution depends very much on the
loading path. As a reasonable assumption, the dual problem is set as a stationary
linear problem at any computational step. At some selected computational steps,
three sets of influence functions†† of the crack mouth opening displacement are

††This corresponds to 3 degrees of freedom used in the implicit gradient-enhanced damage formulation.
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Measure I

(Eq. (6.30))

Measure II

(Eq. (6.31))

ū = 0.00020 mm 0.00050 mm 0.00060 mm 0.00100 mm

Figure 6.21 Meshes obtained during the goal-oriented h-adaptivity.

shown in Figure 6.20.
If we separate the discretisation residual into three parts, corresponding to each

degree of freedom, i.e.

• the residual component rx corresponds to the degree of freedom ux

• the residual component ry corresponds to the degree of freedom uy

• the residual component rε̆ corresponds to the degrees of freedom ε̆eq

It is found that a unit change of rx and ry consistently affects the CMOD, while
a unit change of rε̆ varies its influence on the CMOD during the loading process.
A unit change in rε̆ before the peak (i.e. at ū = 0.00020 mm) does not have any
influnce on the CMOD. However, once the strain starts to localise, the influence of
rε̆ concentrates at the crack tip (i.e. at ū = 0.00040 mm) and distributes in a more
uniform fashion in the damaged region in the later stage (i.e. at ū = 0.00060 mm
and ū = 0.00100 mm).

(B) Influence of discretisation error on the quantity of interest
After the influence functions are obtained, the error in the specific quantity (i.e.

CMOD) is measured. Figure 6.21 shows the meshes used during the goal-oriented
h-adaptivity, where two error measures

Measure I E I
k := |Btang+

k (ĕ, ǫ̆)| (6.30)

Measure II E I I
k := ‖ĕ‖tang+

k ‖ǫ̆‖tang+
k (6.31)

are compared. Though different, the mesh designs based on both measures also
show some similarities. It is evident that, in the linear elastic regime, accuracy of
the crack mouth opening displacement (as our goal quantity) depends greatly on
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Figure 6.22 The single edge notched (SEN) beam, with dimension in millimeters.

the discretisation at the point of interest and at the crack tip where there exists a
stress singularity. On the other hand, the discretisation in the process zone (damage
zone) becomes more demanding in the later stage when damage emerges.

The only difference clearly seen between the two measures is that, in the soften-
ing regime, Measure I detects an outstanding amount of error at the crack mouth
while the error in that region does not appear significant with Measure II. This may
be explained by the mathematical definitions of the two measures: there is a mixed
contribution‡‡ of the error of both problems in Measure I, while Measure II sepa-
rates the error of the primal problem and the error of the dual problem.

Note that the goal oriented adaptivity is controlled by threshold value ζgoal (cf.
Subsection 5.2.2) for both measures not to be more than 2.25%.

6.4 Single-edge-notched (SEN) beam test

Our second test is the single-edge-notched beam [84] whose geometrical details are
given in Figure 6.22. The material parameters used in this analysis are: Young’s
modulus E = 30000 MPa, Poisson’s ratio ν = 0.2, gradient parameter c = 0.3 mm2,
modified von Mises equivalent strain definition (cf. Eq. (6.5)) with k = 13.55 and
exponential softening law (cf. Eq. (6.11)) with κ0 = 0.000115,α = 0.96 and β = 100.
The beam, with a specified thickness of 100 mm, is analysed under a plane stress
condition.

The beam is subjected to a skew-symmetric four-point shear loading, which is
applied by means of an indirect displacement control. As the control parameter, an
incremental crack mouth sliding displacement of 0.001 mm is applied per compu-
tational step in the full Newton-Raphson iterative scheme.

To investigate the h-factor and the p-factor of the finite element discretisation, we
select three uniform triangular meshes, namely Mesh 0, Mesh 1 and Mesh 2 (cf.

‡‡By the word mixed contribution, we mean that the errors of both problems are multiplied in a componen-
twise fashion.
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Figure 6.23 Meshes used in the finite element analysis of the SEN beam.

Figure 6.23). Again, each of the four orders of interpolation (p=1 to 4) are applied.
Table 6.2 exhibits some details of these reference meshes.

6.4.1 Preliminary investigation

The reference meshes are investigated first. The tests are for examining effects of
the mesh resolution (h-factor) and the interpolation degree (p-factor) on the finite
element solutions of the SEN beam modelling.

The load-displacement responses obtained from those reference meshes are plot-
ted, comparatively, in Figure 6.24. The finite element computations obviously fail
when applying Mesh 0 and Mesh 1 with the interpolation order of less than 4 (quar-
tic interpolation). It is also found that, with linear interpolation, even the finest
mesh in the test (Mesh 2) leads to failure of the computation. The computational
failure occurs, apparently, before the softening process starts and cannot be avoided
by reducing size of the incremental load. These inadequate discretisations trigger
incorrect failure mechanisms.

From Figure 6.24, some further remarks are observed at two different stages.

• In the pre-peak stage, a less stiff response and subsequently a smaller load car-
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Mesh No. of Nodes No. of Elements p-order NDOFs

1 321
0 107 159 2 1116

3 2388
4 4137
1 1602

1 534 938 2 6015
3 13242
4 23283
1 5934

2 1978 3709 2 22992
3 51177
4 90489

Table 6.2 Information of fixed meshes used in the SEN beam computation.
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Figure 6.24 Load-displacement relations for the SEN beam.
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(a) Damage

(b) Error in energy norm

(c) Deformation (×100)

Figure 6.25 The damage profile, the error distribution and the deformation obtained by using Mesh 2
with quartic interpolation in Step 125 (CMSD = 0.125 mm).

rying capacity (ultimate load) are noticed, upon mesh refinement and mesh
enrichment. Considering the same number of degrees of freedom, increasing
the interpolation order (mesh enrichment) provides faster convergence than
refining the mesh.

• In the post-peak stage, a more brittle softening response is obtained upon
mesh refinement and mesh enrichment. In contrast to the early stage, how-
ever, reducing element sizes results in a better performance than enriching
the interpolation. The result is not surprising since it agrees with what we
have found in the last example and also in literature [6,69]. A sufficient mesh
resolution is clearly needed when the strain is more localised.

It is expected that damage may appear at three possible zones, namely

• Zone A, where the stress singularity is expected at the notch

• Zone B, where the maximum bending stress is expected
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(a) Damage

(b) Error in energy norm

(c) Deformation (×100)

Figure 6.26 The damage profile, the error distribution and the deformation obtained by using Mesh 0
with linear interpolation in Step 38 (CMSD=0.038 mm).

• Zone C, where a high bending stress is expected

as marked in Figure 6.22. With the material parameters set in this test, we find
that damage at the central zone (Zone A) is dominant and leads to failure of the
continuum, whereas damage at Zone B only grows to a limited extent. We do not
find any damage in Zone C in our reference Mesh 2 with quartic interpolation.
Plotted at Step 125 (CMSD = 0.125 mm), Figure 6.25 shows the damage profile, the
deformation and the error that seems to concentrate on the boundary of the primary
damaged zone where the high strain gradients exist.

The situation is different when the discretisation is not sufficient. Using Mesh
0 with linear interpolation, cracks at Zone B and Zone C appear to be dominant,
whereas no damage is detected at Zone A. This wrong result subsequently leads to
the appearance of the discretisation error at Zone B where there exist high strain
gradients, as shown Figure 6.26 for step 38 (CMSD = 0.038 mm). Now, imagine if
we use the results obtained from the coarse mesh at this final step to consider where
adaptivity should take place. Obviously, the error leads to wrong information (see
Figure 6.26(b)) and the adapted mesh is completely useless. To obtain the right
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(a) Damage

(b) Error in energy norm

(c) Deformation (×100)

Figure 6.27 The damage profile, the error distribution and the deformation obtained by using Mesh 2
with quartic interpolation in Step 38 (CMSD = 0.038 mm).

information about adaptivity, it is clear that the mesh should be updated during the
loading process. See Figure 6.27 for a comparison with the reference discretisation
(Mesh 2 with quadratic interpolation) at the same step.

6.4.2 Mesh adaptive tests

Similar to the central transverse crack test, we allow 15% of the error measure to be
present in the analysis. However, since the test is complicated due to very high gra-
dients in the solution, in order to limit the computational effort, we will put some
limits in the adaptive level. These limits will be mentioned later in this subsection.

The discretisation error is estimated at the end of some selected computation
steps. All three adaptive approaches are investigated. Filtered by the adaptive cri-
teria (cf. Section 5.2), some regions in the finite element mesh may be improved via
h-adaptivity, r-adaptivity or p-adaptivity. Comparisons between the three methods,
in terms of performance, will be discussed in this subsection.
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Figure 6.28 Relations between load and crack mouth sliding displacement for the tests based on one
activation of h-adaptivity, in comparison to those based on reference fixed meshes.

h-adaptivity

(A) Effect of adaptive timing on FE solutions
The preliminary tests in the last subsection show one obvious disadvantage of

using error estimates at the end of the computation in driving mesh adaptivity.
Certainly, the adaptive process activated during the FE computation gives the in-
formation that is more relevant to the updated situation at that step of the compu-
tation. However, we would like to focus on how adaptivity helps in improving the
solution at different stages during the computation.

To investigate this, we activate, only once during the computation, the adaptive
process and see how it affects the FE solution. The starting mesh is chosen to be
Mesh 0 with quartic interpolation, and two tests based on h-adaptivity are put un-
der investigation. That is,

• Test A-1: the adaptivity is activated only once in the linear elastic regime
(Step 1, CMSD = 0.001 mm)

• Test A-40: the adaptivity is activated only once in the softening regime (Step
40, CMSD = 0.040 mm)

If adaptivity is activated at Step 1 only (Test A-1) and the computation is con-
tinued further, we get a load-CMSD response that is very similar to the one using
Mesh 1, although the response in the softening part is more ductile (cf. Figure 6.28).
The FE solution has improved greatly after only one adaptive process at the begin-
ning of the computation. The modified mesh and the damage at CMSD=0.100 mm
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(a) Mesh 0 (Original Mesh)

(b) Mesh 2 (Reference Mesh)

(c) h-adaptivity at CMSD = 0.001 mm only (Test A-1)

(d) h-adaptivity (+CPT) at CMSD = 0.040 mm only (Test A-40)

Figure 6.29 The damage profiles at CMSD = 0.100 mm for the tests based on one activation of h-
adaptivity, in comparison to those based on reference fixed meshes.

in Figure 6.29 (c) shows needs of using smaller elements at the loading points, es-
pecially at the inner-pair loading points, and around the notch, whereas relatively
big elements (roughly, twice as big as those of the initial mesh) can be used for the
rest of the domain.

Of course, the adaptive process activated at Step 40 (Test A-40) requires the vari-
able transfer algorithm and is thus more complicated. Specifically, we have cho-
sen the closest point transfer technique for this test. Figure 6.28 reveals that after
the remeshing, the response jumps from the original path to a new path, which is
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CMSD = 0.011 mm

CMSD = 0.021 mm

CMSD = 0.031 mm

CMSD = 0.041 mm

CMSD = 0.051 mm

CMSD = 0.061 mm

CMSD = 0.071 mm

Figure 6.30 Damage evolution and corresponding h-adaptivity in the SEN beam.
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Figure 6.31 Load-CMSD relations for the SEN test with h-adaptivity.

closer to the result obtained by the reference mesh. Apparently, using the error in-
formation at Step 40, a more intense mesh discretisation is desired in the central
part where the damage takes place compared to the outer-pair loading supports
(cf. Figure 6.29 (d)).

This test reveals the importance of using mesh adaptivity in both the pre-peak
and post-peak regimes. For the best result, it should be activated a sufficient
number of times during the computation to make sure that the cracking process
follows a correct path with a realistic width of the process zone.

(B) Analysis of mesh adaptivity
Due to the complexity of the SEN beam problem, the FE analysis requires more

computational cost than it does in the previous example. Instead of computing er-
ror and activating adaptivity at every step of computation, we activate the pro-
cesses every 10 steps, in order to get reasonable updates of the mesh balanced with
the demands on computational efforts. With the total CMSD subdivided in 200 in-
crements, this implies 20 possible adaptive processes during the entire analysis.

We start the h-adaptivity with Mesh 0 with quartic interpolation. We prevent
excessive refinement by specifying the possible element size not to be smaller than
the minimum value, which in this test is half of the element size of Mesh 2. Some
remarks can be drawn from the mesh evolution and the corresponding damage
profiles in Figure 6.30. The error that appears at the loading points in the linear
elastic regime tends to reduce in the later stages (especially in the softening regime).
The error at the zones of localised strains, rather than that at the loading points,
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Figure 6.32 Number of degrees of freedom used in the SEN beam with h-adaptivity.

simply takes more control of the adaptive process.
Compared with the results from the reference meshes, it is shown in Figure 6.31

that the result from the h-adapted mesh almost duplicates the result of Mesh 2.
Actually, when smaller element sizes than those in Mesh 2 are applied at the critical
zones, a more softened behavior is obtained in the adapted mesh. Considering the
computational cost, the number of degrees of freedom used in the adapted case
varies during the loading process. Figure 6.32 reveals that the maximum number
of degrees of freedom used in the computation is 21099, while in Mesh 2 without
any adaptivity, this number is more than four times as much (cf. Table 6.2).

The decrease in number of the degrees of freedom, in Figure 6.32, is partly due
to our restriction of element sizes. As the element size cannot be smaller than the
minimum specification, the number of degrees of freedom at the process region
is restricted. In the meanwhile, the element size requirement at the loading point
regions is more relaxed during crack propagation and larger element sizes are ap-
plied, which reduces the total number of degrees of freedom.

r-adaptivity

Although improvement via h-adaptivity is proven to be very efficient as the mesh
can be optimally designed according to the a priori estimate, it is always interesting
to see how the FE solutions are improved by means of r-adaptivity. Without extra
costs, the mesh gradation can help in adjusting the mesh size to capture the problem
area to enable the optimal usage of the available resource of finite elements.

We allow the internal nodes to move freely, whereas the boundary nodes can
move along their corresponding edges. An exception is made for those at the cor-
ners, which need to be fixed in order to maintain the geometrical descriptions. Here,
the previous test based on Mesh 0 with quartic interpolation is re-investigated via
r-adaptivity. A default value of the grading parameter, i.e. m = 1 (cf. Eq. (5.43)), is
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Figure 6.33 Damage evolution and corresponding r-adaptivity in the SEN beam.
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Figure 6.34 Load-CMSD relations and the corresponding number of degrees of freedom used in the
SEN beam with p-adaptivity.

employed.

The load-CMSD response, plotted in Figure 6.31 in comparison to those of the
reference meshes and the h-adapted mesh, reveals a very high level of improve-
ment, especially in the softening regime. Despite such great improvement, we do
not get the pre-peak response (and correspondingly the peak loading) as accurate
as the one using Mesh 1.

Figure 6.33 shows how the mesh evolves during the computation. The adaptiv-
ity is apparently able to capture damage profiles that look similar to the results
obtained by using h-adaptivity, although not as accurate. However, we can notice
that the approach lacks the capability to allocate sufficient mesh resolution at the
loading points and at the notch tip, possibly due to the mesh restriction and/or the
insufficient mesh movement. This observation explains why a more accurate pre-
peak response is not obtained. To overcome this, one may consider using a higher
value of the m parameter to enhance the gradation step. Certainly, higher resolution
of the initial mesh should be considered. Otherwise, other means of improvement
should be used instead to provide a better result in the pre-peak stage.
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p-adaptivity

To complete our study on mesh adaptive modelling of the SEN beam, p-adaptivity
is also investigated. In this study, the interpolation function is upgraded to one
order higher at a time, whenever needed. Degrading is prohibited and quartic order
of the interpolation is set as the maximum allowance in our p-adaptive study.

As mentioned earlier, the basic idea of mesh enrichment is that, instead of de-
creasing mesh size, providing a less demanding work via the lower-quality inter-
polation, quality of the interpolation itself has to be improved. Nevertheless, with
no change in mesh configuration, the capability of the p-adaptive scheme in the FE
modelling seems to be limited to the maximum order of polynomial interpolation
used. With up to quartic order, the FE computation is expected to give results that
are of comparable accuracy as those using the same mesh with uniform quartic
interpolation.

We examine p-adaptivity based on Mesh 0 and Mesh 2, in order to find effects of
the base mesh on the FE solution. In Figure 6.34, it is found that the load-CMSD re-
sponse obtained by using Mesh 0 with varying order of interpolation (p-adaptivity)
resembles the one obtained by using the same mesh with the fixed uniform quartic
interpolation. The same situation is also observed in case of Mesh 2. By this test, the
remark mentioned in the last paragraph is once more proven.

Despite the fact that p-adaptivity provides a comparable result to the one based
on the fixed higher-order mesh, costs required during the computation for both
cases are quite different. The number of degrees of freedom, which reflects the com-
putational cost, can be greatly reduced via p-adaptivity. It is shown in Figure 6.34
that, considering Mesh 0, the number of degrees of freedom that is necessary during
the computation varies from 321 to 2349, in order to get results similar to those of
the fixed mesh with 4137 degrees of freedom. A greater saving is observed in Mesh
2, where the same figure shows only 5934 to 13779 degrees of freedom needed in
the computation, instead of 90489 degrees of freedom needed when employing the
uniform quartic interpolation.

Figure 6.35 and Figure 6.36 show how the elemental order of the interpolation
evolves during the computation. It is evident that intense mesh enrichment is
needed at the loading points and where damage takes place. Comparing the results
from the two base meshes, the p-extension is able to capture the damage function
better when the resolution of the base mesh is sufficiently high. However, outside
the critical regions, the mesh resolution can be more relaxed as the p-adaptivity
alone should be able to take care the process without any problem.

6.5 Remarks

In this chapter, the basic knowledge described in Chapter 2 to 5 has been applied
to the gradient-enhanced damage continuum. The error measures, which are set
based on the positive-definite part of stiffness matrix, include those in a solution
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norm and in a specific quantity, i.e. the crack mouth opening displacement. To seek
the most suitable mesh discretisation for the model, the h-factor and the p-factor
have been studied. Moreover, the mesh adaptive strategies, including h-adaptivity,
p-adaptivity and r-adaptivity, have been examined for comparisons.

In the study, we have found that the discretisation error in linear elastic regime
appears to concentrate at the supports and the notches (where there exists singu-
larity). Once the damage is initiated, the error in the damage zone appears to take
more control. During the loading process, a sufficiently refined or enriched discreti-
sation is obviously needed in the zone of high strain gradient, which is usually the
zone where damage appears. However, containing the highest damage level does
not mean that the zone needs the most refined/enriched discretisation. As a good
alternative to the error estimation, an error indication, after the damage is initiated,
should be the gradient of the equivalent strain or of its nonlocal counterpart, rather
than the damage level. Via goal-oriented adaptivity based on crack mouth opening
displacement, we have also found in the example that, once the damage appears,
correct modelling of the damage and the strain profiles also guarantees accuracy of
the specific quantity.

The study of history transfer techniques, namely shape function remapping
transfer (SFT) and the closest point transfer (CPT), have agreed well with the litera-
ture [69]. That is, the transfer with low diffusion properties (i.e. the CPT) is capable
of retaining the width of the damage/localisation zone. However, if the number of
integration points is small, the transfer may also create an expansion of the dam-
age/localisation zone or a less accurate history transfer, especially at the boundary
of the history variable profiles. On the other hand, although the SFT technique has
less capability of retaining the damage/localisation zone width, it seems to pro-
vide fairly accurate transfer in case of h-adaptivity. For r-adaptivity, we strongly
recommend not to use the SFT technique, as its expansion effect can be much more
induced.

We have studied two examples in this chapter. In the central transverse crack test,
it has been shown that the various adaptive strategies and error measures are all
capable of attaining user-prescribed error levels. Generally, however, the adapted
mesh strongly depends on whether the global error or the error in quantity of in-
terest is used.

Based on the results of the SEN beam example, we conclude that the best adap-
tive approach for the damage modelling should be p-adaptivity in the pre-peak
regime as it can provide the fastest convergence of all methods, especially when
the mesh is well-graded toward points of supports and re-entrant corners. How-
ever, p-adaptivity alone is not very efficient in capturing the strain localisation of
the post-peak regime, resulting in a too ductile response. Thus, h-adaptivity and r-
adaptivity may be more preferred, although the best choice would be the combina-
tion of the p-adaptivity with h-adaptivity or r-adaptivity. Nevertheless, a survey of
the combined approaches is, unfortunately, beyond the scope of this work.



CHAPTER

SEVEN

Mesh adaptivity for discontinuous failure

Whereas the previous chapter dealt with the continuous modelling of failure, in this
chapter the discontinuous modelling will be investigated. The basic idea behind this
approach is opposite to the continuum concept where the displacement field and
the strain field remain continuous throughout the entire cracking process. Instead,
displacement/strain discontinuities are introduced in the problem domain to rep-
resent cracks.

In modelling of failure, two main discontinuity concepts have been proposed. As
a classical approach, the linear elastic fracture mechanics (LEFM) model [37,45,76,77]
considers sharp cracks in elastic bodies. The fracture process is assumed to occur
at the tip of these cracks, which focuses in small regions, whereas the rest of the
material domain remains elastic. The energy dissipation is governed by the energy
release rate computed from the stress field around the crack, which is singular at the
tip of the crack. Normally, the resulting failure process is brittle. For the modelling
of quasi-brittle failure, a more suitable model is based on the cohesive zone concept
[17,34,41]. To simulate nonlinear material behaviour in the crack tip region, inelastic
deformations ahead of a pre-existent crack tip are modelled as cohesive tractions
transferred from a fictitious face to the other, representing a so-called cohesive crack.
In the region of the newly-formed crack tip (the cohesive crack tip), the stresses are
bounded.

The cohesive zone model employed in this chapter is based on the partition of
unity (PU) principle. Using the concept proposed in [21, 58, 100], a displacement
discontinuity (also known as strong discontinuity) can pass through a finite ele-
ment without the necessity to remesh. Two sets of unknowns, i.e. the regular and
the enhanced degrees of freedom, are introduced to model the discontinuity. The
concept that the enhanced degrees of freedom are gradually added in the finite el-
ement computation during crack extensions can be regarded as an adaptive feature
in the PU-based discontinuity model. However, despite this feature, how the finite
element mesh is discretised is still crucial, as the criteria for extending a disconti-
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Figure 7.1 Definition of subdomains and boundaries of a body crossed by a discontinuity.

nuity relies upon a correct computation of stresses. Some discretisation aspects will
be presented and discussed in this chapter.

7.1 PU-based cohesive zone model

In Chapter 2, we have presented the concept of the hierarchical interpolation en-
hancement via partitions of unity. Applying a similar concept to the modelling of
the discontinuity, the displacement field reads

u = ureg +HΓc uenh

︸ ︷︷ ︸

udis

(7.1)

where the two continuous functions ureg and uenh represent the regular part and
the enhanced part of the complete displacement field u. Note that the second right-
hand-side term in Eq. (7.1) contributes a discontinuous field in the standard dis-
placement field and is herein referred to as udis. The Heaviside function is defined,
depending on the location of a point x with respect to the discontinuity (crack)
boundary Γc (cf. Figure 7.1), as

HΓc =

{
1 where x ∈ Ω

+

0 where x ∈ Ω
− (7.2)

At the discontinuity, the displacement jump is defined as

JuK = uenh|
Γc

(7.3)

The kinematics at a discontinuity is based on a local coordinate system (n, s) for a
two-dimensional problem, where n denotes the component in the normal direction
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to the discontinuity and s denotes the component in the shear (tangential) direction
to the discontinuity. Correspondingly, the discontinuity jump JuK consists of two
local components, i.e. JuKn and JuKs.

Since, in the cohesive zone concept, failure is controlled mainly by Mode I frac-
ture, the normal component (involving the normal opening of the crack) dominates
the softening behaviour at the discontinuity interface. We define an equivalent dis-
placement jump, which is a scalar measure of the displacement jump, as

JuKeq = JuKn (7.4)

which will be used as a parameter in the loading function f defined as

f (JuKeq,κ) = JuKeq −κ (7.5)

where the history parameterκ is defined as the highest value of JuKeq ever achieved.
The normal traction at the discontinuity surface Γc can be defined in terms of the

tensile strength ft and the fracture energy G f of the material [100] as

tn = ft exp

(

− ft

G f
κ

)

(7.6)

The traction in the other direction (i.e. s-direction) in the local coordinate system
(n, s) is defined differently. However, for simplicity, it will not be considered in this
study (i.e., ts = 0 here). For the complete definition of the local interface tractions,
the reader is referred to [99].

Activation of enhanced degrees of freedom

Once a crack propagates through an element, a set of enhanced degrees of freedom
along the crack path is activated to enable modelling of the discontinuous field.

Figure 7.2 Activation of enhanced degrees of freedom in higher-order elements. On nodes and edges,
the corresponding enhanced degrees of freedom are activated where the square symbols position. Also,
if internal displacement modes exist, the enhanced degrees of freedom in the shaded elements are acti-
vated.
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For those affected elements, the enhanced degrees of freedom at their nodes (ver-
tex displacement modes), at their edges (edge displacement modes) and inside the
elements (internal modes) are activated. The only exception is at the discontinu-
ity tip, as it is important to fix the displacement jump at the discontinuity tip to
zero. Therefore, if the discontinuity ends at an edge, the enhanced edge degrees of
freedom will not be activated. This also applies when the discontinuity ends at a
node, where the enhanced degrees of freedom of that particular node must not be
activated. See Figure 7.2 for an example.

Discontinuity extension and orientation

There are some criteria to drive the extension of the discontinuity. Judging from the
tensile strength of the material, a principal stress criterion [87, 99] may be consid-
ered. The criterion suggests that the discontinuity be extended when the maximum
principal tensile stress at all integration points in the element ahead of the crack
tip exceeds the tensile strength of the material. When it happens, the discontinuity
is extended, in a straight line, through the whole element and ends at an element
edge or a vertex node.

The discontinuity is extended in the direction normal to the direction of maxi-
mum principal stress. It is suggested in [87, 99] that, to prevent the incorrect direc-
tion determined from the local stress field, a non-local weighted average of stresses
in a local domain (interaction domain) Ωs may be used. The normal direction to the
crack line, defined by a directional vector dΓc , is computed from

dΓc =
nq

∑
i=1

σ
(1)
i Vi wi d

(1)
i (7.7)

where ’nq’ represents the number of the quadrature points (integration points) in

the interaction domain. σ
(1)
i , Vi and wi denote the first principal stress, the gaussian

weight and the interaction weight, corresponding to the integration point i. d
(1)
i is

the unit vector indicating the principal stress direction. The interaction weight wi is
computed from

wi =
1

(2π)3/2(rmax)3
exp

(

− ri
2

2(rmax)2

)

(7.8)

where ri is the distance of the integration point i from the discontinuity tip. Note
that it is recommended to use the interaction radius rmax about three times the
average element size ahead of the crack tip [99].

Numerical integration

When elements are crossed by a discontinuity, a special integration rule must be
applied to ensure sufficient integration of the crossed elements. It is suggested in
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[87,99] to subdivide each element portion to create small subdomains of a standard
element shape, such as quadrilateral or triangular subdomains. Doing so allows
the classical Gauss quadrature rule to be straight-forwardly applied in each sub-
domain. An example of this subdomain integration is illustrated in Figure 7.3.

Figure 7.3 Subdivision of the element domain for numerical integration in enhanced quadratic ele-
ments.

7.2 Error analyses

As mentioned in the previous section, the PU-based cohesive crack model requires
two sets of unknowns, namely the regular displacement field and the enhanced dis-
placement field, i.e. u = {ureg, uenh}, to describe discontinuities. Both fields appear
in the standard finite element computation given by

Btang(∆u(h,p), v(h,p))|(t−1:t) = ∆F (v(h,p))|(t−1:t) (7.9)

where u is updated during the Newton-Raphson iterative scheme, i.e.

u(h,p)|(t) = u(h,p)|(t−1) + ∆u(h,p)|(t−1:t) (7.10)

As both sets of unknowns contribute to model discontinuities, they must also be
included in the error analysis. We seek the error solution e = {ereg, eenh} by solving
a set of error equations

Btang(e(h̃, p̃), v)|(t) = Ru(v(h̃, p̃))|(t)

= F (v(h̃, p̃))|(t) −B(u(h,p), v(h̃, p̃))|(t)
(7.11)

The error computation follows the process described in Chapter 3, whereby a series
of patch-based error equations is solved instead of a global computation.

Setting a proper norm

The finite element discretisation leads to a consistent tangent stiffness matrix of the
form

Ktang = Btang(φ,φ) =

[
Krr Kre

Ker Kee

]

(7.12)
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where subscripts r and e corresponds to the regular degrees of freedom and the
enhanced degrees of freedom, respectively. The components of the stiffness matrix,
addressed in Eq. (6.21), are defined as

Krr =
∫

Ω

∇φ : De : ∇φ dΩ (7.13)

Kre = Ker =
∫

Ω+
∇φ : De : ∇φ dΩ (7.14)

Kee =
∫

Ω+
∇φ : De : ∇φ dΩ

︸ ︷︷ ︸

K
(1)
ee

+
∫

Γd

φ : T :φ dΓ

︸ ︷︷ ︸

K
(2)
ee

(7.15)

where T is defined as a matrix obtained from the relation

ṫ = TJu̇K (7.16)
{

˙tn

ṫs

}

=

[
Tnn Tns

Tsn Tss

] {
Ju̇nK
Ju̇sK

}

(7.17)

Consider the case with no shear traction, the components Tns,Tsn and Tss are equal
to zero. The only non-zero component reads

Tnn = − ft
2

G f
exp

(

− ft

G f
κ

)

(7.18)

It is worth noting that, without shear traction components, T is automatically
symmetric. This subsequently leads to a symmetric tangent stiffness matrix K tang.

Similar to Chapter 6, the constitive model includes softening and it is possible
that computation of the error norm via use of the consistent tangent stiffness matrix
Ktang leads to a negative value, by which the norm defined in Chapter 3 becomes
meaningless. Apparently, the only term that induces the negative definiteness to
the stiffness matrix Ktang is the second term in Eq. (7.15). Thus, to ensure positive
definiteness, the norm to be used for this model is defined by neglecting this term.
The modified stiffness matrix for the norm computation then reads

Kmod = Bmod(φ,φ) =

[

Krr Kre

Ker K
(1)
ee

]

(7.19)

Note that Kmod can be regarded as the linear elastic stiffness matrix. The energy
norms of the solution and the error can then be written, respectively, as

(‖u‖mod)2 = Bmod(u, u) = (‖u‖mod)2 = u : Kmod : u (7.20)

(‖e‖mod)2 = Bmod(e, e) = (‖e‖mod)2 = e : Kmod : e (7.21)

These norms will be used in this chapter in setting the adaptive criteria and driving
mesh adaptivity.
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Figure 7.4 Descriptions of the patch test and the deformed configurations (× 100) of the linear meshes
used.

Performance of error estimator for PU discontinuity model

The error estimation in the PU discontinuity model can be implemented straight-
forwardly by the concept addressed in Chapter 3. However, since we also include
the enhanced set of degrees of freedom, it is interesting to analyse how the error
estimator, based on solving a series of local problems, performs.

A simple patch test is selected for this explorative investigation. Described in Fig-
ure 7.4, the patch with an eccentric pre-defined traction-free crack is pulled in the
vertical direction. Three meshes are used, each of which employs different orders
of interpolation ranging from linear order (p = 1) to quartic order (p = 4).

Since there is no analytical solution to this problem, we compare the estimated
error to the error obtained from solving a global system of error equations. Since
this concerns a linear elastic test, the stresses are singular at the crack tip and we
expect its effect on the missing global components [42]. It is shown in Table 7.1
that the capability to replace a global computation by a series of local computations

(measured through the index θg := ‖e‖loc/‖e‖glob) is decreased with an increasing
number of elements and increased with an increasing mesh order. The first obser-
vation can be explained by the fact that in a fine mesh (i.e. smaller elements, larger
number of elements) there are more local problems to be solved instead of a global
problem and thus the interaction between distant patches is decreased. To explain
the second observation, we must bear in mind the fact that the smoothness of the
solution is increased when the interpolation order is higher. The smoother solution
may also imply an increase of the interaction between distant patches. As a result,
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Mesh Order DOFs Reference ‖e‖loc ‖e‖glob
θg

1 p = 1 60 p = 2 2.40 2.49 96.4%
1 p = 2 180 p = 3 1.10 1.13 97.4%
1 p = 3 364 p = 4 0.66 0.67 98.5%
2 p = 1 252 p = 2 1.45 1.56 92.9%
2 p = 2 884 p = 3 0.69 0.73 94.5%
2 p = 3 1900 p = 4 0.51 0.53 96.2%
3 p = 1 884 p = 2 1.01 1.16 87.1%
3 p = 2 3300 p = 3 0.55 0.61 90.2%
3 p = 3 7252 p = 4 0.44 0.46 95.6%

Table 7.1 Comparison of the estimated and the reference global error obtained in the patch test.

10 100 1000 10000 100000
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||
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Figure 7.5 Convergence analysis of the patch test. Uniform orders of interpolation ranging from p = 1
to 4 are applied.

the error estimation based on solving local problems performs better for a higher-
order mesh.

The error estimates provided in Table 7.1 are plotted in Figure 7.5 to study con-
vergence of the finite element solution. Since we restrict the pre-defined crack not
to propagate, this problem is merely a linear elastic analysis. As expected, the error
decreases in a faster rate via p-extension than it does via h-extension.

7.3 Crossed crack test

For a propagating discontinuity based on the cohesive zone concept, the crossed
crack test (cf. Figure 7.6) is selected as our first test. The problem domain is anal-
ysed under a plane stress condition. The displacement control algorithm is applied
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with an incremental prescribed displacement at the top edge of ū = 0.0001 mm and
the full Newton-Raphson iterative scheme is applied. The vertical crack causes sin-
gularities but does not propagate, hence can be modelled via appropriate boundary
conditions; whereas horizontal crack does propagate and is modelled in its entirety.
For these reasons, only the right half of the test is analysed.

7.3.1 Preliminary investigation

Although, via the PU concept, a crack can propagate through the mesh without
the necessity to remesh, the crack extension criterion based on variables such as
stresses may depend heavily on the initial mesh discretisation. To investigate the
effect of the h-factor and the p-factor of the finite element discretisation, we select
three uniform triangular meshes, namely Mesh 0, Mesh 1 and Mesh 2 (cf. Figure
7.7), to each of which four different orders of interpolation (p = 1 to 4) are applied.
Basic details of these reference meshes are given in Table 7.2.

Effect of mesh discretisation on FE solutions

The PU-based discontinuity model activates the elemental sets of the enhanced de-
grees of freedom (i.e. uenh) during crack propagation. This results in an increas-
ing number of unknowns during the analysis. It is shown in Figure 7.8 that, upon
mesh refinement (h-extension), the number of unknowns increases in a more grad-
ual way. Smaller elements imply smaller distances for crack extension at a time.
On the other hand, since the element size is not altered upon mesh enrichment (p-
extension), the number of unknowns keeps progressing in the same-size steps for
a fixed mesh with different mesh orders. In both extensions, we do observe ear-
lier crack extension processes upon mesh improvement, either by h-extension or
p-extension.

The load-displacement relations in Figure 7.9 reveal that the finite element com-
putation tends to overestimate the reaction forces corresponding to the prescribed
displacements. The response obtained by using Mesh 0 with linear interpolation is
significantly different from the others (cf. Figure 7.9 (upper-left)). However, upon h-
extension and/or p-extension, the solution is greatly improved. In terms of smooth-

1 mm

1 mm

0.16 mm

0.33 mm

• PU discontinuity model

based on cohesive crack concept [99]

(E = 1.0 MPa, ν = 0.20)

• Plane stress condition

• Thickness = 1 mm

• Evolving discontinuity law
( ft = 0.01 MPa and G f = 0.0001 N/mm)

• Right half modelled

Figure 7.6 The crossed crack test.
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Mesh 0 Mesh 1 Mesh 2

Figure 7.7 Meshes used in the finite element modelling of the crossed crack test.

Mesh No. of Nodes No. of Elements p-order No. of basic DOF

1 152
0 76 120 2 542

3 1172
4 2042
1 440

1 220 384 2 1646
3 3620
4 6362
1 872

2 436 792 2 3326
3 7364
4 12986

Table 7.2 Information of fixed meshes used in the crossed crack test. The basic degrees of freedom
includes the basic displacement modes without any contributions of the enhanced degrees of freedom,
i.e. only the first and the second degrees of freedom are counted.
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Figure 7.8 The increased number of unknowns during the PU-based discontinuity analysis in the
crossed crack test. Three meshes with four uniform interpolations are investigated.
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Figure 7.9 Load-displacement relations of the crossed crack test based on Mesh 0, Mesh 1 and Mesh 2.
The uniform interpolation ranges from linear order to quartic order (p = 1 to 4).

ness of the global response, only h-extension can provide a considerable improve-
ment, since a finer mesh allows the discontinuity to be extended in smaller steps.

Despite the above-mentioned superiority of h-extension over p-extension in the
discontinuity analysis, the former approach is not suitable for adaptive analysis as
its implementation can become very complicated due to the altered mesh config-
uration after remeshing. All information of the discontinuity must be transferred
with care. In fact, if only the global responses obtained from the coarse mesh are fit-
ted to provide smooth relations, p-adaptivity can be an excellent alternative choice
in improving the finite element results without any change in mesh topology.

Analysis of error information

In the previous section, we have argued the use of the positive-definite part of the
stiffness matrix (i.e. the linear elastic stiffness matrix), instead of the tangent stiff-
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Figure 7.10 Normalised error estimated during the finite element analysis of the crossed crack test.

ness matrix, to be employed in the norm computation. This also means that the
same stiffness matrix is used for all of the error computations during the finite ele-
ment analysis. Based on Mesh 0 and Mesh 2, the normalised errors assessed at the
end of each loading increment are shown in Figure 7.10. Upon mesh improvement,
the error tends to decrease in the same fashion for all cases.

The elemental error distributions, obtained in the linear meshes, are shown in
Figure 7.11. Three stages are selected; the beginning, the intermediate (i.e. when the
crack is about to propagate across half the specimen), and the end. It is observed
that large errors are located at the supports and at the crack tip, especially at the
traction-free pre-defined crack tip. As we always expect large errors in the area
where there exist high gradients of stresses (and also strains), it is interesting to see
how the stress evolves during the discontinuity analysis to get a good explanation
for the findings.

The evolution of the first principal stress during crack propagation is shown in
Figure 7.12. It is observed that, when the crack is not yet extended, this principal
stress concentrates in the region around the tip of the pre-defined crack, which is
traction-free. Once the crack propagates, the stress profile becomes slightly more
uniform. This is because of the cohesive zone concept by which stress singularity
at the crack tip is translated to inelastic deformation during crack propagation. The
evolving stress contours correspond to the error distributions shown in Figure 7.11.

7.3.2 Mesh adaptive tests

In the crossed crack test, the discretisation error is approximated at the end of each
numerical step. Filtered by the adaptive criteria (cf. Section 5.2), some regions in
the finite element mesh may be improved via various techniques of mesh adaptiv-
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Figure 7.11 Distribution of the estimated elemental error obtained in the crossed crack test at the
beginning of the computation, at the half way of the specimen and at the end of the computation. Three
uniform linear meshes are investigated.
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Figure 7.12 Contours of the first principal stress during crack propagation in the crossed crack test.

ity. However, there are some implementational complexities that may arise in the
adaptive PU-based discontinuity model due to the change of mesh topology. First
of all, detailed information of the discontinuity path that is stored for each element
must be transferred. Correspondingly, the special integration scheme applied in
the enhanced elements must be reset. These implementational complexities are not
impossible to overcome, but they pose enough difficulties that make the adaptive
scheme not worth to be carried out.

For this reason, it is best to avoid complicating mesh adaptivity by changing
the mesh configuration via h-adaptivity or r-adaptivity. In addition, as we notice
from the uniform mesh improvement in the last subsection, the p-factor can greatly
improve the result, regardless of the non-smooth responses observed. The perfor-
mance of p-adaptivity will be investigated and discussed in this subsection. As it is
a simple problem, we employ a stricter control criterion by requiring that the error
will not be beyond 3% of the solution norm (cf. Eq. (6.28)).

p-adaptivity

By upgrading the mesh order in a hierarchical manner, p-adaptivity avoids the
complicated transfer of discontinuity information. Since the mesh configuration is
fixed, extra degrees of freedom added to improve the finite element solution can be
straightforwardly inserted in the formulation during computation. Considering the
results from the preliminary investigations in Section 7.3.1, we could benefit from
p-adaptivity in terms of accuracy by relatively low additional cost.

For simplicity, we require the degrees of interpolation not to go beyond quartic
order of interpolation. The adaptive technique is activated whenever the critical
error threshold is exceeded. The interpolation function is upgraded to one higher
polynomial order at a time and no degrading of the mesh is allowed. Applying
p-adaptivity on three different base meshes leads to the following remarks.



146 Chapter 7 Mesh adaptivity for discontinuous failure

p

3

2

1

p

3

2

1

p

3

2

1

Begining Intermediate End

Figure 7.13 Distribution of the interpolation orders in the crossed crack test at the beginning of the
computation, half-way the computation and at the end of the computation. Three uniform linear meshes
are investigated.
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Figure 7.14 The increased number of unknowns during the p-adaptive PU-based discontinuity analy-
sis.
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Figure 7.15 Comparison of load-displacement relations obtained in the uniform meshes and the p-
adapted mesh.

(A) Efficiency of p-adaptivity
Based on the elemental error distribution shown in Figure 7.11, mesh improve-

ment may be needed only in some small zones in the problem domain. In these
zones, including the zones where the supports change type and where high stress
gradients exist, higher order interpolation may be needed, while lower order inter-
polation should be sufficient in most of the domain.

As expected, Figure 7.13 reveals that quartic interpolation is only required in the
region of the pre-defined crack tips∗. In comparison with Figure 7.8, the number
of unknowns used during the p-adaptive crack propagation is much less than the
number used in the uniform quartic mesh. For instance, at the end of the analysis,
the number of unknowns is reduced by a factor of 1.86 for Mesh 0, a factor of 2.71
for Mesh 1 and a factor of 3.50 for Mesh 2. Even though the computational costs
are much reduced, the finite element approximation can still provide responses
that are comparable to those using uniform quartic meshes, as shown in Figure 7.15.

∗The pre-defined crack tips include the horizontal crack tip as well as the vertical crack tip which is
modelled as an abrupt change in the boundary conditions.
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(B) Degrading of mesh order: an investigation
Generally, when mentioning p-adaptivity, only upgrading of the mesh order is

expected as the technique helps improving the finite element result. However, as
the computation continues, it is possible that some enriched regions may change
their situation. The higher-order interpolation in those regions may not be neces-
sary anymore. In such cases, degrading of the mesh order may be an interesting
technique worth considering.

From the error contour in Figure 7.11, it is observed that the error seems to con-
centrate at the crack tip especially at the pre-defined crack tip. The error concen-
tration moves according to the updated crack tip, and error in the elements behind
the crack tip decreases. The higher-order interpolation used in those regions may
be degraded to a lower order. It is worth noting that degrading the mesh order
reduces not only the number of basic degrees of freedom, but also the enhanced
degrees of freedom, if any.

Since degrading is not the main subject of this study, we consider a simple de-
grading criterion. If the refinement ratio of any element Υk (cf. Chapter 5) is (far)
less than the user-specified value ρ, the mesh order of that element may be de-
graded. That is to say, the degrading will take place whenever

Υk < ρ where 0.0 < ρ < 1.0 (7.22)

with a rule that the upgrading and the degrading must not take place at the same
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Figure 7.16 Number of unknowns and the corresponding error quantity during the loading process in
the crossed crack test. Based on Mesh 2, the degrading is examined by using ρ = 0.30 and ρ = 0.10 (cf.
Eq. (7.22)).
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time step and only one order of interpolation must be reduced at a time. As an
auxilliary cost-saving technique, the degrading should not disturb the normal mesh
improvement procedure. Whenever the mesh does not need an upgrading (that
is, after the mesh passes the refinement criterion), the degrading criterion judges
whether quality of any part of the mesh can be reduced.

Here, we use two values of ρ for investigation: (a) ρ = 0.30 and (b) ρ = 0.10.
The results are shown in Figure 7.16, where we can notice some fluctuations of the
error and thus the number of unknowns during the finite element computation.
The fluctuations seem to be more serious when the larger value of ρ (i.e. ρ = 0.30)
is applied. This can be explained by the fact that a too large ρ offers the possibil-
ity of over-degrading the mesh and thus the mesh needs to be re-upgraded again
in the next computational step. The process can go on with no mesh order con-
sistency. Comparing the upgrading-degrading technique with the pure upgrading
technique of the standard p-adaptivity, the upgrading-degrading technique seems
to perform worse despite a more complicated implementation and thus is not rec-
ommended. Nevertheless, the degrading seems to be suitable in the linear-elastic
regime, when the crack has not yet propagated.

Goal-oriented p-adaptivity

In this study, the criterion for crack extension and the computation of the crack
orientation are based on the first principal stress in the region ahead of the crack
tip. This stress quantity may be regarded as our quantity of interest. Instead of
the error measures employed earlier, it may be more relevant to use the error in
this local quantity of interest to drive the adaptive process. Here, performance of
the goal-oriented adaptive computation is investigated via p-adaptivity during the
finite element computation.

Since the crack propagates in the x-direction all the way through, the use of the
first principal stress as a quantity of interest can be simply replaced by the stress
component σyy to make a simpler choice†. We choose here the average of the stress
component σyy in the element ahead of the crack tip k as our quantity of interest.
That is,

Q(u) =
∫

Ωk

σyy(u(x)) dΩ (7.23)

Some observations can be made as follows.

(A) Analysis of primary unknowns and influence functions
As addressed in Chapter 4, the discretisation error affects not only the global

finite element solution but also any corresponding local quantity of interest. How
much the discretisation error influences the local quantity can be approximately

†This is based on the assumption that a crack propagates in the direction normal to the maximum princi-
pal stress.
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Figure 7.19 Distribution of the interpolation orders in the crossed crack test at the beginning of the com-
putation, at the half-way crack propagation and at the end of the computation. Goal-oriented adaptivity
is applied in three uniform linear meshes.
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Figure 7.20 The increased number of unknowns during the p-adaptive PU-based discontinuity analysis
based on goal-oriented error estimation.

measured via the goal-oriented error estimation, which is based on the solution of
the dual problem (also known as the influence functions).

By solving the dual problem at the end of each loading increment, four influence
functions, each of which corresponding to each primary unknown, are shown in
Figure 7.17. These influence functions reveal how the error in each unknown field
influences the average of the stress σyy in the element ahead of the crack tip. It is
appealing that the residuals corresponding to the second and the fourth degrees of
freedom provide major influences on the quantity of interest, as observed from the
evolution of w

reg
y and wenh

y . Compared to the evolution of the primary unknowns

(cf. Figure 7.18), the evolution of the corresponding components (i.e. u
reg
y versus

w
reg
y , and uenh

y versus wenh
y ) are reversed.

(B) Analysis of the goal-oriented p-adaptivity

We employ the error in the quantity of interest via the measure Ek =
‖e‖mod

k ‖ǫ‖mod
k to drive the goal-oriented p-adaptivity. Controlled by a threshold

value ζgoal (cf. Subsection 5.2.2) of 0.3%‡, the elemental interpolation orders evolve
during the crack propagation as shown in Figure 7.19.

At the beginning when the crack has not yet propagated, it is evident that the
accuracy of the stress σyy in the element ahead of the crack tip (as our goal quan-
tity) depends greatly on the discretisation in the crack tip region where the local
quantity of interest resides, as well as where the supports change type (i.e at the
tip of the vertical crack). This is similar to the adapted mesh shown in Figure 7.13,
although it seems that more enrichment in the support-change region and more in-
tense discretisation in the crack path are desired in the goal-oriented scheme. For
the rest of the domain, the enrichment levels obtained from both adaptive schemes
are comparable. Figure 7.20 shows that the number of unknowns used in this goal-
oriented adaptive analysis is slightly higher than the one demanded in the earlier
analysis (cf. Figure 7.14).

‡This is a very tight value. However, since this basic problem is for an intensive investigation, we would
like to see how p-adaptivity works.
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Figure 7.21 Description of the three-point bending test [99].

Mesh No. of Nodes No. of Elements p-order No. of basic DOF

1 474
0 237 403 2 1752

3 3836
4 6726
1 990

1 495 888 2 3754
3 8294
4 14610
1 3040

2 1520 2860 2 11798
3 26276
4 46474

Table 7.3 Information of fixed meshes used in the three-point bending test. The basic degrees of free-
dom includes the basic displacement modes without any jump contributions, i.e. only the first and the
second degrees of freedom are counted.

7.4 Three-point bending test

The three-point bending test [99], whose detailed descriptions are given in Figure
7.21, is chosen as our third test. The pre-defined crack is located at a 0.7-mm off-
set to enable a curved or inclined crack. The beam, subjected to a point load at the
middle, is analysed by displacement control. At the first step, the prescribed dis-
placement of 0.1 mm is applied. Afterwards, incremental displacements of 0.001
mm are applied in each computational step in the full Newton-Raphson iterative
scheme. The semi-circular interaction domain for searching the crack orientation
has a constant radius for all cases equal to 0.40 mm.

To investigate the h-factor and the p-factor of the finite element discretisation, we
select three uniform triangular meshes, namely Mesh 0, Mesh 1 and Mesh 2, for
each of which four orders of interpolation (p=1 to 4) are applied. Table 7.3 gives
some details of these reference meshes.
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Figure 7.22 Load-displacement relations of the three-point bending test based on Mesh 0, Mesh 1 and
Mesh 2. The interpolation ranges from linear order to quartic order (p = 1 to 4).

7.4.1 Preliminary investigation

We start our investigation by examining effects of the mesh resolution (h-factor)
and the interpolation degree (p-factor) on the finite element solution. By varying the
order of uniform interpolation, the load-displacement responses obtained from the
three reference meshes are plotted in Figure 7.22. The most deviating results are ob-
tained with Mesh 0 with linear interpolation. All meshes with linear interpolation
fail to complete the loading process. Figure 7.25 shows the number of unknowns
emerging during the computation.

The dissipated energy is plotted against the number of basic degrees of freedom
in Figure 7.23. Since the linear interpolation is inadequate for this finite element
computation, we select the results from all the meshes with the interpolation rang-
ing from a quadratic order to a quartic order for this convergence test. Confirming
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Figure 7.23 Dissipated energy of the three-point bending test based on Mesh 0, Mesh 1 and Mesh 2.
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Figure 7.24 Various crack paths obtained by using Mesh 0, Mesh 1 and Mesh 2. Uniform orders of
interpolation ranging from p = 1 to 4 are applied.

the results from Section 7.3, the mesh quality is improved upon mesh refinement
(h-extension) and mesh enrichment (p-extension)§. The former provides better per-
formance between the two, however. Not only it gives smoother global responses,
it also leads to faster rates of convergence in terms of the dissipated energy.

In Figure 7.24, the crack paths computed from all meshes follow in the same ori-
entation. The only obvious exception is the case of Mesh 0 with linear interpolation.
According to Section 7.1, the determination of the crack direction is based on a non-
local computation of the principal stress, and the interaction region (i.e. the region
used for searching of crack orientation) is suggested to be three times the average
element size in front of the crack tip [99]. Since we fix the region to be equal in all
the cases, it is possible that, for a coarse mesh with a low order of interpolation, this
area for nonlocal averaging is not sufficiently large, thus resulting in a wrong crack

§Note that, although the exact solution is unknown, the responses tend to converge to the same dissipated
energy (cf. Figure 7.23).
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Figure 7.25 The increased number of unknowns during the PU-based discontinuity analysis in the
three-point bending test. Three uniform meshes with four orders of interpolation are surveyed.
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path.

7.4.2 Mesh adaptive tests

To trigger an adaptive analysis of the three-point bending test, the adaptive criteria
of Section 5.2 are applied in this subsection with a prescribed global error allowance
ζprim of 15%. The discretisation error is assessed at the end of some selected com-
putational steps, by which the adaptive process may subsequently be driven. For
implementational simplicity, only p-adaptivity is investigated, although the results
shown in the preliminary tests suggest the competitiveness of h-adaptivity. Some
aspects of the adaptive process will be investigated and discussed in this subsec-
tion.
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Figure 7.26 Load-displacement relations of the three-point bending test with p-adaptivity based on
Mesh 0, Mesh 1 and Mesh 2.
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p-adaptivity

Without change in mesh configuration, p-adaptivity can be regarded as the simplest
adaptive technique for discontinuous modelling. In this study, the interpolation
function is upgraded to one order higher at a time. Degrading is prohibited and
quartic order of the interpolation is set as the maximum in our p-adaptive study.

There are two points to be investigated in this p-adaptive analysis. Firstly, we
would like to make a survey about when an adaptive process should be activated.
Secondly, it is essential to consider efficiency of the standard finite element analysis
(i.e. with a fixed mesh), in comparison to the adaptive version. Some remarks
regarding these two aspects can be made as follows.

(A) Effect of adaptive timing on FE solutions
It is widely known that the discretisation error tends to occur where a high stress

(or precisely, stress gradient) exists (see also Section 7.3.1). The most critical region
is at the tip of the traction-free discontinuity defined prior to the beginning of the
computation, where we observe an intense amount of error. During cohesive crack
propagation, the amount of error at the updated crack tip decreases. Based on this
observation, a question arises whether a sufficiently good discretisation designed
before the crack propagation is sufficient for use in the whole computation or not.
To answer this question, we investigate two tests based on different adaptive timing
schemes, i.e.

• Test 1: p-adaptivity is activated only once in the linear elastic regime (Step 1,
ū = 0.1 mm), and
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Figure 7.27 Distribution of the interpolation orders in the three-point bending test at ū = 0.100 mm.
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Figure 7.28 The increased number of unknowns during the p-adaptive PU-based discontinuity anal-
ysis. The black line refers to the adaptive process activated at Step 1 only (Test 1) and the grey line
indicates the adaptive process activated at every 20 steps (Test 2).

• Test 2: p-adaptivity is activated every 20 steps during the computation.

The load-displacement responses obtained from both p-adaptive studies, in com-
parison to the fixed mesh of uniform quartic interpolation, are shown in Figure 7.26.
It can be seen in all three subfigures, corresponding to Mesh 0, Mesh 1 and Mesh 2,
that the responses obtained via Test 2 resemble the one based on the uniform quar-
tic mesh. Although not as good, activating only one mesh adaptive process (cf. Test
1) greatly improves the original responses especially in the linear elastic regime.
The corresponding mesh designs are shown in Figure 7.27, where higher-order in-
terpolations are applied at the supports and the pre-defined crack. Nevertheless,
during crack propagation, the responses based on Test 1 clearly deviate from the
other two cases, especially in Mesh 0 which is the coarsest of all. The initial element
size apparently plays an important role. Without any mesh adaptive process dur-
ing crack propagation, a mesh of smaller elements is more capable of modelling the
cracking process.

The above results clearly suggest that the adaptive process should be activated
during crack propagation as well as at the beginning of the analysis. However, as
the number of unknowns to be solved in Test 1 is less than the one required in Test
2 by a factor of 1.2 - 1.4 for all meshes (cf. Figure 7.28), it may be more cost-efficient
in case of a fine mesh (in this context, Mesh 2) to activate p-adaptivity only at
the beginning since it can already provide a reasonably good approximation,
considering from the global responses shown in Figure 7.26.

(B) Efficiency of p-adaptivity
To investigate efficiency of the p-adaptive analysis, only the results from Test 2

will be discussed. The discretisation error is assessed at the end of every 20 load-
ing increments, implying in total 20 possible adaptive processes during the entire
analysis.

As mentioned earlier, the load-displacement responses obtained from p-
adaptivity in all meshes can resemble, more or less, the ones obtained by using
the same mesh with the uniform quartic interpolation (cf. Figure 7.26). Despite
that, costs required during the computation for both cases are quite different. The
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Figure 7.29 Distribution of the interpolation orders in the three-point bending test at ū = 0.142 mm.
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Figure 7.30 Distribution of the interpolation orders in the three-point bending test at ū = 0.205 mm.
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Figure 7.31 Distribution of the interpolation orders in the three-point bending test at ū = 0.268 mm.
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Figure 7.32 Distribution of the interpolation orders in the three-point bending test at ū = 0.331 mm.



number of unknowns, implying the computational cost, can be greatly reduced via
p-adaptivity. In comparison to Figure 7.25, Figure 7.28 reveals that the number of
unknowns at the end of the computation can be decreased via p-adaptivity by a
factor of 3.25 in Mesh 0, a factor of 5.15 in Mesh 1 and even a factor of 8.00 in Mesh
2.

From Figures 7.29 to 7.32, elemental distributions of the interpolation orders are
plotted during the analysis for all three base meshes. It is evident that the use of
higher-order elements is concentrated at the supports and tends to follow the prop-
agation of the discontinuity. These problem regions are smaller in size, implying
more intense higher-order interpolation, for finer meshes. For the rest of the prob-
lem domain, linear interpolations are sufficient.

7.5 Remarks

In this chapter, the discontinuity modelling based on the PU-based cohesive zone
concept [99] has been investigated. Despite the additional degrees of freedom, the
error estimation used in this discontinuity model follows the standard concept ad-
dressed in Chapter 3. To set a proper error norm, the linear-elastic stiffness matrix is
employed since it is positive-definite. The results from all numerical examples have
shown that, prior to crack propagation, the discretisation error appears to concen-
trate at the supports and the pre-defined crack tip (where singularities exist), while
intense errors follow the updated crack tip during crack propagation. Based on the
average stress quantity in the element ahead of the crack tip, the goal-oriented error
has shown a similar trend, although mesh improvement is clearly needed more in
the crack path area.

Comparing two mesh improvement techniques, h-extension provides two supe-
rior qualities over p-extension. Firstly, for a propagating crack, a sufficiently refined
discretisation is obviously needed to ensure a smooth load-displacement response.
Secondly, convergence of the dissipated energy during the cracking process tends
to be faster upon mesh refinement. Nevertheless, p-adaptivity has been chosen in
this research as it can improve the result greatly while requiring much less im-
plementational effort than h-adaptivity. In addition, since the PU model has been
proposed with a strong intention to avoid a remeshing procedure needed in other
crack models, remeshing the domain via h-adaptivity appears to be unreasonable.





CHAPTER

EIGHT

Conclusions

Using finite element analysis, the approximate solution to a model problem
relies largely on the spatial discretisation of the problem domain. A more re-
fined/enriched discretisation provides a more accurate result but requires a higher
computational cost. By adaptive spatial discretisation, a balance between cost
and accuracy of the finite element solution can be realised. In other words, the
refined/enriched discretisation needs not be applied to the whole problem domain
but limited only to where needed. Thus, it is very efficient for use in problems
where the critical regions are small in comparison to the rest of the problem
domain. For quasi-brittle failure, which is our main focus in this research, adaptive
discretisation can be beneficial as strains tend to localise in a small zone/band at
the moment that the material loses its ability to carry loads.

PART I: INGREDIENTS OF ADAPTIVITY

(A) Hierarchical shape functions:

Two discretisation factors, regarding how refined the mesh is (h-factor) and how
enriched the interpolation is (p-factor), have been studied in this research. We have
employed hierarchical interpolation functions because their higher-order compo-
nents can be added or removed without changing the original system of equations.
Two hierarchical versions have been put in consideration. The node-based version
(cf. Chapter 2 and Appendix A), wherein the higher-order components are added
via partitions of unity, can be implemented in a more straightforward fashion (also
at some slight extra cost) than the edge-based version (cf. Chapter 2). Nevertheless,
the node-based version suffers from linear dependence of the system of equations,
and even though the ill-conditioned system can be treated by introducing special
constraints or using special solution techniques, it becomes very complicated. It
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has been found also that, since the linear dependence becomes more dominant
when the scheme is applied to a smaller number of elements, it is hard to assess
the error based on the local patching scheme (cf. Chapter 3). For these reasons, the
edge-based version has been chosen in this study.

(B) Error estimation:

The adaptive discretisation process, in this context, has been steered by objective
error information, rather than heuristic assessment of the state variables. Two error
estimates are presented, namely the energy-based error measure (cf. Chapter 3) and
the goal-oriented error measure (also known as error measure of the local quantity
of interest) (cf. Chapter 4). The estimation of error is based on solving a series of lo-
cal problems, based on patches consisting of elements surrounding each node, with
prescribed homogeneous boundary conditions. The order of the interpolation func-
tion is upgraded to generate a reference discretisation. With the patch-overlapping
scheme, the need to equilibrate inter-element flux jumps can be avoided [29].

The performance of the error estimator has been investigated in linear elastic
problems (cf. Chapter 3) and it has been shown that the method can provide a good
lower-bound estimate of the actual error. A more accurate error estimate (to the
actual error) has been obtained in the problem domain of more refined/enriched
discretisation. Explainably, the reference discretisation is constructed by improving
the original mesh quality to another level. For a higher-quality mesh (i.e. a more
refined/enriched discretisation), a fixed degree of local improvement leads to a
higher-quality reference discretisation, hence correspondingly a higher-quality er-
ror estimate to the exact error. We have also found that, in general cases, upgrading
the local interpolation function only by one order can already provide a sufficiently
accurate error estimate. Nevertheless, the one-order upgrading scheme may not be
sufficient to provide good error estimates for all of the finite elements in some spe-
cial cases, as we have also observed in one of our numerical examples (cf. Section
3.7).

Although the formulation of the error estimation is based on a measurement in a
norm quantity, it has been found in our study (cf. Chapter 3) that the estimated error
functions, which are obtained from solving the local error equations, can somehow
resemble the actual/reference ones. However, we have found that performance of
the error estimator is very sensitive to how the reference system is modelled. With-
out a correct reference discretisation, the estimated error can be far from the actual
error.

In Chapter 4, the error estimation concept has been extended for determining
the error in the quantity of interest. This goal-oriented error computation is rather
straightforward at an additional price of solving a set of global equations for
the influence function and also another series of local problems for its error. To
facilitate the setting of adaptive criteria, two new error measures, constructed
by directly summing up the elemental contributions, have been proposed and
investigated in a linear elastic problem. The difference between the two measures
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lies on how the error contributions from the primal and the dual problems are
combined; the first measure mixes both contributions in the norm computation,
while the second measure separately considers each contribution in the norm
computation and then combines both norms together. The second measure may be
preferred since the obvious separation of the error norms from the primal and the
dual problems (cf. the second measure) gives the analyst more clue on how much
the error allowance should be set. The results have shown that both measures
provide similar error trends in terms of global convergence and their elementwise
error distribution.

(C) Mesh adaptivity:

Once the error information is at hand, it is necessary to judge whether or not the
finite element mesh should be improved and in which specific regions. The adap-
tive process is activated when the global error exceeds a user-specified global error
allowance. Based on the uniform error distribution, the process takes place in the
regions of large elemental errors. In addition to the adaptive criteria, the optimal-
ity criterion based on an a priori convergence assumption may be applied for an
optimal design of element sizes, in case of h-adaptivity (mesh refinement) and r-
adaptivity (node relocation). For p-adaptivity (mesh enrichment), the convergence
assumption is not applicable, and, even if it were, the interpolation orders would
simply be too hard to be optimally adjusted. In this study, only integer orders of
polynomial degree have been considered. Following the same idea, the adaptive
criteria and the optimality criterion for use with goal-oriented error quantity have
also been introduced in Chapter 5.

In this research, a mesh gradation technique (for r-adaptivity) based on a
weighted Laplace smoothing concept has been employed (cf. Chapter 5). This
gradation proceeds in a simple node-by-node fashion and does not require solving
any global system of equations. Despite its simplicity, the technique has been
proven a success as nodes can be moved towards the zones of large errors,
improving the local mesh resolution and successfully reducing the error in those
critical regions.

PART II: APPLICATIONS

The above-mentioned concepts of error estimation and adaptive discretisation
have been applied in the modelling of quasi-brittle failure. Here, we have consid-
ered the failure mechanisms described by the continuous concept, where failure
is presented by means of material strength degradation (in this context: damage),
as well as by the discontinuous concept, where failure is presented by means of a
geometrical discontinuity.
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(D) Application to continuous failure

For modelling continuous failure, the gradient-enhanced damage model [70] has
been chosen (cf. Chapter 6). Since this model is regularised in the post-peak regime,
the finite element solution does not suffer from pathological mesh dependence and
thus converges to a physically realistic solution upon mesh refinement.

By using a softening model, it is possible that the consistent tangent stiffness ma-
trix becomes negative-definite, and thus the resulting norm becomes meaningless.
To prevent this from happening, we have selected only positive-definite parts of
the stiffness matrix for computation of the error norm.

⋄ Distribution of the error:

The error analysis has shown that, in the linear elastic regime, the discreti-
sation error concentrates at the pre-defined crack tip where stress singulari-
ties exist. Upon damage evolution, the discretisation error in the zone where
damage appears becomes dominant. This very zone is where the strains lo-
calise, and a sufficiently refined/enriched discretisation is needed most at the
boundary of the localised strain profile, i.e. in the zone of high strain gradi-
ents.

⋄ Goal-oriented error:

The goal-oriented error analysis, based on the crack mouth opening displace-
ment, has revealed that, prior to damage initiation, the discretisation error
concentrates at the pre-defined crack tip as well as the point of interest (i.e.
the crack mouth). Once damage appears, large errors emerge in the region
of localised strains as well. This observation has proven that the accuracy
of the nonlocal equivalent strain field (and the corresponding damage quan-
tity) greatly influences the accuracy of the quantity of interest. Our two pro-
posed error measures have provided similar error distributions, although
some small differences have been found in the softening regime.

⋄ p-, h- and r-extension:

Based on a uniform mesh improvement, we have found that increasing the in-
terpolation order (p-extension) may provide a faster rate of convergence than
decreasing the element size (h-extension). However, for problems with highly
localised strain fields, it is very important that a sufficient mesh resolution is
employed in critical regions, in order to correctly capture the strain localisa-
tion phenomenon during the failure process. Without a sufficient mesh reso-
lution, the localised strain profile and the corresponding damage profile will
be dispersed, resulting also in a too ductile response, even for meshes with
high degrees of interpolation.

Three adaptive techniques have been investigated in this study. With the
optimally-designed element sizes, h-adaptivity has proven to be very effi-
cient as the computational cost is reduced significantly. Since a high mesh
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resolution is clearly needed in the region of high strain gradients, the simple
mesh gradation (r-adaptivity) has also proven to be cost effective. This low-
cost technique has provided a dramatic improvement of the result without
increasing the number of unknowns. Applying p-adaptivity can also improve
the solution greatly, although, as also confirmed by the uniform enrichment
tests, the technique alone is not as efficient as the other techniques in cap-
turing strain localisation, since it depends somewhat on the resolution of the
finite element mesh. Without a good original mesh design, h-adaptivity or r-
adaptivity is more preferred. However, as a recommendation for future re-
search, it may be interesting to investigate combined techniques such as hp-
adaptivity or rp-adaptivity, as they are expected to serve as ideal choices for
this damage modelling.

⋄ Selection of adaptive steps:

The adaptive process may be activated at the end of any computational step.
For the nonlinear analysis, the solution path depends greatly on the discreti-
sation. It has been found in our numerical examples that it is equally im-
portant to activate the adaptive process before and after damage initiation.
Without a good discretisation in the linear elastic regime, initiation of the fail-
ure mechanism may be wrong. A good discretisation is also needed during
damage evolution to ensure a correct simulation of failure.

⋄ Variable transfer:

Another aspect that we have investigated in this research concerns the history
transfer process. Once the discretisation is re-designed, the variables stored at
the integration points as well as the nodal degrees of freedom must be trans-
ferred. Here, the variables stored at nodes (including hierarchical modes)
have been transferred by a conventional interpolation technique and an aux-
iliary remapping scheme (named as Lagrange-equivalent transfer) for trans-
ferring of the hierarchical modes. Based on extrapolation and interpolation
techniques, the so-called shape function remapping transfer is suitable for
the variables stored at quadrature points, although may also create an artifi-
cial expansion of the damage/localisation zone. It has been shown that this
transfer is sufficiently accurate when combined with h-adaptivity, especially
for lower-order meshes. For r-adaptivity, this shape function remapping tech-
nique must be completely avoided. Techniques that possess a low diffusion
property (i.e. limited expansion of localisation zone), such as the closest point
transfer [69], have proven to be a good choice, which is also applicable to
h-adaptivity and p-adaptivity.

(E) Application to discontinuous failure

Besides the continuous approach, quasi-brittle failure based on discontinuity
modelling has also been investigated in this research (cf. Chapter 7). We have cho-
sen the cohesive zone model based on the partition-of-unity concept [100], as dis-
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continuities can pass arbitrarily through finite elements without the restriction of a
particular mesh alignment.

⋄ Distribution of the error:

Our first investigation is concerned with the performance of the error esti-
mator for use in PU-based discontinuity modelling. For a fixed traction-free
crack, stress singularities are present at the crack tip, inducing so-called pol-
lution in the error estimation. The pollution in this context is the result of
replacing the global error computation with a series of local computations. It
has been observed in our numerical test that this pollution quantity increases
for a more refined discretisation, due to decreased interaction between dis-
tant patches, and/or for a less enriched interpolation, as the finite element
solution is less smooth.

The error analysis has shown that, before crack propagation (i.e. the material
still exhibits linear elastic behaviour), the discretisation error concentrates in
the conventional critical areas, such as at the supports and at the pre-defined
crack tip. During crack propagation, intense errors tend to concentrate at the
updated crack tip. It has been noticed that the error at the cohesive crack tip
is less concentrated than the error at the traction-free crack tip. This can be
explained as follows. Before crack propagation, stress singularities appear at
the pre-defined (traction-free) crack tip. Conversely, based on the cohesive
zone concept, a bounded and more uniform stress distribution is obtained at
the updated (cohesive) crack tip during crack propagation.

⋄ p- and h-extension:

Based on the PU-based discontinuity modelling, the enhanced degrees of free-
dom are activated to model jumps in the displacement field. Since the discon-
tinuity is extended through the whole element [100], a more gradual increase
of the number of unknowns has been observed when a more refined discreti-
sation is employed. The smaller element size allows the crack to be extended
in smaller steps, hence resulting in a smoother response. Apparently, this ele-
ment size factor (h-factor) plays an important role. Although the use of higher-
order elements (p-extension) can also improve the response greatly, a better
performance in terms of response smoothness and faster rate of convergence
has been obtained in a more refined mesh (h-extension).

As a conclusion from the uniform mesh tests, h-adaptivity appears to be the
best choice in improving the finite element results of this PU-based discon-
tinuity model. Unfortunately, the model has been originally proposed with
a strong intention to avoid a remeshing procedure needed in other models,
hence applying h-adaptivity seems to be unreasonable. Compromisingly, we
have chosen p-adaptivity for investigation as it can improve the result greatly
while requiring much less implementational effort. Based on the energy-
based error measure, higher orders of interpolation are clearly needed most
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in the pre-defined crack tip regions and a lower order can be applied at the
propagated crack tip. The goal-oriented adaptivity, however, has given more
importance to the elements in the whole crack path, as to ensure the accu-
racy of the average stress in the element ahead of the crack tip. The results
have shown that p-adaptivity can greatly improve the result, while also sav-
ing a lot of computational effort in comparison to the amount required when
employing a uniform higher-order mesh.

The application of p-adaptivity in the discontinuity modelling should be able
to provide a much better result if the discontinuity extension does not need
to propagate through the whole element at a time. We expect the material re-
sponse to be correspondingly smooth, without the use of a smaller-size mesh.
It is then very interesting to apply p-adaptivity in the model proposed in [104],
as the cohesive crack can propagate anywhere inside an element. Although
this point is beyond the scope of this study, it deserves consideration for fu-
ture research.

⋄ Degrading the interpolation order:

According to the error analysis, it has been found that the discretisation er-
ror tends to concentrate always at the updated crack tip. After each crack
extension, we have observed a decrease of the error in the elements behind
the crack tip. A simple degrading scheme has been examined and the result
has shown some fluctuations of the error and correspondingly the number of
unknowns during the finite element computation. Based on the proposed cri-
terion, we do not recommend adding the degrading scheme in the p-adaptive
process.

In this dissertation, we have applied p-extension and h-extension to error esti-
mation and mesh adaptivity, with an emphasis on the p-extension. As we have
demonstrated, the hierarchical element-based p-extension is a suitable technique
for error estimation (either in the energy norm or of a quantity of interest) as it fa-
cilitates the construction of the reference space needed in the setting of error equa-
tions. The approach can be applied with both h-adaptivity (total mesh refinement)
and p-adaptivity, and can also provide a good error estimate for use in the adap-
tive modelling of continuous and discontinuous crack propagation. Whereas the
p-extension seems to be the optimal choice for error estimation, both applications
of crack propagation suggest that further improvement may be obtained through a
combination with other adaptive techniques.





APPENDIX

A

Critical survey on node-based hierarchical

shape functions

In Chapter 2, the concept of node-based hierarchical shape functions [94] has been
presented. Although this type of shape functions has not been used in the remain-
der of this thesis, it is worthwhile to address, in this appendix, some critical aspects
that we have found at the beginning of our study. The aspects to be presented in
this section include performance analyses of the shape functions in term of con-
vergence, enforcement of boundary conditions and, finally, the main shortcoming
of the scheme that precludes a widespread use of this method, i.e. the problem of
linear dependence.

A.1 Convergence

Referring to Eqs. (2.14) – (2.16), a set of higher-order shape functions can be con-
tructed based on adding extra terms to the linear shape functions. Consider the
one-dimensional example described in Section 3.7, we investigate the convergence
of the finite element solutions by upgrading the linear shape functions to quadratic,
cubic and quartic orders.

The convergence analyses of the enriched set of shape functions, based on a dif-
ferent number of primary nodes, are plotted in Figure A.1. With respect to the num-
ber of nodes (cf. Figure A.1 (left)), the results show that all higher orders of enhance-
ment yield quadratic convergence rates. Although the error analysis shown in Fig-
ure A.1 (left) does not provide an obvious difference between the results obtained
by using the cubic and the quartic shape functions, the plot of error versus num-
ber of degrees of freedom (cf. Figure A.1 (right)), implying the computational cost
required in the finite element analysis to achieve the same accuracy, reveals that a
larger number of degrees of freedom is required in the quartic interpolation than
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Figure A.1 Convergence analysis of the problem − d2u
dx2

(x) = 6x2 − 3x in Ω =]0, 1[ with the prescribed

boundary conditions u(0) = u(1) = 0 comparing different orders of enhancement.

order required DOFs provided DOFs

quadratic 6 12
cubic 10 24

quartic 15 39

Table A.1 Number of the equations required for achieving the higher-order interpolation and those
provided in the new hierarchical method for a triangular element.

it is in the cubic interpolation. The background of this counter-intuitive finding is
provided in Table A.1. An increasing unbalance between required and provided
degrees of freedom is found for the higher orders of the interpolants.

Not only the new hierarchical enhancement can be applied on the linear basis
function, but it can also be applied in any existing basis. For example, the cubic
interpolation can be enhanced either from the linear basis using 7 extra functions
per direction, as described in Eq. (2.15), or from the existing 6-node isoparametric
elements (quadratic interpolation) using 4 extra functions per direction, that is

γ
(i)
(2→3)

= {ξ3
i ,ξ2

i ηi,ξiη
2
i , η3

i } (A.1)

The convergence curves in Figure A.2 show similar accuracies obtained in the anal-
yses applying three different cubic interpolation schemes. However, the cubic in-
terpolation scheme based on enhancing the existing 6-node isoparametric elements
is computationally more expensive as implied in Figure A.2 (right).

A.2 Enforcement of boundary conditions

As a common feature of the hierarchical finite element method, one of the serious
shortcomings is how to enforce boundary conditions. Since no extra node is added
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Figure A.2 Convergence analysis of the problem − d2u
dx2

(x) = 6x2 − 3x in Ω =]0, 1[ with the prescribed

boundary conditions u(0) = u(1) = 0 comparing different cubic and quartic interpolation schemes.
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Figure A.3 Convergence analyses based on different constraint equations.
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in the problem domain, constraining only the existing nodal points can be inad-
equate, i.e. the finite element solution may not converge to the true solution. To
investigate this hypothesis, a cantilever beam (Timoshenko’s beam [96]) with a set
of contraints of a quantity u imposed at the left and the right ends is considered.

Four different methods of imposing boundary conditions used in this study are
listed in Table A.2, namely the strong imposition schemes (SI-I and SI-II) and weak
imposition schemes (WI-I and WI-II) based on the use of a penalty formulation [65].
Test SI-I imposes the Dirichlet boundary conditions by constraining the existing de-
grees of freedom only. This means the higher-order polynomial still exists along the
boundary and the boundary conditions are interpolated using higher-order func-
tions. Test SI-II constrains the nodal values on the Dirichlet boundary and also can-
cels the influence of higher-order function. This results in a linear interpolation
of the constraints on the constrained edge. However, eliminating the higher-order
function at the boundary nodes implies an incomplete higher-order enrichment
function in the elements on the boundary. Test WI-I and WI-II are more realistic
since the constraints are prescribed at the integration points on the constrained
edges. The penalty parameter should be chosen to be a large value in order to im-
pose the constraints properly∗, implying an increase of the conditioning number of
the stiffness matrix. Here, we have chosen the penalty parameter to be a thousand
times of Young’s modulus.

The finite element solutions using different constraints are presented in Figure
A.3. As expected, the finite element solution obtained by constraining only the ex-
isting nodal values (cf. Test SI-I) shows an increase of the error when the enrichment
reaches the cubic order. Test SI-II does not show such a divergence pattern. How-
ever, when compared with those using penalty formulations (WI-I and WI-II), the
error is much larger. Note that there is no difference between the solutions obtained
by Test WI-I and Test WI-II.

Method Constraint Equation(s)

SI-I ai = ui

SI-II ai = ui and b
(i)
j = 0

WI-I u(x) = u(x)
WI-II ai = ui and u(x) = u(x)

Table A.2 Four methods for constraint imposition on Γd.

∗A good choice of the penalty parameter can be ensured by applying positive as well as negative penalty
parameters to provide bounds for the finite element solution [8].
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Figure A.4 One-dimensional quadratic elements: (left) standard element, (right) linear element with
nodal enrichment

A.3 Linear dependence

Despite its simplicity in improving the mesh quality, the node-based hierarchical
enrichment may bring about a serious problem: unsolvability of the discretised
equations. It was reported in [94] that spurious zero energy modes were found
in problems consisting of a small number of elements. These zero energy modes,
apart from those describing three rigid body motions, bring about the singularity
of the stiffness matrix.

Eigenvalue analyses of some element combinations are summarised in Table A.3.
It is, however, obvious that these spurious zero energy modes occur since the result-
ing shape functions are linearly dependent. To explain this concept, let us consider
a one-dimentional quadratic element that is constructed by the concept of nodal
enrichment in comparison to the standard quadratic element shown in Figure A.4.
The approximate function using the standard isoparametric element (F(x)) and the
one using the linear element with nodal enrichment (G(x)) are

F(x) =
(x2 − x)(x3 − x)

(x2 − x1)(x3 − x1)
a1 +

(x1 − x)(x3 − x)

(x1 − x2)(x3 − x2)
a2 +

(x1 − x)(x2 − x)

(x1 − x3)(x2 − x3)
a3 (A.2)

and

G(x) =
(x2 − x)

(x2 − x1)
a1 +

(x1 − x)

(x1 − x2)
a2 +

(x2 − x)(x − x1)
2

(x2 − x1)
b1 +

(x1 − x)(x − x2)
2

(x1 − x2)
b2.

(A.3)

In this one-dimensional example, the next-order enrichment of the linear inter-
polation in G(x) actually provides a cubic interpolation. Only in the special case
that b1 = b2 is the interpolation given in Eq. (A.3) quadratic and equivalent to that
of Eq. (A.2). However, this implies that b1 and b2 must be linearly dependent for
the interpolation to be quadratic.

The degree of linear dependence may be measured via the so-called nullity (also
called rank deficiency) in the eigenvalue analysis. The nullity shows how many zero
energy modes, i.e. number of zero eigenvalues, appear in the stiffness matrix. Since
the higher-order interpolation is constructed by adding the enrichment functions
hierarchically, the nullity becomes larger in higher-order interpolations (cf. Table
A.4). It is subsequently shown that the nullity relatively decreases with the number
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Arrangement Order Standard PU-based

NDOFs NDOFs Zero Eigenvalues Solvability

p = 2 12 24 7 No

p = 3 20 48 21 No

p = 4 30 78 39 No

p = 2 18 32 3 Yes

p = 3 32 64 17 No

p = 4 50 104 35 No

p = 2 18 32 5 No

p = 3 32 64 17 No

p = 4 50 104 35 No

p = 2 30 48 3 Yes

p = 3 56 96 9 No

p = 4 90 156 27 No

p = 2 50 72 3 Yes

p = 3 98 144 3 Yes

p = 4 162 234 15 No

p = 2 98 128 3 Yes

p = 3 200 256 3 Yes

p = 4 238 416 3 Yes

Table A.3 Eigenvalue analyses of some element combinations enriched by the nodal scheme. Note that
the enrichment is based on enriching linear interpolation.
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Standard PU Relative difference

3 DOFs 4 DOFs 1/3

4 DOFs 6 DOFs
1/2

5 DOFs 8 DOFs
3/5

Table A.4 Relative difference in number of degrees of freedom between a single standard higher-order
element and a single linear element with nodal enrichment (PU).

Standard PU Relative difference

3 DOFs 4 DOFs 1/3

5 DOFs 6 DOFs 1/5

7 DOFs 8 DOFs
1/7

Table A.5 Relative difference in number of degrees of freedom between a set of standard quadratic
elements and a set of linear elements with nodal enrichment (PU) to quadratic order.

Scheme Linear Quadratic Cubic Quartic

Standard n 2n − 1 3n − 2 4n − 3
PU(1→2) 2n

PU(1→3) 3n

PU(1→4) 4n

Table A.6 Comparisons of global number of degrees of freedom in one-dimensional analysis using
standard and PU-based hierarchical shape functions of various orders.

of degrees of freedom (cf. Table A.5 and Table A.6). This fact also implies that for
problems with a few degrees of freedom, the nullity appears to be relatively large.
This is precisely the situation if the PU based p-version is used for error estimation,
whereby a higher-order interpolation is applied to estimate the error within an ele-
ment or a patch of a few elements. Hence, the nodal hierarchical enrichment scheme
is not suitable for error estimation, although it may be used for p-enrichment in the
entire domain [94].
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To solve the linear dependency problem, internal constraints (also known as ty-
ings) between the degrees of freedom must be imposed. However, it requires a com-
plicated mathematical derivation that is also different for each combination of el-
ements. An obviously easier way is to choose the enrichment functions which do
not belong to the span of the existing functions. For example, in upgrading from
linear to quadratic interpolation, one may select

γ
(i)
(1→2)

= {ξ2
i , η2

i } (A.4)

instead of the set in Eq. (2.14). Similarly, to obtain cubic interpolation, the set

γ
(i)
(1→3)

= {ξ2
i , η2

i ,ξ3
i ,ξ2

i ηi,ξiη
2
i , η3

i } (A.5)

may be an alternative to Eq. (2.15).
Nevertheless, two more sophisticated ways of solving the equations while still

keeping all the terms are proposed in [91]. Although the linear dependencies are
still in the equations, the set of equations is solved by special techniques, i.e.

• adding a small perturbation to the stiffness matrix and iteratively balance the
original equations, or

• using the direct method of multifrontal sparse Gaussian elimination.

The reader is referred to [91, 95] for a more deeper investigation about the linear
dependence problems in the PU-based finite element method.
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[92] T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method: an example of
its implementation and illustration of its performance. International Journal for Numerical Methods
in Engineering, 47:1401–1417, 2000.
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Summary

Error estimation and adaptive spatial discretisation

for quasi-brittle failure

by T. Pannachet

The accuracy of a finite element solution depends greatly on the spatial discreti-
sation of the problem domain. A more refined/enriched discretisation provides bet-
ter accuracy but also requires more computational cost. Adaptive discretisation is a
solution to such a dilemma. The spatial discretisation can be varied to suit the need
in the problem domain. In modelling quasi-brittle failure the process zone, where
failure takes place, can be very small. Thus, it is cost-effective to apply an adaptive
spatial discretisation scheme. In this research, two failure models for quasi-brittle
materials have been put under investigation. The adaptive scheme is driven by the
mathematically formulated error estimate in the form of either the energy norm or
the quantity of interest. The adaptive scheme is activated during the failure process.

The continuous model represents failure via material strength degradation. A
gradient enhanced damage model has been chosen for this study. Besides the con-
ventional critical regions such as at the supports or the area containing a stress sin-
gularity, the error is found to concentrate in the area of high strain gradients. Three
adaptive techniques have been applied. The results have shown that, although p-
adaptivity can greatly improve the discretisation, its performance relies on the base
mesh. Obviously, h-adaptivity has shown better capabilities to capture the local-
isation zone. As an inexpensive alternative, an r-adaptive scheme, based on the
weighted Laplace-smoothing techniques and driven by the refinement factor, has
shown a good performance.

The discontinuous model represents failure via the introduction of a geometri-
cal discontinuity. In this study, the cohesive zone concept is modelled via the use of
the partition-of-unity property of the finite element interpolation. By this approach,
the crack line can pass through the elements without any restriction to the under-
lying mesh. Despite such feature, it has been found that a sufficiently fine mesh
discretisation still needs to be ensured in order to obtain a correct crack path and
mechanical response. The uniform mesh tests have shown that h-adaptivity is the
best choice in improving the finite element results. However, only the p-adaptive
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scheme has been examined due to its implementational simplicity, in comparison to
h-adaptivity, to be inserted in this model. The results have shown that, if consider-
ing only increasing the polynomial degree, the p-approach can greatly improve the
results, whereas decreasing the polynomial degree was found to be unsuccessful.



Samenvatting

Error estimation and adaptive spatial discretisation

for quasi-brittle failure

door T. Pannachet

De nauwkeurigheid van een eindige-elementenoplossing hangt sterk af van
de ruimtelijke discretisatie van het probleemdomein. Een verfijnde/verrijkte
discretisatie verschaft een grotere nauwkeurigheid maar vereist ook hogere
berekeningskosten. Adaptieve discretisatie is een oplossing voor dit dilemma. De
ruimtelijke discretisatie kan worden gevarieerd naarmate dit nodig is in het pro-
bleemdomein. In de modellering van quasi-bros bezwijken kan de proceszone, de
zone waar het bezwijken plaatsvindt, zeer klein zijn. Het is dus efficiënt een adap-
tieve ruimtelijke discretisatie toe te passen. In dit onderzoek zijn twee bezwijkmo-
dellen voor quasi-brosse materialen onderzocht. Het adaptieve schema wordt ge-
stuurd door een wiskundig geformuleerde foutschatter in de vorm van ofwel de
energienorm ofwel een specifieke grootheid. Het adaptieve schema wordt geac-
tiveerd tijdens het bezwijkproces.

Het continuümmodel simuleert bezwijken door degradatie van de materiaal-
sterkte. Een gradiënt-verrijkt schademodel is gekozen voor deze studie. Naast
de gebruikelijke kritieke zones, zoals bij de opleggingen of het gebied met de
spanningsingulariteit, zijn foutconcentraties gevonden in gebieden met grote rek-
gradiënten. Drie adaptieve technieken zijn toegepast. Hoewel p-adaptiviteit de dis-
cretisatie sterk kan verbeteren, laten de resultaten zien dat de prestatie afhangt
van het elementennet. H-adaptiviteit laat duidelijk zien dat het de lokalisatiezone
beter kan beschrijven. Als goedkoop alternatief heeft r-adaptatie, gebaseerd op
gewogen Laplace-uitsmeringsmethoden en gestuurd door de verfijningsfactor,
goede prestaties laten zien.

Het discontinue model beschrijft bezwijken door een geometrische discon-
tinuı̈teit te introduceren. In deze studie is het cohesieve-zoneconcept gemodel-
leerd met de Partition-of-Unity-eigenschap van de eindige-elementeninterpolatie.
In deze aanpak kan de scheur elementen passeren zonder beperkingen van het
onderliggende elementennet. Desondanks is gevonden dat een voldoende fijn el-
ementennet nodig is om een correct scheurpad en mechanische repons te verkrij-
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gen. De voorbeelden met een uniform elementennet tonen aan dat h-adaptiviteit de
beste keuze is om de eindige-elementenresultaten te verbeteren. De studie beperkt
zich echter tot een p-adaptivief schema vanwege de eenvoud van implementatie
in dit model, vergeleken met h-adaptiviteit. De resultaten laten verder zien dat de
p-aanpak de resultaten sterk kan verbeteren als alleen verhoging van de polynoom-
graad gebruikt wordt, terwijl verlaging van de polynoomgraad zonder succes is
gebleken.



Propositions/Stellingen

1. As long as computer resources are limited, an error assessment should be
applied in a finite element analysis to guarantee that the solution is not just ’a
junk’.

Zolang mogelijkheden van de computer beperkt zijn, zal een foutschatting moeten
worden gebruikt in een eindige-elementenberekening om te garanderen dat de oplos-
sing niet puur willekeurig is.

2. There are two main reasons why a residual-type error estimation can not give
an exact discretisation error. The first relates to the introduction of the refer-
ence mesh. The second relates to the introduction of the local scheme.

Er zijn twee hoofdredenen waarom de residu-type foutschatter geen exacte
discretisatie-fout oplevert. De eerste wordt veroorzaakt door het gebruik van een ref-
erentie ’mesh’. De tweede refereert aan het gebruik van een lokaal schema.

3. Although Partition-of-Unity based discontinuity models do not suffer from
mesh alignment, sufficient mesh discretisation still needs to be ensured.

Hoewel het ’Partition-of-Unity’ gebaseerde discontinuı̈teitenmodel niet gevoelig is
voor richting-afhankelijkheid van de ’mesh’, is toch een voldoende fijne discretisatie
nodig.

4. The goal you try to achieve at the beginning may not be the same goal you
try to achieve at the end. It depends very much on the information you collect
along the way.

Het doel dat je wilt bereiken aan het begin, is niet noodzakelijk hetzelfde doel dat
je probeert te halen aan het eind. Dit is afhankelijk van de informatie die onderweg
wordt verzameld.

5. The style of working of a person relates to his/her culture.

De werkstijl van een persoon is gekoppeld aan zijn/haar cultuur.

6. The more you learn, the smarter you are, but the more stupid you feel.

Hoe meer je leert, hoe slimmer je wordt, maar hoe dommer je jezelf voelt.
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7. Good researchers listen to other people’s opinions.

Goede onderzoekers luisteren naar de mening van anderen.

8. The relation between work progress and tension may be described by a load-
displacement softening curve. For the pre-peak regime holds, the more ten-
sion you feel, the higher your productivity. However, beyond your mental
strength, it is reversed. To which extent your work progress is reduced de-
pends on your mental toughness.

De relatie tussen voortgang van werk en druk kan worden beschreven met een last-
verplaatsingsdiagram met ’softening’. Voor de stijgende tak geldt dat meer druk leidt
tot een hogere productiviteit. Echter, voorbij de mentale sterkte is dit juist andersom.
De reductie in voortgang van het werk wordt bepaald door de mentale weerbaarheid.

9. Body and mind are important in one’s life. However, the power that drives
you to do things comes from your mind. With a healthy mind, you can do
almost anything.

Lichaam en geest zijn belangrijk in het leven. Echter, de kracht om dingen te doen
komt van de geest. Met een gezonde geest kun je bijna alles doen.

These propositions are considered opposable and defendable and as such have
been approved by the supervisors, Prof. dr. ir L. J. Sluys and Prof. dr. ir. H. Askes.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren, Prof. dr. ir L. J. Sluys and Prof. dr. ir. H. Askes.
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Politècnica de Catalunya, Barcelona, Spain.

Nov 2006 – Lecturer, Department of Civil Engineering, Khon Kaen
university, Thailand.


