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Abstract

Machine learning algorithms search a space of possible hypotheses and estimate the error of each
hypotheses using a sample. Most often, the goal of classification tasks is to find a hypothesis with
a low true (or generalization) misclassification probability (or error rate); however, only the sample
(or empirical) error rate can actually be measured and minimized. The true error rate of the returned
hypothesis is unknown but can, for instance, be estimated using cross validation, and very general
worst-case bounds can be given. This doctoral dissertation addresses a compound of questions on
error assessment and the intimately related selection of a “good” hypothesis language, or learning
algorithm, for a given problem.

In the first part of this thesis, I present a new analysis of the generalization error of the hypothesis
which minimizes the empirical error within a finite hypothesis language. I present a solution which
characterizes the generalization error of the apparently best hypothesis in terms of the distribution
of error rates of hypotheses in the hypothesis language. The distribution of error rates can, for any
given problem, be estimated efficiently from the sample. Effectively, this analysis predicts how good
the outcome of a learning algorithm would be without the learning algorithm actually having to be
invoked. This immediately leads to an efficient algorithm for the selection of a good hypothesis
language (or “model”). The analysis predicts (and thus explains) the shape of learning curves with
a very high accuracy and thus contributes to a better understanding of the nature of over-fitting. I
study the behavior of the model selection algorithm empirically (in particular, in comparison to cross
validation) using both artificial problems and a large scale text categorization problem.

In the next step, I study in which situations performing automatic model selection is actually ben-
eficial; in particular, I study Occam algorithms and cross validation. Model selection techniques such
as tree pruning, weight decay, or cross validation, are employed by virtually all “practical” learners
and are generally believed to enhance the performance of learning algorithms. However, I show that
this belief is equivalent to an assumption on the distribution of problems which the learning algorithm
is exposed to. I specify these distributional assumptions and quantify the benefit of Occam algorithms
and cross validations in these situations. When the distributional assumptions fail, cross-validation
based model selection increases the generalization error of the returned hypothesis on average.

When several distinct learners are assessed with respect to a particular problem (or one learner is
assessed repeatedly with distinct parameter settings), an effect arises which is very similar to over-
fitting that occurs during error-minimization processes. The lowest observed error rate is an optimistic
estimate of the corresponding generalization error. I quantify this bias. In particular, I study the bias
which is imposed by repeated invocations of a learner with distinct parameter settings when n-fold
cross validation is used to estimate the error rate. I pursue an information theoretic approach which
does not require the assumption that empirical error rates measured in distinct cross validation folds
are independent estimates. I discuss the implications of these results on the results of empirical studies
which have been carried out in the past and propose an experimental setting which leads to almost
unbiased results.

Finally, I address complexity issues of model selection. In model selection based learning, the
learning algorithm is restricted to a (small) model, chosen by the model selection algorithm. By con-
trast, in the boosting setting, the hypothesis is allowed to grow dynamically, often until the hypothesis
is fitted to the data. By giving new worst-case time bounds for the AdaBoost algorithm I show that in
many cases the restriction to small sets of hypotheses causes the high complexity of learning
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Chapter 1

Introduction

This Chapter provides an informal introduction to supervised machine learning and an overview over
this doctoral dissertation. In particular, PAC Theory, Bayesian learning, the No-Free-Lunch Theo-
rems, and the principle idea of model selection are discussed on an intuitive level.

1.1 Machine Learning

Learning is studied in many disciplines and many definitions try to capture the intuition of what we
actually consider learning. Attempts to define learning were made by, among others, Simon (1983).
Simon defines learning as a modification in the behavior of a system which leads to an improvement
with respect to the repeated performance of some task. This definition may appear to be overly general
as it includes, for instance, the physical modification of a system. More specifically, Michalski et al.
(1986) define learning as the construction and modification of representations of experience.

Many categories of learning processes are distinguished in psychology, statistics, and computer
science. The learning settings differ in the task which the student has to accomplish and the infor-
mation which is provided by the teacher. In the concept formation setting, the student (or learner) is
provided with a set of positive and often additionally a set of negative examples of a concept. It then
has to identify the target concept from the data. Classification differs slightly from concept formation.
Here, the learner has to discriminate finitely many classes from each other. Regression is studied in
statistics; here, the learner has to identify a target function (from sample points) rather than just dis-
criminate finitely many classes. Language acquisition has a somewhat different meaning in learning
theory than it has in psychology: In Gold’s mathematical model (Gold, 1967), language learning is
considered the problem of finding a grammar which identifies a language syntactically (i.e., discrim-
inates its sentences from the complementary language); the acquisition of a semantic is disregarded.
In the skill acquisition setting, a learner is able to perceive parameters of a system and has to select a
control action, such that some performance criterion is maximized. In order to acquire such a control
policy, the learner can either conduct control experiments (this setting is referred to as reinforcement
learning; Sutton & Barto, 1998), or it can observe a perfect operator controlling the system (referred
to as behavior cloning; Sammut et al., 1992).

In this thesis, I will focus on mathematical models which also try to capture the intuition of
learning. Many of these models and the whole of this thesis is committed to classification (a detailed
overview on the various other fields of machine learning is given by Mitchell, 1997). I assume that
there is an unknown target function which the learner has to “guess” from examples. The domain of
this target function is generally referred to as the “instances” and the elements of the finite co-domain
are called “class labels”. Typically, the learner is given a finite sequence of input-output pairs (a
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sample). The various models differ in their success criteria: While Gold’s model of Identification in
the Limit (Gold, 1967) requires that the learner identifies the target concept exactly and with certainty
but in unbounded time, Valiant’s framework of Probably Approximately Correct learning (Valiant,
1984) requires the learner to find, with high probability, a hypothesis which incurs an error of no more
than " from a batch of examples (preferably polynomial in size) where the error is measured in terms of
the misclassification probability for new instances. The notation of the misclassification probability
(or “error rate”) of hypotheses implies the existence of an (unknown) underlying distribution over
instances. The error rate is then the chance of the hypothesis making a false prediction on an instance
drawn according to this distribution. What makes this setting nontrivial is that the learner is only
able to perceive the error incurred on the sample; however, the success criterion refers to the actual
target function which is unknown to the learner. The way that PAC theory argues to bound the true
(or generalization) error rate of hypotheses is the following: The chance of a hypothesis with error
of at least " giving the correct answer for a new instance is at most 1 � ". Hence, the chance of our
hypothesis classifying a sequence of m instances correctly (although the true error is " or more) is at
most (1�")m, provided that these examples are independent and identically distributed. Suppose that
the learner searches a finite hypothesis space H and returns an arbitrary hypothesis which is consistent
with a sample of size m. In the worst case, all jHj hypotheses incur an error of at least " with each
hypothesis having a chance of (1�")m of being consistent with the sample. Hence, the chance that at
least one of jHj hypotheses incurs a true error of at least " and is consistent with the sample is at most
jHj(1 � ")m. When we employ the worst possible learner, it might return the hypothesis with the
highest true error which is consistent with the sample. Therefore, if our learner returns a hypothesis
that is consistent with a sample of size m, we can claim that, with probability at least 1�jHj(1�")m,
the true error is no more than ". This simple result gives an intuition on how PAC theory allows to
make statistical claims on the true error of a hypothesis when only the empirical error is known.
This result also demonstrates that our knowledge on the generalization error of a learned hypothesis
decreases with the size of the hypothesis language which the hypothesis was learned from. If we
consider a hypothesis space with one single hypothesis, the empirical error is an unbiased estimate
of the true error (the chance of the empirical error being an optimistic estimate is just as large as
the chance of it being a pessimistic estimate). Unbiased means that the expectation of the empirical
error rate of a hypothesis is the true error rate. However, if we consider a hypothesis space with
many hypotheses, then certainly some of them will have an empirical error which is greater than their
true error while others will have an empirical error which is less than their true error. If we choose
a hypothesis with low empirical error we are likely to select one with an optimistically estimated
error. The more distinct hypotheses there are in the space, the less we can say about the true error
of a hypothesis which is consistent with the sample. However, this result must not be misinterpreted
as meaning that the generalization error of the returned hypothesis increases when the hypothesis
language which it was learned from grows.

In Bayesian Learning (e.g., Berger, 1985), the learner is assumed to have some extra information,
compared to a PAC learner. While the latter is required to perform well for any target function (from a
given set of possible functions), one averages the error rate of a Bayesian learner over all possible
target functions, according to a known prior probability P (f) on target functions. So, Bayesian
learning is easier than PAC learning in some sense because it does not “hurt too much” when the
learner performs poorly for unlikely target functions, and the learner knows the prior probability of
target functions. The hypothesis which minimizes the expected error (or, more general, the loss) is
called the Bayes hypothesis. The Bayes hypothesis makes a prediction for an instance x according to
the weighted majority of all possible functions f(x), where the weights are the posterior probabilities
P (f jS) of the function f having generated the observed sample S. Using Bayes’ rule, this posterior
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works out to P (Sjf)P (f)
P (S)

. P (Sjf) can often be determined and P (f) is assumed to be known; P (S)
can in some cases be derived from P (Sjf) and P (f). In this situation, one can make an optimal
decision – i.e., one that minimizes the expected misclassification probability in classification learning.
When P (S) is not known or summing over all possible f is not tractable, one can still determine the
MAP (or “Maximum a posteriori”) hypothesis which maximizes the posterior probability P (f jS) of
having generated the sample by maximizing P (Sjf)P (f) (P (S) is constant for a given learning
problem). Unfortunately, assuming that the prior P (f) is known for a given environment is not
entirely realistic. Robust Bayesian learners (Berger, 1993) can be guaranteed to perform well for
a whole class of possible priors which differ from each other to some degree.

1.2 The Need for Bias in Learning

The term “learning bias” entails various mechanisms which have an influence on which hypothesis
a learning algorithm is going to come up with. Mathematically, this learning bias can be written as
PL(hjS) – i.e., the chance that hypothesis h is returned by learner L given the data S. One factor
which influences the learning result is the hypothesis language which is therefore also referred to as
“language bias”. Learning algorithms which minimize the empirical error rate have to decide which
of the hypotheses with least empirical error within the language to return. One possible bias is to draw
at random (under uniform distribution) from the hypotheses with least empirical error. I will assume
this particular bias throughout Chapter 3. However, a learner might follow a completely different bias;
e.g., it might prefer the hypothesis which is least with respect to the alphabetical ordering. Instead
of choosing among the error minimizing hypotheses, a learner might choose a particular hypothesis
which maximizes some merit criterion (this is what complexity penalization algorithms do) which
leads to some particular learning bias.

It is obvious that the learning bias has a major impact on the generalization ability of the resulting
hypothesis. But precisely what does the relation between learning bias and generalization ability look
like? Or, asked in another way, is there a learning bias which can be proven to be superior to all other
biases? PAC and VC theory (discussed more carefully in Section 2.2.2) study the generalization ability
as intrinsic properties of the learning bias. The PAC results are sometimes interpreted as suggesting
that, in order to achieve good generalization, one should choose certain hypothesis languages while
avoiding others. However, a careful analysis often reveals that such interpretations are undue. By
contrast, the No-Free-Lunch Theorems (for a more detailed discussion, see Section 2.3) clarify that
the generalization ability of a particular learning bias is a property of the focused problem, rather than
a property of the bias itself.

PAC theory requires learners to produce a hypothesis with low true error when only minimal
domain knowledge is available (only a class of possible target functions is known). One way of
quantifying the generalization performance of learners is to look at the sample size which is required
to guarantee a low true error. The “sample complexity” of learning has been studied intensely, and
many classes of target functions and hypothesis languages have been identified which can be learned
from sample sizes polynomial in the size parameter of the function or language class. Blumer et al.
(1987) proved the well-known result that the generalization error of a hypothesis h which is consistent
with a sample of size m and which has been learned from a hypothesis language H can be bounded
by " (with confidence 1� �) when the sample size m is at least 1" log

1
� . Assume that two hypotheses,

h1 and h2, which are consistent with a sample S have been learned from hypothesis languages H1
and H2, respectively, with jH1j < jH2j. Then Blumer’s result shows that we can prove a better error
bound for h1 than we can for h2. It is very tempting to misinterpret this result as meaning that H1 is
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a better language bias than H2. This, however, is not necessarily true; in particular, it is only likely to
be true when the target function is known to lie in H1. A different way of thinking about this problem
reveals that, on average, h1 and h2 incur an equal generalization error.

Wolpert (1992) adopted a different perspective towards the question of how good learners can
be and came to some very insightful results – the No-Free-Lunch Theorems. If we assume that all
learners minimize the sample error anyway, the off-sample error (error on all instances that are not
in the sample) becomes an interesting issue. Imagine that, for some classification problem, only four
instances x1 though x4 are not in the sample. If the hypothesis language is powerful enough, there are
24 distinct hypotheses which are consistent with the sample (these four hypotheses form the version
space; Mitchell, 1982) but behave differently on the remaining four instances. Every learner L which
returns hypotheses that are consistent with the sample needs to have a built-in preference to choose
between hypotheses which are equally consistent with the sample (this preference is sometimes also
referred to as learning bias). Let learner L0000 return the hypothesis which classifies all four instances
as 0, L0001 labels x1 through x3 as 0 and x4 as 1, and so on. There are also 24 possible target functions
which behave differently on x1 though x4, let us label them f0000 through f1111 as well. Let us
now look at the off-sample error of L0000, averaged over all possible target functions, under uniform
distribution of the instances. For f0000, learner L0000 incurs an off-sample error of zero, for f0001 of
1
4
, and so on. On average, L0000 incurs an off-sample error of 1

2
. Learner L1000 incurs an off-sample

error of 0 for f1000, of 1
4

on f0000 and, averaged over all functions, of 1
2

as well. In fact, all learners
L0000 through L1111 impose an average off-sample error of 1

2
. This observation leads to the first No-

Free-Lunch Theorem: Uniformly averaged over all possible target functions, the off-sample errors of
two arbitrary learners are equal. This theorem holds for arbitrary learners and basically says that it
is impossible to construct a learner which is better-than-average on all problems. But the important
point is that we averaged the error uniformly over all target functions. If, however, some functions
occur more frequently than others (i.e., there is a known nonuniform prior P (f)), it is possible to
construct a learner that performs well for this particular distribution. If the prior is nonuniform but
unknown, the third No-Free-Lunch Theorem claims that, again, no better-than-average learner can be
constructed. See Section 2.3 for a formal presentation of the No-Free-Lunch Theorems

This argues that, as far as the generalization error rate is concerned, there is no such thing as an
“intrinsically good learning bias”. One cannot construct a learner which is both general and accurate.
Instead, a low generalization error is due to an alignment between the bias of the learner and the
prior probability of target concepts which occur in some domain. This indeed justifies the need for a
learning bias which is adequate for the given learning problem.

Another aspect of the learning bias is the complexity of learning algorithms which use that partic-
ular bias. Consider this example. When the target function is a k-term CNF(n) (a conjunction of up
to k disjunctions over n variables), then no learner which uses k-term CNF(n) as hypothesis language
can be guaranteed to find a hypothesis which is consistent with a sample of size m in time polynomial
in n. If, however, k-DNF(n) (disjunctions of arbitrary many conjunctions which may consist of up
to k Boolean literals each) is used as hypothesis language, then a polynomial algorithm can be found
that finds a k-DNF which is consistent with the sample and approximates the target k-term CNF(n)
well – although k-DNF(n) is a proper superset of k-term CNF(n). This is because, for k-DNF(n),
a greedy algorithm exists while, when k-term CNF(n) is selected as hypothesis language, the whole
hypothesis space has to be enumerated to check for a hypothesis which is consistent with the sample.
In Inductive Logic Programming (ILP) (e.g., Lavrac & Džeroski, 1994; Muggleton, 1992), the target
function is a set of Horn clauses (usually the class of Horn clauses is subject to further restrictions).
In this learning problem, even calculating the class label which a hypothesis assigns to an instance
is undecidable (under logic implication) or NP-complete (under �-subsumption). Consequently, the
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learning problem is, in most cases, extremely expensive. It does, however, turn out that certain sets of
clauses can be learned in polynomial time (usually those for which �-subsumption can be proven effi-
ciently; e.g., Kietz & Dzeroski, 1994; Scheffer et al., 1996) while other, equally large sets cannot be
learned polynomially. So from a complexity oriented point of view, there are language biases which
are intrinsically superior to others.

1.3 Model Selection

Consider the following situation: In order to solve a learning problem we are free to choose a hy-
pothesis language from a set of languages (or models) – decision trees of variable depth perhaps, or a
neural network with a variable number of hidden neurons. One can think of a model as a collection
of structurally identical (or similar) hypotheses. Statisticians like to think of models as parametric
schemes and of hypotheses as models with instantiated parameters. If we choose too simple a model
(a tree of depth one say) even the best hypothesis in that model is likely to incur both a high empirical
and a high true error. On the other hand, if we choose too rich a model (e.g., a neural network with a
hundred hidden units) our hypothesis is likely to be poor due to over-fitting effects. This problem is
often referred to as the bias-variance trade-off, based on Breiman et al. (1984) who distinguish a bias
and a variance term in the generalization error. The bias part of the generalization error is the error
rate of the best approximation of the target within a given model. By increasing the model size, the
bias term decreases monotonically. The variance term quantifies the error that is imposed by improper
labeling of the nodes caused by limited data which is available. Whether or not (and by how much)
the variance term increases when we increase the model size depends on the problem. So what can
we do in this situation? Three classes of approaches can be distinguished: Hold-out testing methods
use parts of the data to assess the hypotheses learned from increasingly complex models; complexity
penalization approaches minimize a demerit criterion (instead of the empirical error) which consists
of the empirical error plus a complexity penalization term; Bayesian approaches exploit additional
information in terms of a prior on target functions which is assumed to be known in advance.

Hold-out testing. One thing we might do is stratify the hypothesis language into increasingly complex
models (e.g., model Hi could consist of networks with i hidden units), and use cross validation (e.g.,
Stone, 1974; Toussaint, 1974) or Bootstrapping (Efron, 1979) to obtain an estimate of the true error of
the hypothesis which is returned by the learner when the learner operates on model Hi. Starting with
the smallest model, the learning algorithm returns one hypothesis from each model. The hold-out set is
then used to obtain an estimate of the expected generalization error; the model with the lowest estimate
is selected and the learner is invoked for this model with the whole sample. In order to minimize the
variance of the estimate the idea of n-fold cross validation, e.g., (Stone, 1974), and bootstrapping
(Efron, 1979) is to average many error measurements which are generated on re-sampled data sets
(the instances in the re-sampled data set are drawn from the original data set, without replacement
in case of cross-validation and with replacement in the case of bootstrapping). The model which
incurred the least cross-validation error is then selected and the learner is run on that model using the
complete training set. This method illustrates how intimately error assessment and model selection
are related. It also shows a trivial bound on how good model selection techniques can be: Suppose that
we stratify the hypothesis language H into models H1 through HjHj – each containing exactly one
distinct hypothesis. If we then use the sample S to decide which model to chose, we will necessarily
end up with a hypothesis which is just as good as the one we would have obtained by using one
model containing all hypotheses. For many applications, n-fold cross validation works quite well and
reliably, although it should be noted that while this class of approaches yields a reasonably accurate
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estimate of the expected error it does not yield a good estimate of the variance. More precisely, the
empirical variance is generally much less than the true variance as the n error estimates are based
on “very similar” data (rather than being independent measurements) (Dietterich, 1997). The main
drawback of this approach is the high computational effort. Depending on the sample size, the learner
has to be invoked about ten times per model (e.g., Kohavi & John, 1997). In domains in which
learning is very time consuming and the number of potential models is large, cross validation may
incur an unacceptably large computational effort. This is the case, for instance, in Inductive Logic
Programming (e.g., Muggleton, 1992) and neural segmentation of satellite data (here, the number of
attributes is often extremely large; Milne, 1997).

Complexity penalization. Instead of assessing the models by means of cross validation, we could
have assigned a complexity based penalty term to each model. While hold-out testing based al-
gorithms sequentially consider the hypotheses which have been learned from increasingly complex
models, complexity penalization based methods minimize a demerit criterion which consists of the
empirical error and a complexity based penalty term. One member of this class is Structural Risk
Minimization (SRM) (Vapnik, 1982, 1996, 1998) which is based on the VC framework (e.g., Vapnik
& Chervonenkis, 1971). The Support Vector Machine (SVM) is an (approximate) implementation of
SRM. The “vanilla” Support Vector Machine inflates the instance space by introducing polynomials
of the original attributes as new attributes. Ideally, this should result in positive and negative examples
being separable by a single hyper-plane. From all those planes which are consistent with the sample
the SVM chooses the one which is least with respect to a stratification that is defined in terms of the
width of the margin between positive and negative samples. Effectively, the SVM returns the plane
(in the inflated space) which maximizes the margin between examples of distinct classes. This par-
ticular stratification which leads to a maximally large margin has proven to be beneficial for many
practical learning problems. Intuitively, the SVM works best when the two classes are somehow clus-
tered around distinct centers. However, the SVM does not actually trade off model complexity against
empirical error as the empirical error is pinned down to zero. This may result in over-fitting in cases
where there is no consistent hypothesis but the best approximation is fairly simple. This constraint
is weakened in Soft-Margin-Machines (Cortes & Vapnik, 1995), but only by introducing a parameter
that trades a higher VC-dimension against lower observed error and that has to be adjusted by cross
validation or according to some heuristic. Similarly to other complexity penalization approaches like
regularization (Moody, 1992), neural weight decay methods (e.g., Cun et al., 1989), or decision tree
pruning algorithms (e.g., Quinlan, 1993; Mingers, 1989), the merit of the selected model depends
strongly on the value chosen for the penalization/regularization parameter. Effectively, this parame-
ter forms a meta-level model selection problem and “trying out” different parameter settings incurs
meta-level over-fitting (Ng, 1997).

Recently, a new penalization based model selection algorithm has been proposed by Schuurmans
(1997) in the context of regression. Given the distribution of unlabeled instances, one can define
a metric on hypotheses, and between hypotheses and the target distribution. Knowing the distance
between hypotheses one can use the triangle inequality to decide when the distance to the target
distribution must be increasing. This approach turns out to perform better than cross validation and
complexity penalization methods for problems with a steep variance profile (Schuurmans et al., 1997).

Bayesian learners (Berger, 1985) solve both the learning and the model selection problem at the
same time. Under certain ideal conditions, one can, under high computational effort, derive the Bayes
hypothesis from the posterior P (f jS) which is guaranteed to have the least generalization error. In-
tuitively, the prior P (f) relates to the hypothesis complexity (in an optimal coding scheme, frequent
hypotheses have a small description length) and the likelihood P (Sjf) relates to the empirical behav-
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ior of a hypothesis function f . The Bayes hypothesis yields the optimal trade-off between likelihood
(empirical behavior) and prior (complexity). Often, the posterior is used for less expensive model se-
lection heuristics such as MAP (the maximum a posteriori hypothesis maximizes the chance of having
generated the data) or MDL (Rissanen, 1978, 1989) (the MDL hypothesis minimizes the description
length required for the data by compressing it to a hypothesis and the exceptions to the hypothesis
in the data). However, the prior distribution P (f) is assumed to be known in advance – which is
indeed a very strong assumption. The general belief is that Bayesian learners are fairly robust against
some degree of misalignment between the actual and the assumed P (f). The No-Free-Lunch The-
orems (Wolpert, 1992) explain that Bayesian learners perform better than randomly guessing only if
the actual and the assumed prior are “not completely unaligned”.

In Section 2.3, I will discuss the No-Free-Lunch Theorems which claim that one cannot construct
a learner that performs better than average for all possible problems. These theorems also imply that
a learner which conducts model selection cannot be superior to one that does not, averaged over all
possible target functions. This raises the question in which situations conducting model selection is
actually beneficial.

1.4 Applications of Machine Learning

From an engineering point of view, the most interesting aspect of machine learning is perhaps that
it provides methods for automatic adaptation of a system to a particular environment. Successful
applications of machine learning techniques are numerous, only few can be mentioned here.

An area of applications which is gaining interest is knowledge discovery in databases (e.g., Hol-
sheimer & Siebes, 1991; Fayyad et al., 1996). Currently existing commercial databases contain large
quantities of potentially valuable knowledge regarding, for instance, typical patterns of customer be-
havior. The idea of “data mining” is to automatically extract potentially interesting patterns. One of
the most frequently studied problems is the discovery of association rules. Association rules (Agrawal
et al., 1993) are simple implications between database items of the form “if the customer buys beer
then the customer is likely to also buy potato chips”. The large size of typical databases imposes a
particular difficulty on data mining problems. Data mining algorithms are usually required to operate
in time at most linear in the size of the database – preferably even sub-linear (e.g., Toivonen, 1996).
Discovering patterns of customer behavior and detecting fraudulent credit card transactions belong to
the most popular data mining tasks.

A large number of applications fall into the general field of pattern recognition. This entails
computer vision (e.g., Jain et al., 1997), optical character recognition (e.g., Cun et al., 1989), and
recognition of spoken words (e.g., Lee, 1989).

Text categorization (e.g., Salton & Ruckley, 1988) is the problem of mapping texts to seman-
tic categories. Interesting applications are automatic classification of news stories for later research
(Lewis, 1991; Lang, 1995), and the classification of web pages (e.g., Joachims et al., 1997).

Automatic control is a very large field of application. Algorithms which automatically acquire
a control skill fall into the classes reinforcement learning and behavior cloning (the relative bene-
fits of these two approaches have been discussed by Scheffer et al., 1997). Reinforcement learning
algorithms (e.g., Sutton & Barto, 1998) acquire a skill by conducting control experiments and re-
ceiving performance feedback. Perhaps the most successful application of reinforcement learning
is TD-gammon (Tesauro, 1992, 1995), a program that plays backgammon on world championship
level. Other applications include, for instance, automatic control of cars on highways (Pomerleau,
1989). Behavior cloning algorithms which learn from examples of good behavior have been applied
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to problems such as satellite control (Müller & Wysotzki, 1995) and flight simulators (Sammut et al.,
1992).

Knowledge acquisition (e.g., Quinlan, 1989) is the process of elaborating background knowl-
edge on some domain from a domain expert and implementing this knowledge into an expert system.
Knowledge acquisition is generally considered to be the bottleneck of the construction of expert sys-
tems. Machine learning algorithms have been used to support this process by extracting knowledge
from examples of behavior rather than from descriptions of the expert (e.g., Gaines & Compton,
1992; Kang et al., 1995; Scheffer, 1996).

There are many other applications of machine learning; classification algorithms have been ap-
plied to problems of medical diagnosis (e.g., Ulbrich & Wysotzki, 1972; Richter & et al., 1974;
Kononenko, 1993), regression algorithms have often been applied to share price prediction, and many
other problems.

1.5 Principle Contributions

In this doctoral dissertation, I discuss a compound of questions on assessment of hypotheses and the
related selection of a good hypothesis language, and learner. The following is a sketch of the main
results.

1. I conduct a new analysis of the expected true error of the hypotheses which minimize the ob-
served error. The analysis characterizes the generalization error of the apparently best hypoth-
esis in the model in terms of the prior distribution of error rates in the model which can be
estimated efficiently. The results predict and thus explain learning curves much more precisely
than PAC-style results and thus contribute to a better understanding to the nature of generaliza-
tion.

2. As an immediate result, the analysis leads to an efficient algorithm for model selection; its
primary benefit is that it is much more efficient than cross validation, while usually being at
least as accurate. I conduct a series of empirical studies which support this claim. I demonstrate
the scalability of the algorithm on a text categorization problem.

3. I study in which situations conducting model selection leads to better generalization than not
conducting model selection. After a couple of generally negative results, I characterize a class
of learning scenarios (located in the gap between Bayesian and PAC learning) in which Occam
algorithms (which can be considered a “weak” form of model selection) perform better than
PAC learners. I develop a framework which quantifies the expected error of cross validation
based model selection.

4. The abovementioned framework has some practical implications: It provides an answer to the
question how the sample should be split into training and hold-out sets, and it predicts whether
cross validation based model selection (with respect to some given stratification) will do better
or worse than simple error minimization.

5. When many instantiations of a parametric learning algorithm (many learners have parameters
such as learning rates, regularization parameters, and so on) are being compared with respect to
their performance on a collection of data sets, some results will necessarily be optimistic while
other results will be pessimistic estimates of the true performance. The best observed accuracy
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is likely to be an optimistic estimate. I quantify just how optimistic this estimate is and discuss
the consequences of this result for the empirical assessment of learners.

6. In the model selection approach, the learner is constrained to a fixed model. By contrast, in
the boosting approach the hypothesis space is allowed to grow dynamically. By giving new
worst-case time bounds for the AdaBoost algorithm I show that in many cases the restriction to
small sets of hypotheses causes the high complexity of learning.

1.6 Organization

This Section gives an overview on the structure of the following chapters. In Chapter 2, I discuss some
principles of machine learning and introduce the necessary definitions and methodology. In Chapter
3, I present the new analysis of the error of hypotheses which minimize the empirical error rate and the
resulting model selection algorithm. I also present empirical results on learning Boolean functions and
on text categorization. Chapter 4 deals with the question when model selection is beneficial and, in
particular, what the expected error of cross validation based model selection is. Chapter 5 analyzes the
accuracy of the apparently best of many hypotheses, generated by differently parameterized learners.
Chapter 6 addresses the complexity of model selection based learning and Chapter 7 contains some
concluding remarks. The Appendix contains all proofs and derivations which exceed one page in
length. Appendix H furthermore contains a list of all frequently used abbreviations.



Chapter 2

Preliminaries

In this thesis, I study the problem of classification learning from labeled examples. Most results
refer to the expected generalization error of hypotheses which requires the existence of a “natural”
distribution of instances.

2.1 Terminology Used throughout the Book

Instances. There is a set of instances X and a finite set of class labels Y (sometimes, for simplicity,
Y is assumed to be the set f0; 1g). A classification problem is defined by an unknown distribution
DXY = DY jXDX over labeled instances (X � Y ), which has to be approximated as closely as
possible. DY jX(yjx) is the chance that y is the class label of an observed instance x and DX(x) is the
probability distribution or density which governs the instances x. In classical PAC theory, learning
problems are often defined as consisting of a function f from a class of target functions F together
with a distribution DX on instances. Sometimes it is more convenient to refer to the notation of
the target function f but note that this definition is subsumed by the notation of DXY (proposed by
Kearns et al., 1992). Given a DX and f one can define DXY as DY jXDX where DY jX(yjx) is 1 iff
y = f(x), 0 otherwise.

Hypotheses and Error. A hypothesis h : X ! Y is a mapping from instances to class labels. The
true (or generalization) error rate of a hypothesis, with respect to the (unknown) distribution DXY

is the difference between the predicted value h(x) and all class labels y, weighted with DXY (x; y)
– more formally, ED(h) =

R
(x;y)2X�Y `(h(x); y)dDXY (x; y), where ` is the zero-one loss function.

Sometimes, when it is more convenient to talk about target functions f in conjunction with distribu-
tions DX on instances, I write the error as Ef;DX

(h) =
R
`(h(x); f(x))dDX (x). I will switch be-

tween the notations of target functions f and target distributions DXY , using whichever is more appro-
priate in the given situation. Let the sample S be a sequence of labeled instances drawn independently
and identically distributed according to DXY . The sample size is abbreviated m throughout this book.
Each example is drawn according to DXY or, put in another way, the whole sample is drawn accord-
ing to (DXY )

m. The empirical or observed error is the difference between the predicted value h(x)
and the class label observed in the sample, for all sample instances: ES(h) = 1

m

P
(x;y)2S `(h(x); y).

A hypothesis that incurs an empirical error of zero for a sample S is said to be consistent with that
sample.

Hypothesis Language and Model. There is a given hypothesis language H which may be infinite
and may even have an infinite VC-dimension. A stratification of the hypothesis language is a finite
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sequence of models hH1; : : : ;Hki, Hi � H . The models do not have to properly include each other
(in fact, I do not even assume that the models are monotonically growing). But in Chapter 3, I will
assume that each model is a finite subset of H .

Learner. A learner L takes as input a sample S and a model Hi and returns a hypothesis hL. The
learner may be deterministic (in which case LHi

(S) refers to the output of L for sample S), or stochas-
tic. In the latter case, PL(hLjS;Hi) is a distribution (for finite Hi) or a density (infinite Hi) over
hypotheses. A learner may determine the set H�i (S) = fh 2 Hi : ES(h) = minh02Hi

(ES(h
0))g

of hypotheses with least empirical error. There is at least one such hypothesis. I will call a learner
which determines H�

i (S) and draws one hypothesis from this set at random an ERM learner (error
minimizing learner) an the corresponding hypotheses ERM hypotheses.

Definition 2.1.1 (ERM Learner) Given a sample S and a model Hi an ERM Learner L(S;Hi) re-
turns a hypothesis hL with minimum empirical error ES(hL) = minh2Hi

ES(h) on S. If there are
multiple hypotheses with the same minimum error, the learner picks one of them at random under
uniform distribution.

Learning curve. Let hH1; : : : ;Hki be a stratification of models and let L be a learner. For a sample S,
a learning curve is a set of points (i; ED(LHi

(S))) – i.e., the learning curve displays the generalization
error incurred by learner L on model Hi for all models. When the sample is not fixed yet, the expected
learning curve for a fixed sample size m can be plotted. When no target distribution but a prior
distribution over targets, P (DXY ), is fixed, the expected learning curve over all targets can be plotted.
Often, learning curves are “U” shaped. Model selection algorithms try to determine the minimum of
the learning curve. Unless the target distribution DXY is known, the learning curve can only be
estimated; often, the cross validation error is plotted.

Notations. I generally write probability distributions and densities in the form Pfxg(f(x) = y) where
the subscript x indicates that x is a random variable. The distribution of x should become clear in the
given context. Pfxg(f(x) = y) refers to the density of f(X) at x and can, for discrete distributions,
be thought of as the chance of drawing an x such that f(x) = y. Similarly, I write Efxg(f(x)) for
the expectation of f(x) over all x (again, the distribution of x becomes clear in the context). I write
the binomial distribution as B[n; p](x), denoting the chance of observing x marked instances, when
drawing n instances with replacement and the chance of observing a marked instance is p. The hyper-
geometric distribution is written H[m; p; c](x) and quantifies the chance that x instances are marked
when we draw c instances from a set of m instances of which p�m are marked.

2.2 Models of Generalization

In this Section, I discuss three distinct mathematical models of generalization and their relations. In
the theory of computation, there is a canonical model of computability (the Turing machine) which en-
tails all other models of computability (e.g., the Lambda calculus) and completely entails the intuition
of computability. Unfortunately, there is no such canonical model of learnability which is powerful
enough to completely capture the intuition of learning. Instead, there is a hierarchy of learnability
classes in the identification in the limit framework (e.g., Angluin & Smith, 1983; Jain et al., 1999)
and orthogonal concepts of learnability in other frameworks, such as PAC theory (Valiant, 1984), the
Bayesian framework (e.g., Berger, 1985), and the Statistical Physics framework (e.g., Tishby, 1995).
In the following, I will briefly survey the “vanilla” versions of some of these models and their rela-
tions. In this survey, I will come to a new result on the relationship between identification in the limit
and PAC theory.
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2.2.1 Gold’s Framework of Learning

The construction of the identification in the limit model (Gold, 1967) was guided by the intuition of
language acquisition; the related study of language acquisition in linguistics (Wexler & Culicover,
1980) has revealed some restrictions on the grammatical structure of natural languages which are
necessary for languages to be learnable. A learner is said to identify a function (or language) class
in the limit iff it can be guaranteed to win the following game: (a) The learner is given the class of
possible target functions. (b) The teacher starts producing a “text” (i.e., a sequence of instances which
may consist of only positive or of positive and negative examples) such that every example occurs
eventually. (c) After each new instance is read, the learner may change its mind and make a new
hypothesis (or conjecture) about the target function. The learner wins the game if, after only finitely
many mind changes, the hypothesis is correct and does not change upon reading new instances any
more. This definition of learning is referred to as explanatory learning; the corresponding class of
learnable function classes is abbreviated EX . An easy example for a class of functions in EX is
the class of functions f : IN ! IN (where IN denotes the natural numbers) that are zero almost
everywhere (i.e., everywhere except in finitely many places). A learner which reproduces all observed
nonzero function values and guesses zero at all other places identifies this class in the limit. Since
there are only finitely many nonzero values and every example occurs eventually, the learner will have
observed all nonzero values after finitely many examples. Note, however, that the learner does not
know when it has identifies the target and, in fact, the number of examples cannot be bounded (there
may be arbitrarily many nonzero values). By contrast, the class of all computable functions cannot be
learned in the limit by any computable machine (Gold, 1967).

There are two important variations of Gold’s learning paradigm: A learner identifies the target
function behaviorently correct (the corresponding learnability class is abbreviated BC) if it makes
only finitely many erroneous predictions and, from some finite point on, keeps making true predictions
although it may still change its conjecture about the target function. BC can be shown to be a proper
superset of EX (Barzdin, 1974; Case & Smith, 1983). Finite identification (or “one-shot learning”,
learnability class FIN ) imposes a further restriction on the learner: After finitely many examples, the
learner has to come up with one correct hypothesis; the learner may not change its mind. Clearly, this
setting is more restrictive than EX-learning since the learner has to be aware whether the data seen
so far suffices for a correct conjecture. Not surprisingly, FIN � EX (Lindner, 1972).

One of the many compounds of questions which are studied within the identification in the limit
framework is the learnability relative to oracles (e.g., Bshouty et al., 1994; Kobler & Lindner, 1997;
Stephan, 1998). A set A is computable relatively to an oracle B if there is an algorithm that computes
Awhich is allowed to ask questions of the form “is x in B?”. Similarly, a class of functions is learnable
relatively to an oracle B if an algorithm which may ask questions of the form “is x in B?” can identify
it. A massive corpus of results exists on identifiability of functions relative to queries to a teacher (e.g.,
Gasarch & Smith, 1988; Angluin, 1993), and on learnability of function classes by teams of learners
(e.g., Jain & Sharma, 1990; Smith, 1994). For a detailed overview on the identification in the limit
framework the reader is referred to (Jain et al., 1999).

2.2.2 The PAC and VC Models of Generalization

The PAC framework of generalization (Valiant, 1984) (for an overview, see Kearns & Vazirani, 1994;
Vidyasagar, 1997) is more strongly focused on efficient learning and learning from fixed-sized sam-
ples. In PAC theory, one distinguishes between a hypothesis language H and a class of target functions
F . A learner L is a PAC generalizer if it can be guaranteed to win the following game: (a) The learner
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gets to know the class of possible target functions F but no further information on the target. The
learner is also given parameters " and �. (b) At this point, the learner can request a required sample
size m. Note that the sample size must only depend on F , H , and the parameters as no further infor-
mation is available at this point. (c) The “teacher” now fixes a target function f 2 F and an arbitrary
distribution DX on instances. The teacher is free to choose any target function and may, for instance,
always select the function which matches the learning bias of L the worst. (d) When a sample S of
labeled instances of size m is drawn according to DX and f and given to the learner, the chance of
the learner returning a hypothesis hL such that P (EDX ;f (hL) > ") must not exceed �.

Hence, the learner wins (and is a PAC generalizer) if the chance of drawing a sample S of size m
such that the resulting hypothesis incurs an error of more than " is below � for every DX and f 2 F .
PAC theory is a worst case theory in two respects: The chosen sample size has to suffice for any
distribution DX and for any target function f 2 F . Furthermore, most PAC bounds on the required
sample size hold for any learner – i.e., the bounds are subject to the additional assumption that the
learner manages to select the worst possible hypothesis. What makes this setting particularly hard is,
as we will see later, that there has to be a fixed sample size (depending only on F , H , ", and �) which
suffices for all DX and f . A PAC learner is said to be a polynomial PAC learner for F if the required
sample size and the total running time are polynomial in 1

" , 1
� , and the size parameter of F (usually

the number of attributes n).
PAC theory is most concerned about which function classes can be learned polynomially (i.e.,

learned in polynomial time and from a polynomially sized sample). The most fundamental learnability
result has been obtained by Blumer et al. (1987): The chance that the error of any hypothesis hL
which is consistent with a sample of size m exceeds an error of " can be bounded by P (EDX ;f (hL) >
"jES(hL) = 0;m) � jHj(1 � ")m. As a corollary, one can conclude that for any hypothesis hL
(which is consistent with a sample of size m) P (EDX ;f (hL) > "jES(hL) = 0;m) � � holds if the

sample size is at least m � 1
" log

jHj
� , because

P (EDX ;f (hL) > "jES(hL) = 0;m) � jHj(1 � ")
�
1
"
log

jHj

�

�
� �: (2.1)

This elementary result provides an easy-to-follow scheme for conducting learnability proofs in the
PAC framework: A function class F can be learned polynomially using hypothesis language H � F

if (a) log jHj (and hence the required sample size) is polynomial in n (where n is typically the number
of attributes) and (b) there is an algorithm which constructs a hypothesis which is consistent with
any sample in the class of target functions in polynomial time. Several function classes have been
shown to be polynomially learnable: Conjunctive concepts (Valiant, 1984), linear threshold units
(Blumer et al., 1989), k-DNF (Boolean disjunction with up to k literals per conjunction Valiant,
1985), k-CNF (Valiant, 1985), and k-decision lists (Rivest, 1987) are polynomially learnable for fixed
k. On the other hand, disjunctions of two conjunctions are not polynomially learnable (Valiant, 1984),
neither are conjunctions of two linear threshold units (Blumer et al., 1989), or conjunctive concepts
in structural domains which consist of at least two nodes with n unary attributes (Haussler, 1989).
Pattern languages with one variable (Mitchell et al., 1998) are not PAC learnable at all (not only not
polynomially learnable). It is still unknown whether Boolean formulae in disjunctive normal form
(DNF) are polynomially learnable and whether there exists a decision tree learner which runs in time
polynomial in the size of the smallest possible decision tree. In virtually any hypothesis space, a
locally optimal hypothesis can be found in polynomial time (Greiner, 1996).

Some function classes are not polynomially learnable when H equals F because there is no poly-
nomial algorithm which constructs a consistent hypothesis. In some cases, these classes become
polynomially learnable when the hypothesis language H is extended. This is a puzzling finding as
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learning generally becomes more difficult for larger hypothesis spaces. One example of this is k-term
CNF(n) which contains conjunctive normal forms with up to k conjunctions of disjunctions (with
arbitrarily many literals) over n variables (Pitt & Valiant, 1988). Since log jk-term CNFj is polyno-
mial in n, the required sample size is polynomial, too. But in order to find a consistent hypothesis
one has to exhaust the whole hypothesis space which requires exponential computational effort. The
class k-DNF (disjunctions of conjunctions with up to k literals) is a superset of k-term CNF although
log jk-DNFj is still polynomial (and so is the sample size required to learn k-DNF). However, while
learning k-term CNF requires to exhaust the whole space, there is a greedy algorithm which learns
k-DNF in polynomial time. The algorithm first finds a conjunction of up to k literals which covers at
least one positive and no negative example. The procedure then commits to this conjunction, removes
all covered instances, and recurs until all positive instances are covered. There are further examples
for cases in which extending H eases the learning task: While it is NP-complete to find a consistent
neural network with three units (Höffgen et al., 1995), this task can be accomplished in O(m2 logm)
when arbitrarily many units can be introduced by the learner (Chapter 6 and Scheffer & Stephan,
1998).

Classical PAC theory is subject to two major restrictions. First, the target function is assumed to
be a member of the hypothesis language (i.e., a consistent hypothesis is always assumed to exist) and,
second, the “standard” PAC bounds and proof techniques do only work for finite hypothesis languages.
The finiteness of H is a particularly strong restriction because finite languages are always PAC learn-
able (albeit not necessarily polynomially learnable). Agnostic learning theory (Kearns et al., 1992;
Haussler, 1992) aims at extending PAC theory to account for cases in which no hypothesis which is
consistent with the sample is available. Independently (but much earlier), Vapnik and Chervonenkis
(1971) developed a theory which is connected to PAC theory by a fundamental result and allows for
results which are very similar to the elementary results of agnostic learning theory. Vapnik tried to
find a statistical explanation for the success of Rosenblatt’s experiments on the perceptron (Rosen-
blatt, 1958). Since linear threshold units form an infinite hypothesis space, Vapnik and Chervonenkis
focused on the number of behaviorently distinct hypothesis to find a bound on the true error of hy-
potheses. The VC-dimension is a combinatorial property of hypothesis languages which accounts for
the number of behaviorently distinct hypotheses and is defined as follows: A set S is shattered by
a set H if for any subset S0 � S there is an element h 2 H such that S \ h = S

0. Intuitively, S
is shattered by H iff S can be labeled in all possible 2jSj ways by H . The VC-dimension of H is
the largest number d such that there is a set S with jSj = d which is shattered by H . Intuitively,
the VC-dimension of some language H is d iff H can realize all 2d possible Boolean functions on d

instances. The fundamental result that links PAC and VC theory together is that a class of functions
F is PAC-learnable iff the VC-dimension of F is finite (Blumer et al., 1989). The VC dimension can
now be used to bound the difference between the empirical and the true error of any hypothesis, based
on Chernoff bounds. This leads to lower (Ehrenfeucht et al., 1989) and upper (e.g., Vapnik, 1982,
1996) bounds on the sample size required for the empirical error of every hypothesis in the hypothesis
space being "-close to the corresponding true error. Vapnik (1982) proves that the largest difference
between true and empirical error rate of any hypothesis in the model is, with a confidence of at least
1� �, no more than

2

vuutd

�
log 2m

d
+ 1

�
+ log 9

�

m

where d is the VC-dimension of Hi.
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2.2.3 The Relationship between PAC and Gold’s Framework

What is the main difference between Gold’s and Valiant’s models of generalization? If we analyze
explanatory (EX) and PAC learning, two distinctions occur: (a) While EX learning requires an exact
match between f and h (a BC learner is still required to emulate the behavior of f perfectly from
some point on), a PAC generalizer is only required to find a hypothesis the behavior of which is "-close
to the behavior of f with respect to DX (with high probability). This argues that Gold’s framework
might be stronger than PAC learning. (b) At no point in time does the EX learner know that the target
function has been identified. A FIN learner, by contrast, does know when f has been identified but
even with the FIN learner the required number of learning steps cannot be bounded a priori (i.e.,
before any examples have been observed). However, the sample size required by the PAC learner has
to be bounded, given only the class of target functions F and no further information. This argues that
PAC is actually more restrictive than identification in the limit. I will now study the question which
of these frameworks is stronger, referring to a function class which has been studied in both, the PAC
and the identification in the limit framework – namely pattern languages.

The simple and intuitive notion of pattern languages was formally introduced by (Angluin, 1980a)
and has been studied extensively, both in the context of formal language theory and computational
learning theory. I refer the reader to Salomaa (1994a, 1994b) for a review of the work on pattern
languages in formal language theory.

A quick definition of pattern languages is useful for discussion. Let � (the alphabet) be a count-
able set of constants of the language and V (disjoint from �) be a countable set of variables. Any
element of (� [ V )� is a pattern. Let p be a pattern and let x1; : : : ; xn be the list of all distinct
variables in p. Let strings u1; : : : ; un 2 �+. Then pfx1=u1; : : : ; xn=ung denotes the string w 2 �+

obtained by substituting ui for each occurrence of xi in p. The language generated by p is defined as
L(p) = fpfx1=u1; : : : ; xn=ung j u1; : : : ; un 2 �+g. Let Pat denote the set of all patterns and PAT

denote the set of all pattern languages.
Angluin (1980b) showed that the class PAT is identifiable in the limit from only positive data

in Gold’s model. Since its introduction, pattern languages and their variants have been a subject of
intense study in the identification in the limit framework (for a review, see Shinohara & Arikawa,
1995). The reader should note that the definition of Angluin’s class, PAT , does not allow for empty
substitutions. If empty strings are allowed to be substituted for variables, this leads to the larger class,
ePAT , of extended pattern languages (see Shinohara, 1982). This class turns out to be very complex
and it is still open whether for finite alphabets of size > 1, ePAT can be identified in the limit from
only positive data1.

Since PAT is identifiable in the limit from only positive data, a natural question is if there is
any gain to be had if negative data is also present. Lange and Zeugmann (1993) observed that in the
presence of both positive and negative data, the class PAT is identifiable with 0 mind changes, that
is, there is a learner that after looking at sufficient number of positive and negative examples comes
up with the correct pattern for the language (this restricted “one-shot” version of identification in the
limit is referred to as finite identification). Theorem 1, however, proves that even 1-variable pattern
languages are not learnable in the PAC setting.

Theorem 1 (Mitchell, Scheffer, & Sharma, 1998) Let k > 0. The VC-dimension of k-variable pat-
tern languages is unbounded.

1See Mitchell (1998) where a subclass of ePAT is shown to be identifiable in the limit from only positive data. Mitchell
et al. (1998) also show that ePAT is learnable if the alphabet size is 1 or1.
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The proof of Theorem 1 can be found in (Mitchell et al., 1998). This Theorem is a significant
strengthening of Schapire’s negative result on general pattern languages (Schapire, 1990) and, at first
blush, seems to contradict the learnability result for k variable pattern languages by Kearns and Pitt
(1989). However, a closer look at the result of Kearns reveals that the learnability is only due to the
assumption that the length of the substitution strings be bounded. Is there a more precise explanation
why pattern languages are EX learnable but even 1-variable pattern languages are not PAC learnable?

Theorem 2 (Mitchell, Scheffer, & Sharma, 1998) Let " and � be given. Let L be a k-variable pat-
tern language and D be an arbitrary distribution on ��. Let S be an initial set of positive sentences
of size at least one and let lmin = minfjxj j x 2 Sg. Let h be any pattern consistent with a sample of
size at most m � lmin

"
log 1

��log(lmin+k)
. Then P (ErrL;D[h] > ") � �.

Theorem 2 (the proof can be found in Mitchell et al., 1998) claims that k-variables pattern lan-
guages can be learned, but that the required sample size can only be bounded after the first positive
example has been observed. The reason is that, after the first positive sentence has been read, the
length of the target pattern and the alphabet can be bounded which renders the space of possible target
patterns finite and thus PAC learnable. So far, we have seen that FIN and PAC have a nonempty
intersection. This raises the question whether PAC is a subset of FIN . This, however, is not the
case. In fact, PAC is not even a subset of BC . Consider the class ZO of linear threshold functions
over the one-dimensional real-valued interval [0; 1]. The VC dimension of this ZO is 2. But ZO
cannot be BC-identified in the limit.

Theorem 3 The class of threshold functions over the one-dimensional real-valued interval [0; 1] can-
not be BC-identified in the limit (ZO 62 BC).

Proof. Let the target function be x � t where t is drawn quasi-uniformly from the interval [0; 1]. I
will show that, after m positive and m negative instances have been observed, the expected difference
between h and f is still positive (i.e., there is no sample size m from which on the hypothesis behaves
correctly). Let x1; : : : ; xm be the positive and �x1; : : : ; �xm the negative examples. According to the
definition of P (f), the positive instances are drawn quasi-uniformly from the interval [0; t] and the
negatives from (t; 1]. Let xmax = maxfxig be the largest positive and �xmin = minf�xig the least
negative instances. Since the negatives are drawn from the open interval (t; 1], �xmin�xmax > 0 holds.
The quasi-uniform distribution of t together with the bounds of �xmin and xmax for possible values
of t induce a quasi-uniform distribution of t in the interval [xmax; �xmin). Let t̂, xmax � t̂ < �xmin,
be the guess for t made by some learner. Then, averaged over all possible t (distributed according to
P (f) restricted on [xmax; �xmin)) the difference between t and t̂ is

R �xmin
xmax

jt̂� tjdt = xmax��xmin
2

> 0.
Hence, the learner cannot be guaranteed to produce even a behaviorently correct hypothesis after 2m
steps (for arbitrary m).

These results prove that the learnability concepts of PAC and identification in the limit are orthog-
onal, as illustrated in Figure 2.1.

2.2.4 The Bayesian Framework

Bayesian learning (Bayes, 1763) is focused on the posterior distribution P (f jS) of a function f hav-
ing generated the observed data S. Given P (f jS), one can construct the Bayes hypothesis h

� as
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BC
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Figure 2.1: Relation between PAC and identification in the limit.

follows: h�(x) = argminy2Y f
P

f `(f(x) � y)P (f jS)g where ` is the zero-one loss function2 . The
fundamental Theorem of Bayes is that the Bayes hypothesis minimizes the expected generalization er-
ror. Unfortunately, P (f jS) is hard to get hold of. Using Bayes rule, it can be reduced to P (Sjf)P (f)

P (S)

and P (S) can be reduced to
P

f P (Sjf)P (f) (for the MAP hypothesis, P (S) does not have to be
determined as it is constant for all hypotheses, given a particular data set). P (Sjf) can in some cases
be determined, but this still leaves us with two problems: P (f) has to be known in advance (which is
a strong assumption) and, in order to determine the Bayes hypothesis, one has to sum over the whole
space of functions f 2 F . There is an ongoing philosophical debate about what P (f) “means”. While
frequentists like to think of probabilities as “objective” properties of intrinsically stochastic systems
(e.g., Neyman, 1967), Bayesians see probabilities as a means of modeling the behavior of a system by
a subject who cannot predict the precise behavior of that system, due to a limited level of informed-
ness (even if the system is not intrinsically stochastic). This motivates the notation of “subjective
probabilities”. Some Bayesians take this idea one step further and think of probabilities as subjective
beliefs about the chances of events (again, the underlying systems are not required to be intrinsically
stochastic). For a more detailed discussion on the meaning of probability, see Berger (1985), Jeffreys
(1961), de Finetti (1972), Schafer (1981), Good (1983). As far as it concerns the results in this book,
probabilities can be interpreted as both, intrinsically to the system and subjectively based on lack of
information, but I will distinguish between “actual” probabilities of the physical reality and the belief
of some agent.

Since computing the Bayes hypothesis (even if P (f jS) is given) is extremely expensive, several
heuristics have been proposed. A well-known heuristic is to choose the MAP (maximum a posteriori)
hypothesis which maximizes P (f jS). Minimum description length (MDL) (Rissanen, 1978, 1985,
1989) is another well-known heuristic. In order to communicate a sample of labeled instances one
can transmit the data set by itself or, alternatively, find a hypothesis which covers some of the instances
and append those instances which are not properly classified by the hypothesis (the exceptions). The
more complex this hypothesis is, the more examples will be covered and the less exceptions have to be
appended. The MDL hypothesis is the one which minimizes the description length of the hypothesis
plus the description length of the exceptions. Of course, determining the description length of a
hypothesis requires the definition of an optimal code which, in turn, requires knowledge of the prior
distribution P (f).

Certainly, one of the main drawbacks of the Bayesian framework (including MDL and MAP hy-
potheses) if its demand for P (f) to be known. The third No-Free-Lunch Theorem (Wolpert, 1992)

2For function approximation (as opposed to classification), usually the quadratic loss is chosen as `-function and the
corresponding Bayes hypothesis can then be guaranteed to minimize the quadratic loss
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claims that when P (f) is not known and the learner assumes some Q(f), the expected off-sample
error (averaged over all possible priors P (f)) is just the error achieved by random guessing. It is,
however, most interesting (and realistic) to assume that some knowledge on P (f) is given (this sce-
nario is referred to as robust Bayesian learning; e.g., Berger, 1993). Technically, this is modeled by
assuming that the true P (f) is an element of a class of possible distributions. Several classes of dis-
tributions have been studied intensely. "-contamination classes are defined as all distributions Q(f)
which can be written as (1� ")q+ "c where q is an assumed prior and c 2 C is the contamination; C
can, for instance, be defined as the class of all distributions (e.g., Berger & Berliner, 1986; Moreno
& Cano, 1991; Bose, 1994). Moment classes contain all priors with a common set of moments (e.g.,
Sivaganesan & Berger, 1993; Goutis, 1991). Density bands are classes of priors Q(h) which lie be-
tween bounds L(h) � Q(h) � U(h). Consequently, such priors do not necessarily have to integrate
to 1. The justification of such generalized priors is that if it cannot be guaranteed that the target func-
tion is in H , then

R
h P (h) can be less than 1 (e.g., DeRobertis, 1978; Hartigan, 1983; Lavine, 1992;

Sivaganesan, 1994). Many other classes of priors are studied, such as quantile classes (Cano et al.,
1985), mixture classes (Bose, 1993), and shape or smoothness classes (Bose, 1994). The hypothesis
found by a robust Bayesian learner is off by

P
f (P (f jS)�Q(f jS))f(x)) when P (f jS) is the actual

and Q(f jS) the assumed posterior, which also yields implications on the gain on error incurred by a
lack of knowledge on the prior.

2.2.5 Links between PAC/VC and Bayesian Learning

Relations between the VC framework and Bayesian learning have been characterized by Haussler
et al. (1994). Haussler et al. show how the VC dimension can be related to the learning curves of
Bayesian learners (under both correct and inaccurate priors). McAllester (1998) gives some PAC
style error bounds for consistent hypotheses, in the presence of a (known) prior distribution. An-
other interesting link between PAC and Bayesian learning is given by the No-Free-Lunch Theorems
(Wolpert, 1992): Due to the worst-case nature of PAC theory (worst-case with respect to the target
function), the PAC error bounds can be achieved by any learner which reflects the data but behaves
arbitrarily poorly on all other instances. The No-Free-Lunch Theorems prove that it is impossible
to generalize a function for unobserved instances unless information on the prior is given. Baxter
(1997a) has studied a link between hierarchical Bayesian learning and the PAC/VC framework. A
hierarchical Bayesian learner (Good, 1983) is one that has a prior distribution P (P (f)) over priors
over target functions available; i.e., it does not know the actual prior P (f) but it knows how likely
certain priors are. By studying a sequence of learning problems, a hierarchical Bayesian learner can
attempt to identify the prior P (f) that actually generates the target functions which in turn generate
the data. Baxter (1997b) gives a PAC-style analysis which bounds the number of learning problems
which have to be observed for the prior to be estimated to some degree of accuracy. His main result
are (PAC-style) error bounds for the n-th hypothesis (after n�1 problems have been observed) which
are considerably lower than the known bounds on stand-alone learning problems.

In Chapter 4, I will establish further links by studying how partial knowledge on the prior can
improve the sample complexity, compared to a PAC learner which has no such knowledge. I will also
discuss the learnability of function classes which are not PAC-learnable without knowledge on the
prior.
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2.3 No Free Lunch

In Section 1.2, I discussed the question whether any learning bias can be superior to all other learning
biases informally. PAC results by Blumer et al. (1987) and similar VC style results (Vapnik, 1998)
which show that we can be more certain about the error rate of a hypothesis which has been learned
from a small hypothesis language than we can be about the error rate of a hypothesis which origins
from a large hypothesis language give rise to the idea that this might be the case. This idea experiences
further intuitive support by Breiman’s bias-variance decomposition (Breiman et al., 1984). Breiman
et al. split the error rate of the CART algorithm into a bias term (which is the error rate of the tree of
a given depth which has the class labels assigned optimally to the leaf nodes) and the variance term
(which is the error rate that is imposed by an improper labeling of the nodes caused by insufficient
data). Breiman then shows that the bias term decreases when the hypothesis complexity (i.e., the tree
depth) is increased. He also shows that we know less about the variance term of the error when the
complexity grows (i.e., worse bounds can be proven) which is frequently misunderstood as meaning
that the variance term increases. These results have lead to the general believe that there is such a
thing as a “good” learning bias and that, in particular, the complexity of the hypothesis has to be
regularized (i.e., a model has to be selected) for the hypothesis to be accurate. However, examples of
complementary behavior have been observed. Fisher and Schlimmer (1988) have observed problems
for which unpruned decision trees outperform decision trees with regularized complexity. Schaffer
(1993a, 1993b) shows several controlled experiments which support the idea that the suitability of a
particular learning bias is a property of the learning problem studied, rather than being a property of
the learning bias. Schaffer (1994) argues that conducting model selection is just a particular learning
bias rather than being inherently useful. Wolpert (1993) has studied this question mathematically and
came to a result which clarifies the meaning of the learning bias. The No-Free-Lunch Theorems claim
that, uniformly averaged over all problems, two learning biases are equally good, provided that all
learners minimize the empirical error.

Theorem 4 (Wolpert, 1992, 1993, 1995) Let L1 and L2 be two arbitrary learners which imple-
ment distributions P1(hLjS) and P2(hLjS) over returned hypotheses. Let E

�S
D (L1(S)) =R

hL
E
�S
D dP1(hLjS) and E

�S
D (L2(S)) be the expected off-sample error of hL incurred by learners

L1 and L2, respectively (the true error on all instances except for those which occur in the sample).
Let DXY = DY jXDX where DY jX implements a function from X to Y (DY jX(yjx) = 1 if y = f(x)
and 0 otherwise). Let, furthermore, X and Y be finite3. The following equations hold for all DX and
uniformly averaged over all f .

1. Uniformly averaged over all targets functions f , EfDXY ;Sg(E
�S
D (L1(S))jDXY ;m) �

EfDXY ;Sg(E
�S
D (L2(S))jDXY ;m) = 0. In other words, for any DX and uniformly averaged

over all targets f , two learners incur an equal off-sample error.

2. Uniformly averaged over all targets f , for any sample S, EfDXY g(E
�S
D (L1(S))jDXY ; S) �

EfDXY g(E
�S
D (L2(S))jDXY ; S) = 0. For any sample S, two learners incur an equal off-

sample error, averaged over all targets.

3. Uniformly averaged over all distributions on target functions P (f),
EfP (f);Sg(E

�S
D (L1(S))jm) � EfP (f);Sg(E

�S
D (L2(S))jm) = 0. When the prior P (f) is not

known, two learners (which perhaps assume distinct priors) perform equally well, averaged
over all possible priors.

3The No-Free-Lunch Theorems can extended to cover countable (but infinite) domains X (Wolpert, 1993)
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4. Uniformly averaged over all P (f) and for all samples S, EfP (f)g(E
�S
D (L1(S))jS) �

EfP (f)g(E
�S
D (L2(S))jS) = 0. When the prior P (f) is not known, two learners (which perhaps

assume distinct priors) perform equally well, averaged over all possible priors, for any given
sample.

The first and third No-Free-Lunch Theorems discuss the expected (off-sample) error rate when no
sample has been drawn yet. By contrast, Theorems two and four discuss the error rate for a particular
sample. Note that the definition of generalization error used in this book (see Section 2.1) resembles
the error rates used in Theorems (1) and (3) (but note that the No-Free-Lunch Theorems refer to the
off-sample error rather than the generalization error). Claims (1) and (2) hold for a particular problem
while Claims (3) and (4) discuss the expected error rate over a distribution of problems. In Section
1.2, I discussed an example which demonstrates that, when only four instances are not present in the
sample, there are 24 hypotheses that are consistent with the sample and assign distinct combinations
of class labels to the four remaining instances. There are also 24 target functions which assign distinct
combinations of class labels to these instances. When we average the error rate of any of these
hypotheses over the 24 possible target functions, it turns out that all error rates are, on average, equal.

The No-Free-Lunch Theorems explain that it is impossible to construct a learner which is both
general and accurate. But this does not mean that, for a particular problem, all learners are equally
good. But when learner L1 is superior to L2 for a given problem, this implies that there is at least
one problem for which L2 is superior, because both learners are equally good when we average over
all possible problems. The only way in which we can construct a learner which is better than average
for a particular (set of) problems is to implement additional assumptions on the target problems in the
learner and thereby narrow the range of suited applications of the learner down. Note that this does
not contradict the assumption that machine learning as such is useful. It only means that, in order
to obtain good learning results, it is necessary to implement as much background knowledge into the
learning algorithm as is available on the focused problems.

2.4 Model Selection

I discussed the intuition of model selection and some well-known model selection techniques infor-
mally in Section 1.3. In this Section, I will treat some techniques more formally and summarize some
results on these approaches. Generally, the task of model selection is to select a model Hi such that
a given learner minimizes the expected loss when using model Hi. Since all results presented in this
thesis refer to the zero-one loss function (or generalization error), the discussion in this Section is
restricted to the generalization error as loss function.

Model selection requires the definition of a stratification of models hH1; : : : ;Hki, where each
Hi is a set of hypotheses. Some algorithms require that the Hi be a sequence of nested models
(H1 � H2 � : : : � Hk) and, in some cases, the sequence is allowed to be infinite. Furthermore, a
learner LHi

is fixed which either maps samples to hypotheses in Hi or, when LHi
is nondeterministic,

is characterized by a distribution PL(hjS;Hi) over hypotheses, given a sample. A model selection
problem is then given by (hH1; : : : ;Hki; L;m); the task of a model selection algorithm is to select
a model Hj such that, for deterministic learners, the expected error of LHi

(S), EfSg(ED(LHj
(S)))

and, for nondeterministic learners, the expected generalization error over all possible resulting hy-
potheses EfS;hLg(ED(hL)) =

R
hL

ED(hL)dPL(hLjS;Hi;DXY ) is minimized.
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Figure 2.2: Occam’s Razor: Two competing Occam learners give distinct guarantees for hypotheses
h1 through h3: Learner A guarantees that (with high probability) h1 incurs at most a very low error "1,
h2 incurs at most a slightly greater error "2, and h3 incurs at most a fairly high error "3. By contrast,
learner B guarantees a fairly low error "2 for hypothesis h2 and gives only a weak guarantee of "3 for
h1. This is because the two learners operate with respect to distinct stratifications which give different
definitions of “simple”. The No-free-Lunch Theorems claim that h1, h2, and h3 have equal errors,
averaged over all target concepts, and are therefore equally good.

2.4.1 Occam Algorithms

Occam’s Razor is one of the oldest elements of folk-lore in machine learning. It dates back to the
work of William of Ockham, a 14th century philosopher. Back then, William claimed that “items
should not be multiplied unnecessarily”. In machine learning, this statement is generously translated
to “the simplest of many explanations is the best one” and generally referred to as the Occam’s Razor
principle. The justification that PAC theory gives for this statement (Blumer et al., 1987) is that
the error bounds for hypotheses that are consistent with the sample become weaker as the size (or
complexity) of the hypothesis grows. As we have seen in Chapter 1, it can easily be proven that
P (ED(h

�) > "jES(h
�) = 0;m) � jHj(1�")m. This motivates Occam algorithms (which require the

stratification to be nested, H1 � : : : � Hk) to select the smallest index i such that LHi
(S) is consistent

with the sample. An example of such an Occam algorithm is the vanilla Support Vector Machine. The
Support Vector Machine defines the stratification of the models in terms of the distance between the
hyper-plane and positive and negative examples. Because all models are infinite (hyper-planes are
defined in terms of real-valued vectors), the VC dimension is considered as a measure of the number
of behaviorently distinct hypotheses. Note, however, that the stratification of models depends on the
sample (obviously, the distance between the plane and positive and negative examples depends on the
examples) which makes all guarantees that the Support Vector Machine comes with approximate. At
first blush, returning a hypothesis from a restricted subset of the hypothesis space seems reasonable
as it will enable us to give better guarantees on the accuracy of the returned hypothesis. However, we
have to wonder whether it becomes only possible to prove a better bound on the largest difference
between empirical and true error of any hypothesis, or whether the accuracy of the returned hypothesis
actually increases when we choose the smallest sufficient model. Suppose that there are two Occam
learners, A and B with different stratifications, A1 � : : : � A4 and B1 through B4, respectively,
as illustrated in Figure 2.2. The version space entails all hypotheses which are consistent with some
sample. Perhaps learners A and B use distinct encoding schemes for hypotheses and so their opinions
about which hypotheses are “simple” and thus belong into a model with small index differ. According
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to Vapnik (1982), learner A can prove a much better bound for h1 2 A1 than it can for h3 which
lies only in A3. This is because model A3 (which is larger than A1) is much more likely to contain
a hypothesis that is consistent with the sample that incurs an unusually great true error and, in the
worst case, A could return this hypothesis. By contrast, learner B guarantees a fairly low error "2
for hypothesis h2 and gives only a weak guarantee of "3 for h1 (because B3 is larger than B2 and
more likely to contain an unusually poor hypothesis which learner B could return, in the worst case).
Is h1 (which learner A prefers to h2 and h3) intrinsically better than h3? The clear answer which
is provided by the first claim of the No-Free-Lunch Theorems is no. Uniformly averaged over all
target functions, all three hypotheses incur an equally large generalization error (because all three
of them are consistent with the sample). Therefore, neither of the learners A and B is intrinsically
superior to the other one. Learner A does better for target functions which lie “on the left hand side”
of the hypothesis space of Figure 2.2 (because in this case there is a hypothesis in a model with small
index of stratification A which is consistent with the sample which will allow learner A to guarantee
a low error) while learner B will be performs better for target functions “on the right hand side” of
Figure 2.2. This argues that in a Bayesian scenario (where certain target functions are more likely
than others) Occam’s razor can indeed be justified. Suppose that the models are stratified such that
P (H1) � : : : � P (Hk) (where P (f) is the prior probability of f being the target). Thus, when
one picks the hypothesis which is consistent with the sample from the model with the least index,
one maximizes the prior and thereby the posterior probability that the selected hypothesis is the target
function. When the prior P (f) is known, one can construct an optimal representation scheme H . Such
an optimal representation minimizes the message length which is required to transmit functions, when
these functions are drawn with respect to P (f). In an optimal coding scheme, functions which occur
frequently are represented by shorter texts than those occurring only very infrequently. In this context,
Occam algorithms certainly make sense: By choosing the shortest hypothesis that is consistent with
the sample one maximizes the prior probability (and thereby implicitly the posterior probability) of
picking the correct target function.

Occam algorithms are a special case of model selection algorithms because they do not trade off
increases in empirical error against increases in complexity, but only select between several hypothe-
ses that are consistent with the sample.

2.4.2 Complexity Penalization

Occam algorithms which only return hypotheses that are consistent with the sample are a special
case of complexity penalization algorithms. A complexity penalization algorithm uses a stratifica-
tion hH1; : : : ; i with Hi � Hi+1 and returns the hypothesis h which minimizes a demerit criterion
G(ES(h);Hi) where Hi is the model with the smallest index i in which hypothesis h occurs. The
penalty term G(�; �) penalizes the size or, (more frequently) when the models are infinite, the number
of free parameters (Moody & Utans, 1992; Moody, 1992) or VC dimension (Vapnik, 1998) of the
model Hi in which a focused hypothesis h occurs for the first time in the stratification. Frequently,
G(ES(h);Hi) = ES(h) + penalty(Hi). By means of a penalization term, complexity penalization
algorithms try to reconstruct the learning curve (i; ED(LHi

(S))) from only ES(h) and some com-
plexity measure of Hi. Ideally, G should be such that G(ES(h);Hi) is a close guess of ED(h).
Sometimes, complexity penalization algorithms are thought of as penalizing the complexity (or VC
dimension) of a hypothesis. But note that the underlying suggestion that hypotheses possess an in-
trinsic complexity (or even a VC dimension) is misleading. The complexity of a hypothesis can – if
at all – only be measured relatively to an encoding scheme. By varying the encoding scheme, we can
assign a hypothesis any description length which we wish to. It is even more confusing to speak of the
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VC dimension of a hypothesis, because the VC dimension is only defined for sets, not for elements
(see Section 2.2.2). The VC dimension of the model Hi which h is included in depends on which
hypotheses we wish to group into Hi – a completely arbitrary decision. An example of complexity
penalization is the Support Vector Machine (SVM). While the original SVM (Vapnik, 1982) required
the empirical error to be zero (see Section 2.4.1), the SVM as extended by Cortes and Vapnik (1995)
minimizes the empirical error plus an approximated worst-case bound on the difference between true
and empirical error of any hypothesis in the model.

Often, Minimum Description Length (MDL; Rissanen, 1978, 1989) is considered to be a com-
plexity penalization based model selection algorithm. This is essentially correct because MDL tries
to reconstruct the learning curve (i; ED(LHi

(S))) from only the models Hi and the empirical error
ES(LHi

(S)). It does so by considering the description length required to encode a hypothesis h from
Hi plus the description length required to encode the difference between the examples (x; y) 2 S

and (x; h(x)), the empirical behavior of h on the instances x which occur in the sample. MDL then
chooses the model Hi which minimizes the sum of these description lengths. However, one also
might instead think of MDL as a heuristic strategy of Bayesian learning, because MDL assumes that
the prior P (f) be known (the prior is required to determine the optimal code) but selects a hypothesis
which is distinct from (but much easier to determine than) the Bayes hypothesis (see Section 2.2.4).
For a discussion of the MDL principle and its applications to machine learning see, e.g., , (Oliver &
Baxter, 1994; Mehta et al., 1995; Oliver et al., 1996; Atteson, 1991; Grünwald, 1996; Quinlan &
Rivest, 1987).

Complexity penalization based model selection algorithm reflect the idea that the generalization
error is an intrinsic property of the hypothesis language – because they try to reconstruct the learning
curve from only the empirical error and some complexity measure of the hypothesis space. The
considerations discussed in Sections 1.2 and 2.3 show that this approach has certain limitations. For
some problems and stratifications, the (variance term of the) generalization error increases steeply
with increasing model index while for other problems and stratifications this is not the case. It is
always possible to construct a pair of learning problems, one with a steeply increasing and one with
a flat generalization error curve. Any complexity penalization algorithm can only perform well for
one of these two problems and will fail (i.e., produce an additional constant error � which does not
decrease with increasing sample size) for the other. This has been proven by Kearns et al. (1997)
and has been observed empirically by Schuurmans et al. (1997). This is an inherent weakness of
complexity penalization; by contrast, a cross validation based model selection algorithm can perform
“reasonable” for all model selection problems.

Virtually all “practical” learners employ some sort of complexity penalization technique; for in-
stance, decision tree learners (e.g., Mingers, 1989; Quinlan, 1993; Müller & Wysotzki, 1992), and
many neural network based algorithms (e.g., Cun et al., 1989).

2.4.3 Cross Validation

The term cross validation or, slightly more general, hold-out testing entails a wide range of techniques
for estimation of misclassification probabilities and, intimately related, choosing a model, or a learning
algorithm, which minimizes this estimate. Many cross validation based techniques do not only provide
an estimate of the error but also an (often biased) estimate of the variance, cross validation results are
also used to support (approximate) guarantees that, for a given problem, one technique performs better
than another one (with high confidence).

Suppose that we have a hypothesis h with true error ED(h). When we draw a sample S with m

independent and identically distributed instances, we can measure the empirical error ES(h). When h
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has been chosen such that it minimizes ES(h), then ES(h) is a strongly optimistically biased estimate
of ED(h) – i.e., EfSg(ED(h) � ES(LHi

(S))) is in this case positive. In the earliest days of pattern
recognition, this training set error has been proposed as an estimate of the true error rate (Smith,
1947) but such an estimate cannot be used to select a model because it would always tend towards
greater models which impose a stronger bias. However, when the choice of h is independent of
the sample S (i.e., S is a hold-out sample which has not been used for training), then ES(h) is
distributed according toB[m;ED(h)], whereB is the binomial distribution. The technique of splitting
the available sample into a training set and a hold-out set (originally known as H method, or hold-
out testing) has been proposed by Highleyman (1962). When m is greater than 30, the empirical
error is approximately normally distributed. This is because the empirical error is essentially a sum
of many random variables – and the distribution of a sum of random variables always converges
towards a normal distribution (central limit theorem). Keeping this in mind, one can easily determine
the chance that the difference between true and empirical error exceeds a certain threshold. Such a
threshold which is not exceeded (with high confidence) is called a confidence bound. jED(h)�ES(h)j

�

is governed by the normal distribution when � =
p
(1=m)ED(h)(1 �ED(h)) is the true standard

deviation of ES(h) (this follows immediately from the central limit theorem). Of course, the standard
deviation is not known (the standard deviation requires the true mean value ED(h) which is unknown)
but it can be estimated. Let �̂ =

p
(1=m)ES(h)(1 �ES(h)) be this estimate. Note that � can only

be estimated unbiasedly when the m examples are independent and identically distributed. Then
jED(h)�ES(h)j

�̂
is governed by Student’s t distribution with m � 1 degrees of freedom. Thus, using a

table of the t distribution one can easily determine the chance that ES(h) is off by a threshold ". As a

rule of thumb, with a confidence of 95%, this difference is no more than 1:96
q

ES(h)(1�ES(h))
m

. This
estimate, however, is subject to a pessimistic bias because not the whole sample has been used for
training and we can expect the learner to do better when we do not hold back a part of the sample.

In order to reduce the variance of the estimate further (i.e., to tighten the confidence interval)
and to minimize the pessimistic bias which is caused by not using the hold-out set for training, other
methods have been proposed. n-fold cross validation (also known as double cross-validation, or �-
method Mosier, 1951; Mosteller & Tukey, 1968) is conducted as follows. n runs of the learner L
are conducted. The sample S is re-sampled into training sets S01 through S

0
n and hold-out sets S001

through S
00
n such that the S00j are disjoint, S0j and S00j are disjoint, S0j [ S

00
j = S, and

S
j S

00
j = S. This

process simulates drawing a sample S according to DXY . In each fold j, the hypothesis LHi
(S0j) is

assessed on the hold-out data which yields n hold-out error rates ES00
j
(hj). When n equals m, the

method is called leave-one-out, or U -method (Lachenbruch, 1967). Let ECV (LHi
) be the averaged

hold-out error over all n folds. Of course, we can use Chernoff bounds to bound the difference
between EfSg(ED(hL)jL;Hi;m;DXY ) and ECV (LHi

), but these bounds would be too loose for
practical purposes. Usually, the number of folds n is not large enough to assume that the sum of n
random numbers is governed by the normal distribution. Therefore, one usually assumes instead that
the empirical error rate measured in each fold is governed by normal distribution (this assumption is
reasonable when the sample size m is at least 30 � n; when the sample size is large, the binomial
distribution converges towards a normal distribution). Then,

p
n(n� 1)jEfSg(ED(hL)jL;Hi;DXY ;m)�ECV (LHi

)jqPn
j=1(ES00

j
(hj)�ECV (LHi

))2

is governed by Student’s t distribution of degree n� 1, and we can, again, use a Student’s distribution
table to determine the confidence of the cross validation error (i.e., the chance that it is off by more
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than a certain amount). This, however, requires an estimate of the variance, �̂, and it is assumed
that the n error estimates are independent. Unfortunately, cross validation does not yield an unbiased
estimate of the variance. The n hypotheses are learned from samples which are drawn from one given
sample. 90% of the examples in two such samples are identical. Therefore, the estimated variance
is an optimistically biased estimate. This bias has been quantified empirically by Dietterich (1997).
The bias is even worse when the n hold-out examples are drawn with replacement; this happens with
bootstrapping (Efron, 1979, 1983) or when cross-validation is restarted several times (e.g., Kohavi &
John, 1995). In this case, several error measurements on the same example are treated as independent
estimates.

By conducting arbitrarily many repetitions of cross validation or bootstrapping, it is always possi-
ble to obtain an empirical variance which is almost arbitrarily low. This “trick” can be used to “prove”
a performance difference between two learners which are really equally good. The biased variance is
not a major problem for cross validation based model selection, because the estimated error itself is
almost unbiased but it imposes a danger when one wants to study whether an apparent difference is
“really there”.

Bootstrap experiments are conducted by re-sampling a number of training sets of size m from
an original data set of size m by randomly drawing examples with replacement. On average, (1 �
1=e)m � :632m distinct examples will appear in the training set, and the averaged accuracies on the
remaining test sets provide an optimistically biased estimate. The variance is claimed to be lower in
many cases than the variance of cross validation (Efron, 1983), but this observation may be due to the
a stronger under-estimation of the variances (compared to cross validation).

Cross validation based model selection algorithms use a stratification hH1; : : : ;Hki and select the
model i which minimizes ECV (LHi

). An advantage of cross validation is that an almost unbiased
estimate of the target is minimized, rather than a (loose) bound. The generalization error of a learn-
ing algorithm which uses hold-out testing to decide which model to use can be bounded as follows
(Kearns, 1996): With high probability (1 � �), the resulting hypothesis hL incurs at most a gener-
alization error of ES(hL), plus a bound on the difference between true and empirical error within
the chosen model, plus an additional penalty term which accounts for the possibility of the model
selection algorithm choosing a sub-optimal model. The bound on the difference between true and

empirical error can be chosen as O
�q

di
m0 log

m
di

�
(according to Vapnik, 1982), and we can use the

minimum (over all models Hi) of ES(hL) and this bound (di is the VC-dimension of model Hi, m0

is the training set size and m
00 is the hold-out sample size). The additional penalty term for possibly

choosing the wrong model index is O
�q

log dkm0

m00

�
, where dk is the VC-dimension of the greatest

model Hk.

Cross validation based model selection comes with a general but relatively weak guarantee: With

probability 1 � �, no other model selection algorithm can be more than O

�q
log(m=�)


m

�
better than

one-fold cross validation (Kearns et al., 1997). In contrast to complexity penalization algorithms
which always fail on some problems, cross validation always performs at least reasonably.

Many “practical” learners use cross validation based techniques to select a set of attributes (e.g.,
among many others, Kohavi, 1995; Kohavi & John, 1995, 1997), or to adapt their regularization
parameters (one of many examples is Müller & Wysotzki, 1992). Hold-out testing has been used
excessively to assess and adapt the architecture of back-propagation networks (e.g., Koza & Rice,
1991; Musial & Scheffer, 1994). For an overview on cross-validatory error estimation techniques, see
(Toussaint, 1974).



34 CHAPTER 2. PRELIMINARIES

2.5 Empirical Methodology of Machine Learning

From the beginning of research on machine learning, there have been attempts to evaluate the per-
formance of generalizers empirically. It is not clear when this beginning was, but one might want to
consider Rosenblatt’s experiments on the perceptron (Rosenblatt, 1958) as the first experiments on
machine learning in the tradition of artificial intelligence (Rosenblatt was studying learning in hu-
mans). However, statistical learning emerged much earlier; Fisher (1936) has observed over-fitting
effects in regression back in the thirties. Unfortunately, artificial intelligence emerged from computer
science which is not a research discipline in which empirical studies (and statistics in general) play a
strong role.

Before assessing the performance of some learner, one first has to specify the term “perfor-
mance” more precisely. When the learner is to be assessed with respect to a particular prob-
lem DXY (of which a sample S is given), a natural and commonly used performance criterion is
EfSg(ED(LHi

(S))jDXY ;Hi;m) – the expected generalization error (expected over all samples) of
learner L (e.g., Wapnik & Tscherwonenkis, 1979; Stone, 1974). However, it should be noted that
the expected generalization error rate requires the existence of a fixed distribution over the instances
which the learner is exposed to (and which the hypothesis is exposed to once it has been generated).
Assuming the existence of such a distribution is not always reasonable.

When the performance is to be assessed not only with respect to a particular learning task, a
meaningful criterion is more difficult to define. In order to talk about the expected error (expected
over all problems) one has to refer to a prior distribution or density P (DXY ) over problems. Such a
distribution of problems which the learner will be exposed to in the future can usually not be assumed.
Also, remember that the No-Free-Lunch Theorems imply that all error minimizing learners are pre-
cisely equally good, uniformly averaged over all target functions. However, meaningful questions
to study are “for which targets DXY does some particular technique perform well?”, or for which
targets DXY does some particular technique L1 perform better than technique L2? Most often, only
problems which are archived in certain collections (e.g., Murphy & Aha, 1998; Michie et al., 1994)
are studied which imposes a particular bias on the results.

Usually, the performance of learning techniques is assessed by hold-out testing, or n-fold cross
validation (see Section 2.4.3). When a learner L1 incurs a hold-out error which is lower than the
hold-out error of learner L2, this might just be due to chance. In Section 2.4.3, I discussed how we
can determine the confidence that the hold-out error is "-close to the true error. Similar considera-
tions can show whether an apparent performance difference between two learners for some problem
is “really there” or just pure chance. Let h1 and h2 be the outcome of learners L1 and L2 for a
given problem. Let us then define � as � = 1

m

P
(xi;yi)2S(`(h1(xi); yi) � `(h2(xi); yi)). Then,p

m(ED(h1)�ED(h2)��)
��

is governed by Student’s t distribution. We can use the following procedure
to support the claim that L1 really does better than L2 (paired t-test).

1. Calculate T =

p
m(m�1)�pPm

i=1
((ES(h1)�ES(h2))��)2

.

2. Use a Student’s distribution table to determine the smallest � such that t[m� 1; �] � T .

3. If p = 1� � is below .05 then claim that, with p-value 1 � �, we are better off using L1 rather
than L2 for this particular problem.

In Chapter 3, I will conduct a set of empirical studies in which I will draw target functions at
random under uniform distribution over the set of all Boolean functions. This procedure has two
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advantages over the use of benchmark data sets: First, the true error of all hypotheses can be deter-
mined exactly (because the target functions are known) and, second, the results support claims on all
Boolean functions whereas experiments on benchmark data sets support only claims on the perfor-
mance of learners for problems which are drawn with respect to the same distribution on problems
according to which the benchmark problems have been drawn.

Another methodological problem occurs with learners which have parameters. If several parame-
ter settings of some learner are “tried out”, then the lowest measured error is not an unbiased estimate
of the true error for that learner and parameter setting. I will discuss this issue in Chapter 5. A more
detailed overview on methodological aspects is given by Cohen (1995).

2.6 Summary

� This book is focused on classification learning. The task is to minimize ED(hL), the zero-one
loss of the returned hypothesis of the learner L, while only the empirical error ES(h) of all
hypotheses h 2 H can be observed.

� PAC and VC theory support claims on the true error of hL by bounding the chance (in terms of
the sample size) that there is a hypothesis in Hi the empirical error of which is off by more than
" from its true error.

� Loss functions such as the generalization error require the existence of a stationary distribution
of instances which the learner is exposed to. By contrast, in the identification in the limit
framework, the learner is successful when it can be guaranteed to identify the target function
exactly but eventually. “Exactly” means that no loss function is required but “eventually” means
that no bound on the sample size sufficient for learning can be given. This is the principle
difference between Valiant’s and Gold’s frameworks.

� The Bayesian framework exploits knowledge of the prior distribution of target functions, P (f).
This requires that the learner is exposed to a stationary distribution of target function, which is
also assumed to be known. Under ideal conditions, one can determine the Bayes hypothesis
which minimizes the expected loss.

� Occam algorithms have a particular “learning bias” according to which they select between
hypotheses that are consistent with the sample. Often, the consistent hypothesis with the least
description length in a particular (arbitrarily chosen) coding scheme is preferred. The intuition
is that, when the hypothesis comes from a restricted subset of the hypothesis space, one is
able to prove better bounds on the largest difference between true and empirical error of any
hypothesis in the language. However, this does not improve the expected error of the returned
hypothesis and, on average, all learners which return a hypothesis that is consistent with the
sample are equally good.

� Complexity penalization algorithms try to reconstruct the learning curve from the empirical
error and the complexity of the models. Sometimes, worst-case bounds on the largest difference
between empirical and generalization error of any hypothesis in the model are used to construct
an assumed learning curve. Since learning curves can differ considerably from each other,
no complexity penalization algorithm can perform reasonably well for any model selection
problem.
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� Cross validation based model selection algorithms stratify the hypothesis language into models
H1; : : : ;Hk and select a model Hi such that the (estimated) expected error of the hypothesis
returned by learner L on model Hi is minimized. This error is estimated by recording the
average error on hold-out data.



Chapter 3

Expected Error Analysis

Suppose that we have to solve some learning problem for which two possible models are available.
Model H1 contains just one single hypothesis h1 while model H2 contains two hypotheses, h21 and
h22. All three hypotheses incur (unknown) generalization errors. When we draw a sample, each hy-
pothesis exhibits an empirical error which is an unbiased estimate of its true error. Unbiased means
that the expected empirical error of each hypothesis is just its generalization error. The relation be-
tween true and empirical error is known: the empirical error is governed by the binomial distribution
with the true error as its mean value. Now suppose that we minimize the empirical error in H2; let
h
�
2 be the hypothesis in h2 with the least empirical error (H1 contains only one hypothesis, so mini-

mizing the empirical error in H1 is trivial). When both hypotheses in H2 incur equal empirical errors,
we draw one at random. Unfortunately, the empirical error of h�2 is not an unbiased estimate of its
true error. Why is that? With a chance of (almost) 1

2
, the empirical error of each hypothesis is an

optimistic estimate of its true error, and with a chance of (almost) 1
2

it is a pessimistic estimate. An
optimistically assessed hypothesis has a greater chance of being selected as h�2 than a pessimistically
assessed one. In return, the empirical error of h�2 is, on average, optimistically biased. So, what should
we do when the empirical error of h�2 is less than the empirical error of h1? The empirical error of
h1 is unbiased while the empirical error of h�2 (which is lower) is known to be optimistic. Here, the
question is how strong this bias is. In this Chapter, I present an answer to this question. We will see
that the expected error of the hypothesis which minimizes the empirical error (the ERM hypothesis)
in model H2 depends on the distribution of error values in that model. The distribution of error values
of all hypotheses in H2 contains (at most) two occurring error values; however, the true error rates are
unknown. But we can estimate the distribution of true error rates by recording the distribution of em-
pirical error rates in H2. The distribution of empirical error values in H2 is, in this case, very simple
because only (at most) two distinct values occur which can be observed. When these two error values
are known, this suffices to determine an estimate of the expected generalization error of h�2. The most
interesting aspect of the analysis is that no learning has to be conducted in order to determine the error
of the hypothesis that would be the result of learning.

After giving a general overview, I will first present a solution which is based on two independence
assumptions but which is rather simple and can be implemented easily (Scheffer & Joachims, 1998a,
1998b). I will then eliminate the stronger of these independence assumptions and come to a very
general solution which is slightly more complicated. But I will discuss how the resulting formula can
be evaluated efficiently.

In Chapter 2, I defined the model selection problem as consisting of a target DXY , a stratification
hH1; : : : ;Hki, a learner L, and a sample size m. In the following, I will assume that the learner is
an ERM learner: It minimizes the empirical error, determining H

�
i (S), the set of hypotheses which
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minimize the empirical error, and then returns one of these hypotheses, breaking ties by drawing at
random under uniform distribution. Most results of this Chapter are based on (Scheffer & Joachims,
1998a, 1998b, 1999a, 1999b).

3.1 Overview on the Framework

First, I will give a brief description of the most important distributions which I will refer to in the
following theorems.

DXY , Hi, S, and H
�
i (S): DXY is the unknown distribution on labeled instances, Hi is the focused

model, and S the sample of size m (the examples are drawn according to DXY ). H
�
i (S) =

fh 2 HijES(h) = minh02Hi
fES(h

0)g is the set of ERM hypotheses. These apparently best
hypotheses only minimize the empirical error rates and must not be confused with hypotheses
that minimize the true error rate. Of course, there may be only one or, if several hypotheses
have an equally low error, more than one hypothesis in this set. Usually, the random variable
h refers to a hypothesis which is drawn uniformly from Hi whereas hL refers to a hypothesis
which is drawn uniformly from H

�
i (S) and is returned by the learner.

PfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)): Distribution of error values of a hypothesis hL which

is drawn uniformly from the set of ERM hypotheses H�i (S) (for a given sample size m). This
probability depends on two random variables: The sample (drawn according to the unknown
DXY ) and hL (drawn uniformly from H

�
i (S)). The model Hi and the sample size m are fixed

values. PfS;hLg(ED(hL) = eDjHi;m;DXY ; hL 2 DXY ) can be read as the chance of drawing
a sample S and, subsequently, a hypothesis hL uniformly from H

�
i (S) with a generalization

error of eD. This distribution is the error posterior.

PfS;hLg(ED(hL) > "jHi;m;DXY ; hL 2 H
�
i (S)): Integrating PfS;hLg(ED(hL)jHi;m;DXY ; hL 2

H
�
i (S)) from " to 1 yields the chance of drawing a sample S and, subsequently, a hypothesis hL

from H
�
i (S) such that the true error of hL exceeds ". Note the difference between this chance

and the probability of interest in PAC theory PfSg(9h : ED(h) > ";ES(h) = 0jHi;m):
The latter denotes the chance of drawing a sample such that there is a hypothesis that is
consistent with the sample but exceeds a generalization error of " while PfS;hLg(ED(hL) >
"jHi;m;DXY ; hL 2 H

�
i (S)) refers to the chance that the returned hypothesis (which is drawn

uniformly from the H�
i (S)) exceeds an error of ".

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)): Expected error of a hypothesis hL which is drawn

uniformly from the set of hypotheses with least empirical error H�i (S). From the distribution
of error values of hL the expectation can easily be derived. Cross validation is a straightforward
(but expensive) way of estimating this expected value.

Pfhg(ED(h)jHi;DXY ): Distribution of true error values in the model. I assume that each model
contains finitely many hypotheses which induces a distribution of their errors. P (ED(h) =
eDjHi;DXY ) is the chance of picking a hypothesis at random from Hi with a true error of eD.
This distribution is the error prior.

PfS;hg(ES(h)jHi;m;DXY ) is the distribution of empirical error rates of the hypotheses in the cur-
rent model. PfS;hg(ES(h) = eS jHi;m;DXY ) is the chance of drawing a sample S and a
hypothesis h (uniformly from Hi) such that the empirical error of h is eS . The relation be-
tween Pfhg(ED(h)jHi;DXY ) and PfS;hg(ES(h)jHi;m;DXY ) is relatively straightforward:
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The chance of a randomly drawn hypothesis incurring a true error of eD is Pfhg(ED(h) =
eDjHi;DXY ) and a hypothesis with true error eD incurs an empirical error which is gov-
erned by the binomial distribution with mean eD (each new example can be classified properly
or be misclassified; the probability of the latter happening is eD). Hence, PfS;hg(ES(h) =
eS jHi;m;DXY ) =

R
eD

B[eD;m](eS) dPfhg(ED(h) = eDjHi;DXY ).

3.2 Solution for Independent Error Values

In this Section, I discuss a derivation which is based on the additional assumption that the true error
rates of the hypotheses considered by the learner are independent random variables. This solution will
be generalized by the solution which I will present in Section 3.3. But the solution discussed in this
Section is much easier than the more general one and I will refer to both solutions for further results
in Chapter 4.

The crucial relation in this analysis is the one between the
posterior PfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H

�
i (S)) and the prior Pfhg(ED(h)jHi;DXY ). The

main claim (given in Theorem 5) is that PfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)) is a func-

tion of Pfhg(ED(h)jHi;DXY ). The high-level intuition of the derivation is the following: by re-
peatedly applying Bayes’ formula one can reduce PfS;hLg(ED(hL)jHi;m; hL 2 H

�
i (S)) to some

computable terms plus three priors. These are Pfhg(ED(h)jHi;DXY ) (the chance of a randomly
drawn hypothesis having a certain error), PfS;hg(ES(h)jHi;m;DXY ) (the chance of a randomly
drawn hypothesis having a certain empirical error, and PfS;hg(h 2 H

�
i (S)jES(h) = e;Hi;DXY ;m)

(the chance of a randomly drawn hypothesis with empirical error e being an ERM hypothesis).
PfS;hg(ES(h)jHi;m;DXY ) can be derived from Pfhg(ED(h)jHi;DXY ): Each hypothesis h incurs
an empirical error which is binomially distributed with mean value ED(h). Later, I will discuss how
Pfhg(ED(h)jHi; DXY ) can be estimated efficiently from Hi and S which will ground the framework
empirically. In order to determine PfS;hg(h 2 H

�
i (S)jES(h) = e;Hi;DXY ;m), I make the follow-

ing consideration: h is in H
�
i (S) if no other h0 achieves an error which is strictly less than e. When

browsing the model Hi, the learner observes jHij error values, these values are distributed according
to PfS;hg(ES(h)jHi;m;DXY ). Assuming that these values and the corresponding true error values
are independent random variables, one can easily calculate the chance of none of them having an error
of less than e. In doing this, I see the process of exhausting a hypothesis space as a stochastic process
in which error values (which are instantiations of a random variable) are observed.

Assumption 1 The empirical error rates of hypotheses h 2 Hi are independent estimates of
the corresponding true errors. P (ES(h1); : : : ; ES(hjHij)jHi; DXY ; m;ED(h1); : : : ; ED(hjHij))

=
QjHij
j=1 P (ES(hj)jHi;DXY ;m;ED(hj))

Assumption 2 The true error rates of distinct hypotheses are independent random variables.
P (ED(h1); : : : ; ED(hjHij)jHi; DXY ) =

QjHij
j=1 P (ED(hj)jHi;DXY )

Assumption 1 is relatively mild and is often made implicitly; for instance, the calculation of p-
values which is required to compare n-fold cross validation results (the p-value gives the chance that
one learner does better than another learner for some problem, given the cross validation results) is
based on the assumptions that the hold-out errors are independent estimates of the corresponding true
error rates.
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The intuition of assumption 2 is best captured by considering a counter-example: Let Hi =
fh1; h2g where h1 maps all instances to 0 and h2 maps all instances to 1 – i.e., h1 and h2 are comple-
mentary. Once that ED(h1) is known, ED(h2) is pinned down to 1�ED(h1) (the same holds for ES).
Hence, P (ED(h2)jED(h1)) 6= P (ED(h2)) – i.e., ED(h1) and ED(h2) are not independent. Most
“practical” hypothesis languages such as decision trees (generally, all hypothesis languages which are
closed under complement) violates assumption 2 to some degree. However, in Section 3.3 Assumption
2 will be dropped.

Theorem 5 (Scheffer & Joachims, 1998) Let DXY be a distribution of labeled instances,
and let Hi be a finite model. Under Assumptions 1 and 2, the error distribution
PfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H

�
i (S)) is a function of jHij, m, and Pfhg(ED(h)jHi;DXY ):

PfS;hLg(ED(hL) = eDjHi;m;DXY ; hL 2 H
�
i (S)) (3.1)

=

P
eS
B[eD;m](eS)(PfS;hg(ES(h) � eS jHi;m;DXY ))

jHij�1dPfhg(ED(h) = eDjHi;DXY )P
e(PfS;hg(ES(h) � ejHi;m;DXY ))jHij�1PfS;hg(ES(h) = eS jHi;DXY )

where PfS;hg(ES(h)jHi;m;DXY ) =
R
eD

B[eD;m](eS)dPfhg(ED(h) = eDjHi;DXY ).

The proof of Theorem 5 can be found in Appendix A. As an immediate corollary, the expected true
error of hL can be determined.

Corollary 1 The expected true error of hL is a function of m,jHij, and Pfhg(ED(h)jHi;DXY ):

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S))

=

Z
eD

eDdPfS;hLg(ED(hL) = eDjHi;m;DXY ; hL 2 H
�
i (S)) (3.2)

Similarly, the chance that hL exceeds a generalization error of " can be determined (not just
bounded).

Corollary 2 The chance that hL exceeds an error of " is a function of m, jHij, and
Pfhg(ED(h)jHi;DXY ):

PfS;hLg(ED(hL) > "jHi;DXY ;m; hL 2 H
�
i (S))

= 1�
Z "

eD=0
dPfS;hLg(ED(hL) = eDjHi;m;DXY ; hL 2 H

�(S)) (3.3)

A careful implementation of Theorem 5 and Corollary 1 runs in O(m2) (see Appendix B).
One remaining question is how to get hold of the distribution Pfhg(ED(h)jHi;DXY ). When

this distribution is known we can, according to Theorem 5 and Corollary 2, determine the expected
generalization error of hL and thus conduct model selection. Before discussing this issue, I will
present the more general analysis which does not require Assumption 2.

3.3 General Solution

In this Section, I will present an analysis of the expected generalization error of hL which does not
rely upon Assumption 2.
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Let us look at a model Hi and a target distribution DXY . The target DXY defines an er-
ror ED(h) for each hypothesis h 2 Hi. These error values define a distribution of error val-
ues in Hi, which I write as Pfhg(ED(h)jHi;DXY ) and which is the “prior” in the analysis.
Pfhg(ED(h) = eDjHi; DXY ) is the chance of drawing hypothesis h from Hi (when drawing under
uniform distribution) which incurs an error of eD. (In this Section I study finite models and therefore
Pfhg(ED(h) = eDjHi;DXY ) is actually a discrete distribution).

Suppose that Hi contains two hypotheses (just as an easy example). The prior
Pfhg(ED(h)jHi; DXY ) tells us which error values occur in Hi. There are either two values with
a chance of 1

2
or one value with a chance of 1 (if both hypotheses have equal errors). Let us invent

names h1 and h2 for the hypotheses and let ED(h1) and ED(h2) be the two occurring true error
values. When a sample S is drawn, the hypotheses will show empirical error values of ES(h1) and
ES(h2), respectively. Now the following happens. On a sample S of size m, each hypothesis incurs
an empirical error rate (in the case of two hypotheses ES(h1) and ES(h2), respectively), governed
by the binomial distribution B[ED(h1);m] and B[ED(h2);m], respectively. (Each example is clas-
sified correctly or wrongly, the chance of a wrong answer being ED(h1) and ED(h2), respectively.
This results in a binomial distribution.) Let us now select the hypothesis with the smaller empiri-
cal error, call it hL. In the general case, there might be a set H�i (S) of ERM hypotheses and the
learner is then assumed to draw a hypothesis hL at random under uniform distribution from this set.
The chance that hL has a particular error value eD is now no longer Pfhg(ED(h) = eDjHi;DXY ),
because hL is not a randomly drawn hypothesis. It is, instead, the hypothesis which minimizes the
empirical error. The expected true error of hL is likely to be greater than its empirical error (which
is optimistically biased) but less than the error of a randomly drawn hypothesis. Assume that the
sample size m is fixed and given a priori. By contrast, the sample S itself is a random variable,
governed by the distribution (DXY )

m. This implies that H�
i (S) is a random variable (as it depends

on S) and so is hL; hL is drawn randomly from H
�
i (S). This leads us to the posterior distribution

PfS;hLg(ED(hL) = eDjHi;DXY ;m; hL 2 H
�
i (S)) which is the chance of drawing a sample S (of

fixed size m) and, consequently, a hypothesis hL from H
�
i (S), such that the true error of hL is eD . The

principle difference between the prior and posterior distribution is that the prior gives the distribution
of error rates of hypotheses which are drawn uniformly from Hi, whereas the posterior gives the dis-
tribution of error values for hypotheses which have been generated by an error minimization process.
The posterior PfS;hLg(ED(hL) = eDjHi;DXY ;m; hL 2 H

�
i (S)) immediately leads to the expecta-

tion EfS;hLg(ED(hL)jHi;DXY ;m; hL 2 H
�
i (S)). It is the expected true error of the hypothesis hL

returned by the ERM learner using model Hi and a sample of size m.
The expected true error of hL, EfS;hLg(ED(hL)jHi;DXY ;m; hL 2 H

�
i (S)) is quantified in The-

orem 6. The crucial part of the proof is how to determine the minimum error eS and the number of
hypotheses jH�

i (S)j which achieve this error. The idea is that the chance that H�i (S) is a particular
subset H� can be determined by factorizing the least error eS and calculating the chances that each
hypothesis in H

� has an empirical error of eS and each hypothesis outside incurs a strictly greater
error. This, however, imposes another difficulty. The empirical error of a hypothesis is distributed bi-
nomially, given the true error. But here the chance of several hypotheses incurring a certain empirical
error eS has to be determined. Unfortunately, this probability cannot be determined unless the empir-
ical error rates of distinct hypotheses are assumed to be independent estimates of the corresponding
true error rates (in reality, the empirical error rates are slightly dependent because they are measured
on the same sample). This assumption (Assumption 1) is relatively mild and common in statistics.
The more questionable Assumption 2 is no longer necessary.

Theorem 6 (Scheffer & Joachims, 1999) For a distribution DXY of labeled instances and a finite
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model Hi let ED(h) be the true error of each hypothesis h 2 H . Let m be the fixed sample size.
Let hL be a hypothesis which is drawn uniformly from the set H�i (S) of hypotheses in H with least
empirical error with respect to a sample S, drawn according to (DXY )

m. Under Assumption 1, the
expected error of hL is

EfS;hLg(ED(hL)jm;Hi;DXY ; hL 2 H
�
i (S))

=

jHijX
i=1

ED(h)
X
eS

B[ED(h);m](eS)

jHijX
n=1

1

n

X
H��Hnfhg

jH�j=n�1

(3.4)

Y
h�2H�

PfSg(ES(h
�) = eS jED(h

�);m;DXY )
Y

h2HnfhgnH�

PfSg(ES(h) > eS jED(h);m;DXY )

The proof can be found in Appendix C. Equation 3.4 can, in principle, be evaluated, given the
distribution of true error values Pfhg(ED(h)jHi;DXY ). Unfortunately, a straightforward evaluation
of Equation 3.4 would require a run time which would be exponential in jHij. Therefore, I will now
make an additional technical assumption.

Assumption 3 I assume that
P (jH�j = njhi 2 H

�
;Hi;m;DXY ) = P (jH�j = njhj 2 H

�
;Hi;m;DXY ):

Assumption 3 means that the chance of the set of hypotheses with least empirical error being of
size m when it is known that a hypothesis hi belongs to this set is not dependent on which hypothesis
is known to be in this set. This assumption is reasonable in all practical cases as jHij grows doubly
exponential for Boolean functions and, at least singly exponential for languages such as conjunctions
(i.e., it is very large).

Theorem 7 (Scheffer & Joachims, 1999) Let DXY be a distribution over labeled instances Hi be a
finite model. Under Assumptions 1 and 3, the expected error of the hypothesis hL returned by an ERM
learner given an i.i.d. sample S drawn according to (DXY )

m is

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)) (3.5)

=

R
eD

eDPfhg(ED(h) = eDjHi;DXY )dPfSg(heD 2 H
�
i (S)jHi;m;ED(heD))R

eD
Pfhg(ED(h) = eDjHi;DXY )dPfSg(heD 2 H�

i (S)jHi;m;ED(heD))

where

PfSg(heD 2 H
�
i (S)jHi;m;ED(heD)) =

X
eS

B[eD;m](eS)
Y
e0
D

0
@X
e�eS

B[e0D;m](e)

1
A
f(eD ;e

0
D
)

(3.6)

f(eD; e
0
D) =

n jHijPfhg(ED(h)=e0
D
jHi;DXY )

jHijPfhg(ED(h)=e0
D
jHi;DXY )�1

i� eD 6=e0D
i� eD=e0

D

and heD is an arbitrary hypothesis with true error ED(heD) = eD.

The proof if given in Appendix D. Theorem 7 solves the primary complexity problem by removing
the product over all subsets of Hi from Equation 3.4. While a straightforward evaluation of Equation
3.5 would still run in O(m4), a careful implementation (see Appendix E) runs in O(m2).
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3.4 Estimating Pfhg(ED(h)jHi; DXY ).

As Pfhg(ED(h)jHi;DXY ) depends on DXY , it cannot be determined exactly. All information on
DXY which we can access is contained in S. We have to find an efficient way of obtaining an estimate
of the distribution of error rates based on the sample.

One possible way of estimating this distribution is to measure the empirical counter-
part Pfhg(ES(h)jHi; S) and use it as an estimate of Pfhg(ED(h)jHi;DXY ). As m grows,
Pfhg(ES(h)jHi; S) converges towards Pfhg(ED(h)jHi;DXY ); so, for a reasonably large S a good
estimate of Pfhg(ED(h)jHi; DXY ) can be obtained. We will see in the experimental section, that
small samples impose an optimistic bias that vanishes as the sample size grows. In fact, the experi-
ments reported on in the following sections show that even samples of size 50 allow for reasonably
accurate estimates. Note that this is a one-dimensional distribution only; the dimensionality does not
increase when Hi grows. How many hypotheses do we have to draw under uniform distribution from
Hi in order to obtain a good estimate of this distribution? Pfhg(ES(h)jHi;DXY ; S) is a discrete
distribution with m individual probabilities. Therefore, if we draw1

" log
m
� hypotheses, the chance of

mis-estimating at least one of them by more than " is at most �. This statement, however, is not strong
enough because it does not say anything about how strongly a misestimation of the error distribution
will influence the quality of the estimate of hL’s generalization error. Let us consider the worst pos-
sible case that can occur. Suppose that a hypothesis space contains one single hypothesis with error
rate zero, and an exponentially fast growing number of hypotheses with an error rate of one. If we fail
to “hit” the extremely good hypothesis, then our estimate of Pfhg(ED(h)jHi;DXY ) will be a single
point with mass one. Although this estimate is not far from the true density (which converges towards
a single point exponentially fast), it will impose a strong inaccuracy on the estimated error rate of hL:
while the true error rate of hL is zero with certainty (provided that the learner is exhaustive and finds
the isolated good hypothesis in an exponentially fast growing set of bad hypotheses), Theorem 7 will
estimate this error as one. Hence, in order to avoid such failures with high confidence, we need to
draw an exponentially fast growing number of hypotheses to estimate the distribution of error rates.
Many hypothesis languages, however, have a certain property of symmetry which we can exploit to
achieve this in linear time. Suppose that we have a decision tree with n leaf nodes and assume that
these leafs are unlabeled yet. By assigning combinations of the class labels zero and one to the leafs
we can generate 2n distinct trees which are have equal “stems” and differ in the labelings of their leafs.
We can exploit this property of symmetry and construct an algorithm that prints the distribution of the
corresponding 2n empirical error rates in only O(n). For details on the algorithm, see “Algorithm
Estimate-Pfhg(ED(h)jHi;DXY )” in Section 3.8.

Unfortunately, the estimator for Pfhg(ED(h)jHi;DXY ) discussed above is not unbiased. If, for
some model, Pfhg(ED(h) = 0jHi;DXY ) is zero, the chance of some hypothesis incurring an empiri-
cal error of zero is still greater than zero which imposes a bias. Fortunately, though, this bias vanishes
when the sample size grows. Two unbiased estimators exist, but both have considerable disadvantages
(one estimator has a prohibitive variance and the second relies on a distributional assumption which
may easily fail). See (Scheffer & Joachims, 1998b) for a detailed discussion.

When Pfhg(ED(h)jHi;DXY ) is assumed to be a normal distribution, the parameters � and � can
be determined very easily from an observed Pfhg(ES(h)jHi; S). This assumption holds when the
target is a Boolean function over 5 or more attributes and the instances are governed by the uniform
distribution. However, experiments on the artificial and the text categorization problem have shown
that this assumption fails frequently.

Efficient model selection algorithm. Now Theorem 7 can be implemented into the following algo-
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rithm: (a) For all models Hi, record Pfhg(ES(h)jHi; S) by drawing a small number of hypothe-
ses at random under uniform distribution from Hi and measuring the empirical error. (b) Use
Pfhg(ES(h)jHi; S) as an estimate of Pfhg(ED(h)jHi;DXY ) and use Theorem 7 to determine the
expected error of the ERM hypothesis of Hi. (c) After the expected error has been estimated for all
models, select the model with the lowest estimated error and (d) invoke the learner with the selected
model and the sample S.

3.5 What is Over-Fitting?

A learning curve is a function which maps a model index i to the error of the hypothesis which is
generated by a given learner on model Hi for a given learning problem. Often, the learning curve
grows for large models which is generally referred to as over-fitting. This is frequently considered
to be due to the high hypothesis complexity in models with high indeces. However, over-fitting does
not necessarily occur at all. Boosting algorithms have often exhibited a complementary behavior
(Schapire et al., 1997), unpruned decision trees have been observed to outperform pruned decision
trees (Fisher & Schlimmer, 1988) and Schaffer (1993a) has presented experiments which support his
claim that the generalization ability of a learner is a property of the learning problem rather than a
property which is intrinsic to the learner.

Using Chernoff bounds, one can guarantee that (with high probability) the difference between
true and empirical error of no hypothesis in some model Hi exceeds a certain threshold – which
immediately leads to worst-case error bounds. This is the way that PAC and VC theory argue. The
empirical error is binomially distributed, so even a poor hypothesis has a small chance (depending on
the sample size) of exhibiting a low empirical error. When Hi grows, the chance of some hypothesis
in Hi exhibiting a large difference between true and empirical error grows steeply. Therefore, given
two hypotheses with equal empirical error which come from distinct models, PAC theory gives better
guarantees for the one which comes from the smaller model. But these guarantees are extremely
pessimistic as they rely on the assumption that the learner selects the ERM hypothesis with the greatest
true error rate. The expected error analysis implies that when the prior distribution of error rates in
the model remains constant, the expected error of the returned hypothesis converges from above as Hi
grows.

Let us look at the expected error of the returned hypothesis hL when the model size, jHij, ap-
proaches infinity or, more formally, limjHij!1EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H

�
i (S)). For

the moment, I assume that all other influential factors, in particular Pfhg(ED(h)jHi; DXY ), stay con-
stant.

Theorem 8 When Pfhg(ED(h)jHi;DXY ) is constant with Pfhg(ED(h) = 1jHi;DXY ) < 1, the
expected error of an ERM hypothesis hL converges as jHij grows.

lim
jHij!1

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S))

=

R
eD

eD � (1� eD)
m
dPfhg(ED(h) = eDjHi;DXY )R

eD
(1� eD)mdPfhg(ED(h) = eDjHi;DXY )

(3.7)

The proof can be found in Appendix F. Theorem 8 implies that the limit exists which means that
the learning curve converges towards a fixed number rather than diverging. Note that the above con-
sideration was subject to the assumption that Pfhg(ED(h)jHi;DXY ) remains fixed while Hi grows.
Let us now study how Pfhg(ED(h)jHi;DXY ) actually behaves when the target is a Boolean function.
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Figure 3.1: Various shapes of Pfh;DXY g(ED(h)jHi) curves for models which contain Boolean at-
tributes x1; : : : xi when the target function requires attributes x1; x2; x3. The distributions are equal in
the first three models; models which contain irrelevant attributes incur a smaller ratio of hypotheses
with extremal error values which causes a greater expected error for hL.

Let us now study how Pfhg(ED(h)jHi;DXY ) actually behaves when we want to learn Boolean
functions under uniform distribution of the Boolean instances. In this case, the prior can be deter-
mined analytically. When the target function uses attributes x1 through xn and the model Hi contains
hypotheses over attributes x1 through xi, then the prior is a certain binomial distribution depending
on i and n (function and hypothesis must agree on all possible 2maxfi;ng instances which can be dis-
tinguished by target function or hypothesis). By plugging the exact prior into Theorem 6 we can
determine the learning curve analytically. Appendix G gives the derivation of the expected learning
curve (expected for the uniform distribution over Boolean functions) when Hi contains all Boolean
functions over i attributes.

Figure 3.1 shows some examples of the distribution PfDXY ;hg(ED(h)jHi) (here, the target DXY

is a random variable because we draw targets at random) where P (DXY ) is the uniform distribution
over all Boolean functions over attributes x1; x2, and x3 and Hi is the set of functions over attributes
x1 through xi. H1, H2, and H3 impose equal distributions PfDXY ;hg(ED(h)jHi), but from H4 to-
wards H6, the tails of the distribution become skinnier – intuitively, the concentration of really good
(and really bad) hypotheses decreases and more hypotheses incur an error of close to1

2
. This causes

the learning curve to rise; Figure 3.2 shows the learning curve for Boolean functions over x1 through
x3. The “simulation” curve shows the error measured in an experiment, averaged over 200 randomly
drawn target functions. The slight deviation originates from three sources: The simulation curve is
only measured in an experiment and hence subject to some inaccuracy, the independence assump-
tion 1 on the empirical error causes a modest bias, and the simplification (Assumption 3) on which
the implementation is based incurs a very small error. However, the learning curve is still predicted
very accurately. To my knowledge, this is the first time that a mathematical model of generalization
quantitatively predicts the shape of a learning curve. This prediction indicates that the expected error
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Figure 3.2: Learning curve: Expected generalization error (theoretical values and values measured
from simulation) when the target function requires attributes x1 through x3 and model Hi (i is on the
horizontal axis) uses attributes x1 through xi.

analysis provides a good understanding of the nature of over-fitting.

3.6 Robustness against Inaccurate Estimates of jHij

For virtually all practically relevant hypothesis languages, only bounds on the language size are known
(rather than the exact size). Can the expected error analysis be applied in cases in which the exact
size of the models is not known? Let us assume that the number of independent hypotheses is over-
estimated by a factor of c. What effect will this have on the estimated error of hL? Figure 3.3 shows
how inaccurate the error estimate will be, depending on the model size. While the topmost curve
displays the error estimate based on the actual size of Hi, the two lower curves show the estimated
error based on a model size which was over-estimated by a factor of 2 and 4, respectively. In order to
obtain these curves, I fixed some Pfhg(ED(h)jHi;DXY ) (using jH2j from the experiment in Section
3.7.1), and plotted the true error (according to Theorem 7) for various assumed model sizes with a
fixed sample size of 50. The generalization error converges exponentially fast (exponential in log jHij
i.e., doubly exponential in jHij) towards a threshold which depends on the sample size and the error
prior. As all the curves converge towards this threshold, the difference between them converges to
zero exponentially fast. This fast convergence explains why knowing the precise size of the models is
not necessary.

3.7 Empirical Studies

In this Section, I will study the bias and variance of the error estimates obtained by the expected error
analysis. In particular, I will compare the estimates to estimates obtained by 10-fold cross-validation.
In the first set of experiments (Section 3.7.1) I will use a fixed target concept and learn decision trees
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Figure 3.3: How inaccurate will the error estimate be if we mis-estimate the number of independent
hypotheses? The topmost curve shows the true error as a function of jHij (the horizontal axis is
in units of log jHij, the vertical axis shows the error); the second curve shows the error when the
actual number of independent hypotheses is half the estimated number, the third curve gives the error
estimate when the estimated number of hypotheses is four times the true number.

with one continuous and one discrete attribute. In the next set of experiments (Section 3.7.2), I will
study Boolean functions. I will run a large number of model selection experiments in which the
target functions are randomly drawn Boolean functions. Thus, I will be able to make claims on the
performance for all possible Boolean target functions. The controlled experiments of Sections 3.7.1
and 3.7.2 are on a relatively small scale. Therefore, in order to study how well the algorithm scales,
I will study a text categorization problem in Section 3.8. In this learning task there are 1000 relevant
attributes and 12,000 examples. Applying cross validation to this problem would not be feasible.

3.7.1 Artificial Problem

I designed a model selection problem for which the true error of each hypothesis can be calculated. I
chose an instance space with one continuous (x1) and one discrete (x2 2 f1; 2; 3; 4g) parameter. The
distribution DXY consists of four overlapping Gaussians (two for each class); the amount of overlap
gives rise to a nonzero intrinsic target noise. I chose the hypothesis space such that H1 consists of all
decision trees with only one fixed split and four resulting hypotheses. H2 contains all binary decision
trees with one split of x1 (discretized into 10 different values, 40 different trees). H3 entails all 160
binary decision trees of depth 2, and the 2560 hypotheses in H4 consist of a four-ary split of x2 and a
binary split of x1.

Results. Table 3.1 shows the true error values, Table 3.2 the predictions of 10-fold cross validation.
The predictions for small samples are poor and, generally, the variance of the predictions is quite high.
Table 3.3 shows the predictions of the expected error analysis. Again, the predictions for a sample size
of 10 are poor, unless another 40 instances are used to estimate the prior more accurately (bracketed
values). The accuracy of the error rate estimates is comparable to the accuracy of the 10-fold cross
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m H1 H2 H3 H4

10 :42� :11 :41� :09 :20� :10 :26� :10

50 :35� :05 :35� :02 :12� :02 :12� :02

100 :38� :04 :35� :02 :10� :00 :10� :01

200 :34� :00 :34� :01 :10� :01 :10� :01

Table 3.1: True error rates.

m H1 H2 H3 H4

10 :45� :02 :44� :27 :18� :11 :25� :13

50 :43� :02 :36� :09 :11� :05 :13� :06

100 :41� :05 :35� :04 :11� :04 :11� :04

200 :40� :03 :36� :04 :10� :05 :11� :02

Table 3.2: 10-fold cross validation error rates.

validation based estimates provided that the prior can be estimated with at least 50 instances). When
the sample size is too small for Pfhg(ED(h)jHi;DXY ) to be estimated accurately, the estimate is
expected error analysis based estimate is optimistically biased.

3.7.2 Learning Boolean Decision Trees

The results reported in the previous Section might be due to intrinsic properties of the (fixed) target
distribution. Therefore, in this Section, I will report on a set of experiments in which I consider many
different target functions, drawn randomly from the space of all Boolean functions. The stratification
is such that Hi contains all Boolean decision trees with i Boolean attributes (from a total of 6 possible
attributes). I assumed a uniform distribution DX of instances. Figures 3.4 through 3.6 show some
learning curves for Boolean decision trees for sample sizes of 10, 50, and 100, respectively.

For all three figures, the target is a function over three attributes. Each of these figures com-
pares three curves. The first is the average learning curve of a simulation (labeled “simulation”)
for 200 randomly drawn functions. This curve gives an unbiased estimate of the expected learn-
ing curve but is subject to some variance as only 200 runs were conducted. The second (labeled
“predicted error, exact prior”) is the learning curve predicted by the expected error analysis where
the prior Pfhg(ED(h)jHi;DXY ) was determined analytically (such a curve has already been pre-
sented in Section 3.5 where the error prior for Boolean functions has been determined). The curves
show a small pessimistic bias caused by the independence assumption. The third (labeled “predicted

m H1 H2 H3 H4

10 :41� :07 :31� :10 :18� :11 :25� :13

(:43� :02) (:39� :05) (:21� :03) (:26� :02)
50 :37� :07 :34� :06 :11� :04 :12� :05

100 :39� :04 :34� :06 :11� :03 :10� :03

200 :38� :03 :31� :03 :10� :02 :11� :01

Table 3.3: Expected error analysis based estimates.
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Figure 3.4: Expected learning curves for Boolean functions, 3 attributes are relevant, sample size 10.

error, estimated prior”) is the predicted learning curve where the prior distribution on error values
Pfhg(ED(h)jHi;DXY ) is estimated by recording Pfhg(ES(h)jHi; S). The difference between the
predicted curves (with exact prior) and the curves measured in the simulation is due to the assumption
of independent empirical errors and the variance of the error measurement in the simulation. The
difference between the predicted curve with exact prior and the predicted curve with estimated prior
is due to the identification of Pfhg(ED(h)jHi; DXY ) and the observed Pfhg(ES(h)jHi; S). For small
sample sizes, the estimate is poor and the predicted learning curve shows a considerable optimistic
bias. However, when the sample size grows, the estimated learning curve converges towards the learn-
ing curve which is based on the exact error prior. In the following experiments, I will compare the
expected error analysis to 10-fold cross validation.

In this experiment, first the depth of the target function is drawn at random under uniform distri-
bution between 2 and 6 within the target model, the target function is drawn uniformly. Algorithm
“10-CV” uses 10-fold cross validation to select a model and then minimizes the error within the cho-
sen model using the complete sample. The true error of this returned hypothesis is then averaged
over 200 runs (with different, randomly drawn target functions). The expected error analysis based
algorithm predicts the error of each model, selects the apparently best model and minimizes the em-
pirical error within that model using the whole sample. Two slightly different versions of expected
error analysis based model selection are compared: One version (“EEA”), estimates the error prior by
recording the empirical error of all hypotheses in the model. This is computationally as expensive as
a run of a learning algorithm (and is therefore approximately ten times faster than 10-fold cross val-
idation). The other version (“EEA-1000”), estimates the error prior by measuring only the empirical
error rates of 1000 randomly drawn hypotheses. This can be accomplished in O(1). Figure 3.7 shows
the results (Table 3.4 gives the errors and standard deviation numerically); each point is averaged over
200 distinct target functions. The resulting error decreases, of course, with growing sample size. For
a sample size of 30, the expected error analysis does significantly better than 10-fold cross validation
(p-value is :002); for m = 40, cross validation does better than the expected error analysis when the
prior is only estimated by drawing 1000 hypotheses. The error rate achieved by expected error anal-
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Figure 3.5: Expected learning curves for Boolean functions, 3 attributes are relevant, sample size 50.
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Figure 3.6: Expected learning curves for Boolean functions, 3 attributes are relevant, sample size 100.
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m 10 20 30 40 50 100
EEA :29� :001 :15� :001 :07� :001 :05� :001 :04� :000 :006� :000

EEA-1000 :28� :001 :16� :001 :10� :001 :09� :001 :06� :001 :004� :001

10-CV :27� :001 :17� :011 :10� :001 :06� :001 :04� :000 :004� :000

Table 3.4: True error of the returned hypotheses; target models drawn uniformly.
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Figure 3.7: True error of returned hypothesis under uniform distribution of target models (horizontal
axis: sample size, vertical axis: error); see also Table 3.4.

ysis based model selection is at least as accurate as the error rate obtained by cross validation based
model selection. Even though the expected error analysis yields optimistically biased estimates for
small samples, the expected error analysis based model selection algorithm performs well. At first
blush, this may appear to be surprising. But note that, when the goal is to determine which of several
error values is the lowest, it does not harm if all error rates are over-estimated by an (almost) constant
bias. The principle advantage of expected error analysis, however, is that no learning has to be done,
the estimate is obtained in an extremely efficient manner.

3.8 Scaling Up: Text Categorization

In this Section, I will apply the expected error analysis framework to the problem of text categoriza-
tion. Text categorization (e.g., Salton & Ruckley, 1988) is the problem of mapping texts to semantic
categories. Important applications of this are classification of newspaper articles and classification
of web pages. In both cases, the large number of available documents makes a manual classification
very expensive. But since the problem is difficult and a high quality of the result is important, the
task is frequently performed manually. For instance, the Yahoo web index was created and is being
maintained manually. Often, documents are represented as sparse attribute vectors, where every word
stem that occurs in the document is one feature. When linear classifiers are used, the features are
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then weighted with the inverse word frequency (Salton & Ruckley, 1988). Clearly, this representation
incurs some loss of information as the resulting classification can only be based on key words. But in
many cases, the word ordering is not relevant to decide the category of the text. The induced prob-
lem of mapping feature vectors to text categories is still difficult, because the number of attributes
is typically greater than thousand and the required sample size can be as much as ten thousand. In
this experiment, I used the Reuters corpus (e.g., Joachims, 1998) of 12,902 pre-classified newspaper
articles. The data set is split into 9430 training and 3472 hold-out instances. In order to apply the
expected error analysis to this problem, several steps have to be carried out.

Selecting a hypothesis language and a stratification. Experiments with decision trees (Joachims,
1998) indicated that C4.5 produced trees which were very imbalanced. In order to exploit this apparent
property of the problem, I chose k-decision lists, with k fixed to 2 after some initial experiments (3-
DL is infeasible due to the high computational complexity and 1-DL performed outstandingly poor).
A k decision list (Rivest, 1987) is a list hb1 ! c1; : : : ; bl ! cli of arbitrarily many rules bi ! ci,
where bi is a conjunction of up to k literals and ci is a class label. The way that a decision list assigns
a class label to an instance x is the following. Starting from the beginning of the list, the instance is
passed down. The first rule bi ! ci the body bi of which is satisfied by x “fires” and determines the
class label of x. At this point, the instance is not passed down further. When no rule fires, the instance
is not assigned a valid class label.

I sorted the attributes according to their information gain (in accordance with the results of Yang
& Petersen, 1997). I used two different stratifications. The first stratification consists of four models.
These models included all 2-decision lists over the first 250, 500, 750, and 1000 attributes, respec-
tively. The second stratification is hH1; : : : ;H7i where Hi contains decision lists the monomials of
which cover at least 1; 10; 20; 30; 50; 70; and 100 examples, respectively (note that a decision list is a
sequence of monomials and each monomial covers some instances). The parameter which is adapted
here influences the model by only allowing monomials which are supported by a certain sample size.
One could think of this number of examples which have to be covered by each monomial as a pruning
threshold which is adapted.

The size of 2-DL(n) is known to be log j2 � DL(n)j = O(n2) (Rivest, 1987). I adjusted the
multiplicative factor after a few trials in which I compared the predicted generalization error to the
hold-out error for some models. In order not to bias the results, I used different models and only one
category for this adaptation. The factor influences the predicted error only slightly, so a wide range of
factors leads to acceptable results (see Section 3.6).

Defining a learning algorithm. The learner has to minimize the empirical error within the model.The
decision list learner of Rivest (1987) runs in O(nk �m) (n is the number of attributes, k the number
of literals per monomial, and m is the sample size), but after few trials this learner turned out to be too
slow for the large given sample. Furthermore, the Rivest algorithm finds a decision list that is consis-
tent with the sample if one exists and fails otherwise. Unfortunately, minimizing the empirical error is
much more difficult than finding a consistent hypothesis. The Rivest algorithm is a greedy coverage
algorithm which does not back up, once it has committed to a rule; in order to find the minimizing
decision list, conducting back-tracking over the rules is necessary. However, back-tracking over the
rules is not feasible because this would impose a computational effort of approximately O((n2)50) to
O((n2)100) (this is the average length of the observed lists). Therefore, I settled for a greedy algorithm
and accepted the drawback of not being guaranteed to find an ERM hypothesis. I used the following
modified algorithm which furthermore reduces the cost from O(n2 � m) to O(n2 � c) where c is
a parameter and determines how many different values of empirical error rates the algorithm distin-
guishes. In order to determine the empirical error rates more efficiently, the algorithm uses an inverse
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indexing technique (i.e., there is an array over all words which points at those examples in which the
word occurs).

Algorithm DL1. Input: sample S, parameters i, p, and c (i is the number of attributes, p is a pruning
threshold, and c is a parameter which controls the discretization of empirical error rates). Output:
2-DL(i) (approximation of the ERM hypothesis).

1. Start with the empty list L = �.

2. For error bound = 0 : : : 1 in steps of 1
c

(a) For lit1 = 1 : : : i, For lit2 = 1 : : : i

i. If the rule lit1; lit2 ! 0 or the complementary rule lit1; lit2 ! 1 incurs an
empirical error of error bound or less and covers at least p examples then commit
to the rule, append the rule to L, and remove the covered examples from S.

(b) (At this point, all instances which can be covered by a rule which cover at least p exam-
ples and incur an empirical error of at most error bound have been eliminated from the
sample.)

3. (At this point, all instances which can be covered by a rule which cover at least p examples and
incur an empirical error of at most 1 – i.e., all instances – have been removed from the sample.)

4. Return L.

Estimating Pfhg(ED(h)jHi;DXY ). Straightforward estimation of the prior on error values by
drawing c hypotheses would require O(c � m � len(h)). But since the length of the lists is only
bounded on the number of distinct rules (which is outrageous), drawing even a single decision list at
random would not be feasible. The latter problem can be solved with the consideration that the prior
is estimated by the distribution Pfhg(ES(h)jHi; S) and rules which do not cover at least one instance
do not influence the empirical error. The following algorithm runs in O(c � m) and estimates the
prior using up to c� 2m randomly drawn hypotheses. This is done by drawing the bodies of c lists of
length len(h) and recording the error values of all 2len(h) possible labelings of class values 0 and 1
to the rules.

Algorithm Estimate-Pfhg(ED(h)jHi;DXY ).

1. For e = 0 : : :m, Initialize P ED[e] to 0. (P ED[e] will contain the estimate of
Pfhg(ED(h)jHi;DXY ).)

2. Repeat c times:

(a) Start with the empty list L and the full sample S.

(b) While S is not empty

i. Draw an example from S at random and draw two attributes lit1 and lit2 which
occur in the drawn example.

ii. If the rule lit1; lit2 ! 0 or lit1; lit2 ! 1 is covered by at least p examples, add
the rule to L and remove the covered examples from S.

(c) (Now we have a randomly drawn decision list which covers the whole sample; each mono-
mial covers at least p examples.)
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(d) Initialize newcnt[e] and oldcnt[e] to 0.

(e) (pos(i) and neg(i) refer to the number of positive and negative examples covered by the
ith rule of L.)

(f) Increment oldcnt[neg(1)] and oldcnt[pos(1)] by 1.

(g) (At this point, oldcnt[e] gives the number of hypotheses which consist of only the body
of of the first rule and incur an error of e.)

(h) For i = 2 : : : len(L)

i. For e = 1 : : : m

A. Increment newcnt[e+ pos(i)] by oldcnt[e].

B. Increment newcnt[e+ neg(i)] by oldcnt[e].

ii. (Now, newcnt[e] gives the number of hypotheses consisting of the bodies of the first
i rules with all possible assignments of class labels to the bodies which incur an
empirical error of e.)

iii. For all e, set oldcound[e] to newcount[e].

(i) For e = 0 : : :m, Increment P ED[e] by newcount[e]=(2len(L) � c).

3. Return P ED.

The “trick” here is that the algorithm counts the number of hypotheses with the fixed bodies L

but all possible combinations of class labels in O(len(L)) although there are 2len(L) such hypotheses.
This is done in steps 2(h)iA and 2(h)iB. In step 2i the number of hypotheses is divided by the total
number of hypotheses to determine the distribution.

Results. Here, assessing a model by means of the expected error analysis requires approximately 2
minutes on a PC while running even one-fold cross validation for one fixed model takes about 2-3
hours. In order to be able to compare the predicted error rates to hold-out error rates, I had to commit
to a relatively small set of models. In a first set of experiments, I wanted to determine how many of
the attributes are relevant. I compared 4 models, H1 through H4, containing 250, 500, 750, and 1000
attributes, respectively. I measured the hold-out error of the hypotheses returned by the learner on
3472 examples and determined the error rates predicted by Theorem 7. Surprisingly, both learning
curves (the curves of the hold-out errors and the predicted errors averaged over the ten most frequent
categories) are almost flat except for some noise. The hold-out error is about 0.02 while the predicted
error is about 0.05 (the pessimistic bias of about 0.03 has already been observed earlier). When 500 or
more attributes are used, the generalization error is significantly lower than when only 250 attributes
are used (p < 0:05, paired t-test). The predicted error of the model with 500 attributes is lower
than the predicted error for 250 models, too. However, there are no significant differences between
the error rates for 500, 750, and 1000 attributes (p > 0:3, paired t-test). The expected error analysis
prefers 1000 attributes but this is neither significantly better nor worse than 500, or 750 attributes. This
indicates that (almost) all attributes are relevant but each single attribute carries only little information
by itself.

In the next set of experiments, I used the second stratification. The 8 models consist of decision
lists the monomials of which cover at least a certain number of examples (i.e., the pruning threshold
is adapted). Table 3.5 shows the hold-out error incurred for the ten most frequent concepts, and Table
3.6 shows the error rates predicted by the expected error analysis. Since the hold-out set is quite large
(3400 examples), most differences are significant. Figure 3.8 shows the predicted error rates and the
error rates estimated by one-fold cross validation, averaged over the ten most frequent categories. The
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category 1 10 20 30 50 70 100
acq .0907258 .0601959 .055011 .0596198 .0561636 .0648041 .0829493
corn .0034562 .0014400 .0011520 .0011520 .0011520 .0011520 .0011520
earn .0578917 .0417627 .0345622 .0406106 .0455069 .0486751 .0538594
crude .0290899 .0129608 .015265 .014400 .0144009 .0172811 .0221774
grain .0086405 .0089285 .0095046 .0086405 .0080645 .0103687 .0106567
interest .0241935 .0253456 .0187212 .0207373 .0213134 .0207373 .0207373
money-fx .0288018 .0218894 .0207373 .0236175 .0250576 .0256336 .0250576
ship .015841 .0097926 .0086405 .0080645 .0106567 .0092165 .0112327
trade .0328341 .0213134 .0244816 .0207373 .0239055 .0256336 .0250576
wheat .0057603 .0011520 .0023041 .0014400 .0023041 .0025921 .0025921
average .0297 .0204 .01904 .0199 .0208 .0226 .0255

Table 3.5: Hold-out error rates depending on the pruning threshold for 500 attributes.

category 1 10 20 30 50 70 100
acq .169624 .164426 .136109 .14765 .146808 .157075 .15685
corn .0254748 .0199941 .0199937 .0198764 .0194109 .0293709 .0285292
earn .0800091 .0701208 .080318 .0694885 .0787617 .0781107 .0768116
crude .0500038 .0354245 .0453292 .0426815 .0410724 .0405766 .0400437
grain .050358 .0486773 .0462126 .0431106 .0408503 .0405403 .050588
interest .0504822 .0494526 .0436008 .0447569 .0558017 .0403235 .0524012
money-fx .0678693 .0599967 .0598764 .0694562 .0682563 .0670629 .0659219
ship .0299725 .0303424 .030023 .0199194 .0195121 .0194726 .0285667
trade .0541985 .0499002 .0482594 .0428654 .0411051 .0403724 .0401568
wheat .0200082 .0199976 .0198373 .0199312 .0188736 .0187006 .017471
average .059797 .054837 .05295 .05196 .053044 .05316 .05573

Table 3.6: Predicted error rates depending on the pruning threshold for 500 attributes.

predicted values are subject to a pessimistic bias of :03 (which we already observed in the previous
experiments), but the shapes of the learning curves are fairly similar. Note that a constant bias is
undesirable when one wants to know just how accurate a particular hypothesis is; but it is harmless
when one wants to know which of several hypotheses is the best one. At first blush, model 20 appears
to incur a lower averaged hold-out error while model 30 is, on average, predicted to incur a lower
generalization error by the expected error analysis. At a closer look, it turns out that, for 8 of 10
categories, the expected error analysis and hold-out testing agree on which of the two models incurs
a smaller error. Furthermore, a paired t-test shows that, averaged over all categories, model 20 is
unlikely to be superior to model 30 (p=.176) although the differences between the hold-out error rates
of these models are significant for the individual categories. These results are very promising; the
expected error analysis provides a good estimate of the generalization error. The estimate is obtained
extremely efficiently. Assessing a large number of models for this problem would not be feasible
by means of hold-out testing, whereas, by the expected error analysis, hundreds of models could be
assessed.
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Figure 3.8: Learning curves (measured by one-fold cross validation and the expected error analysis),
averaged over the ten most frequent categories.

3.9 Discussion

I showed that the expected true error of an ERM hypothesis can be characterized as a func-
tion of the prior distribution of error rates of uniformly drawn hypotheses. This shows that the
prior Pfhg(ED(h)jHi;DXY ) of a learning problem is extremely elaborate as it (together with
the sample size and the model size) contains all information necessary to determine the ex-
act probability distribution of the generalization error of hL – which yields tight error bounds
(PfS;hLg(ED(hL) � �) =

R �
eD=0 dPfhL;Sg(ED(hL) = eDjm;Hi;DXY ; hL 2 H

�
i (S))) or the ex-

pected error EfS;hLg(ED(hL)jHi; DXY ;m; hL 2 H
�
i (S)) for a particular learning problem, rather

than PAC or VC-style bounds which hold for the worst possible target distribution. The difference be-
tween the classical Bayesian analysis and the expected error analysis should be clearly kept in mind.
In the classical Bayesian analysis, the posterior is the chance PfDXY g(DXY jS) (i.e., the chance that
DXY is the sought target distribution, given the sample S) and the prior is P (DXY ), the unconditioned
chance that DXY is being drawn as target distribution. By contrast, the expected error analysis con-
siders the chance that a hypothesis has a particular error value. In order to estimate the prior P (DXY )
one would have to observe several learning problems (this is referred to as empirical Bayesian anal-
ysis). By contrast, each target distribution DXY induces an individual prior Pfhg(ED(h)jHi; DXY )
which can be estimated from one sample.

Learning curves. The presented experiments show that, when the prior distribution of error val-
ues Pfhg(ED(h)jHi;DXY ) is known (as is the case when the target is a Boolean function and the
instances are uniformly distributed), the analysis predicts and thus explains learning curves with a
precision that has not been achieved by PAC theory (e.g., Valiant, 1984), statistical physics (e.g.,
Tishby, 1995), or other frameworks. One reason for that is that the analysis is not a worst-case anal-
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ysis; instead, it considers the distribution of error values which characterizes one particular learning
problem, or a distribution of learning problems. The explanation for over-fitting which the expected
error analysis provides is substantially different from the explanation provided by the PAC framework.
The largest difference between true and empirical error of any hypothesis in the hypothesis language
grows necessarily when the hypothesis language grows. Therefore, PAC theory gives weaker guar-
antees for hypotheses which have been learned from larger models which is sometimes considered
to be a justification of the Occam’s Razor principle (Blumer et al., 1987). However, learning algo-
rithms have in practice shown patterns of behavior which deviate considerably from the PAC results;
for instance, the generalization error of boosting algorithms (Freund & Schapire, 1996) has been ob-
served to continuously decrease when the number of elementary hypotheses (and thus the hypothesis
complexity) increases (Schapire et al., 1997; Quinlan, 1996a), similar behavior has been observed for
other hypothesis languages as well (Fisher & Schlimmer, 1988; Schaffer, 1993a). The expected error
analysis shows that the generalization error primarily depends on the prior distribution of error values
in the hypothesis language. When this distribution stays constant while the hypothesis space grows,
the generalization error will decrease. But when the variance of this distribution decreases (i.e., the
ratio of hypotheses with extremal error values decreases), this causes an elevated generalization error.
The variance of the error prior decreases, for instance, when irrelevant attributes are added.

Model selection. When the prior is estimated from the sample, the expected error estimate is poor
(optimistically biased) when the sample is too small to estimate the prior distribution well. For sam-
ple sizes of 50 or above, the expected error analysis based estimates become reasonably accurate. For
large sample sizes, the error estimate has turned out to be pessimistically biased (because we assumed
that the empirical errors of distinct hypotheses are independent estimates of the corresponding true
error); but the pessimistic bias has been almost at a constant level of 0.03. This makes n-fold cross
validation appear preferable when the task is to determine the precise accuracy of some hypothe-
sis. For large samples, cross validation is almost unbiased and comes with (approximate) confidence
bounds. However, when the task is to determine which of several hypotheses (learned from distinct
models) is better, an almost constant bias is not harmful. Therefore, in the experiments on randomly
drawn Boolean function, expected error analysis estimation based model selection has turned out to
be at least as accurate as 10-fold cross validation based model selection – even for small samples.
However, the expected error analysis based algorithm is much more efficient than cross validation
because no learning has to be done. For the text categorization problem with 1000 relevant attributes
and 12,000 examples, the estimate of the learning curve was quite accurate and has been obtained
in an extremely efficient manner while even one-fold cross validatory assessment of a single model
for a single category required hours. Therefore this approach to model selection seems to be partic-
ularly interesting for large scale model selection problems (such as text categorization or knowledge
discovery in databases) with many hundreds (or thousands) of relevant attributes and many (tens of)
thousands of examples. The advantage of the expected error analysis over cross validation increases
when the number of attributes and the available sample size increases further.

Limitations. The analysis is subject to two primary restrictions. First, the model size is required to be
finite. Decision trees, decision lists, k-DNF, and similar languages lie within the scope of the approach
but, as yet, neural networks lie outside. Second, the loss function is restricted to the zero-one loss (or
generalization error). I have found a solution for linear cost functions but the corresponding algorithm
is too slow for practical purposes. So far, I do not have solutions for further loss functions, such as
the quadratic loss. Besides these cases in which the analysis cannot be applied, there are situations
in which it should not be applied. Primarily, this is the case when additional background knowledge
makes automatic model selection unnecessary. When the prior distribution of target functions or



58 CHAPTER 3. EXPECTED ERROR ANALYSIS

distributions P (f) is known, choosing any other than the Bayes hypothesis would be sub-optimal.
Even when the Bayes hypothesis is computationally intractable, heuristics like the MAP or MDL
hypothesis exploit this additional knowledge and promise better results. When the task is to determine
the error rate of a particular hypothesis as accurately as possible (as opposed to the model selection
task in which one wants to determine which of several hypotheses is the best one) leave-one-out cross
validation is able to obtain an estimate with only a small bias while the expected error analysis has
often shown a bias of as much as 0.03.

Related results. Many attempts have been made to find an efficient means of assessing models.
The potential benefits of analysis of PfhLg(ED(hL)jHi;DXY ;m;L) has been discussed by Wolpert
(1995). “Bias-variance decompositions” are analyses of the error of hypothesis hL (returned by
learner L) which split the expected loss into two or three intuitively meaningful terms; the actual
terms differ slightly: Breiman et al. (1984) use the term bias for the error rate of the optimal hypothe-
sis of some model whereas the variance term of the error is the error caused by choice of a sub-optimal
hypothesis, due to the limitedness of the sample. In the analysis of Kohavi and Wolpert (1996), the
intrinsic target noise (“�2”), is the expected loss of the Bayes optimal hypothesis; the bias quantifies
how well the learner “guesses” the target on average; the variance measures how much the returned
hypotheses hL differ over all possible samples when the learner is invoked repeatedly. Bias-variance
decompositions are known for the quadratic loss function (Geman et al., 1992) and the zero-one loss
(Kong & Dietterich, 1995; Dietterich & Kong, 1995; Kohavi & Wolpert, 1996). The bias-variance
decomposition serves as a tool for the analysis of learning algorithms rather than an efficient means
of estimating the error incurred by a learner for a particular problem. Estimating the terms of the de-
composition requires to run the learner repeatedly. By contrast, the analysis presented in this Chapter
leads to a solution which can be evaluated very efficiently.

Domingos (1998) has found a solution to the expected error of a hypothesis with least empirical
error under several additional assumptions. He assumes that all hypotheses in each model Hi have an
equal true error (although hypotheses in distinct models may have distinct errors). This additional as-
sumption simplifies the solution considerably which now only depends on the number of hypotheses
and the least observed empirical error. The only input to this solution are the empirical error of the re-
turned hypothesis and the number of considered hypotheses. Domingos idea of “process based model
selection”, as he calls this approach, is to characterize the expected error of the returned hypothesis hL
which has been generated by learning process L which does not necessarily have to be a simple error
minimization process. Certainly it would be of considerable practical importance to find solutions
for the error of hypotheses which have been generated, for instance, by a greedy algorithm such as
C4.5, or by back-propagation. But so far, the only processes for which a solution is known are error
minimization among hypotheses with equal true and independent empirical error error (Domingos,
1998), error minimization among hypotheses with independent true and empirical error (Scheffer &
Joachims, 1998b) and error minimization among hypotheses with arbitrary true error and independent
empirical error values (this chapter).

3.10 Summary

� The expected generalization error of the hypothesis which minimizes the empirical error can be
expressed as a function of Pfhg(ED(h)jHi;DXY ), the distribution of error values of hypotheses
in the model.

� An estimate of the error prior Pfhg(ED(h)jHi;DXY ) can be obtained by recording
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Pfhg(ES(h)jHi; S;m), its empirical counterpart. This estimate is asymptotically consistent.
Thus, the resulting generalization errors of several models can be compared and a good model
can be chosen efficiently.

� The resulting model selection algorithm is often comparable to 10-fold cross validation in terms
of accuracy (sometimes even superior to cross validation as experiments on Boolean decision
trees show) but, as experiments on text categorization show, easily scales up to problems with
as many as 1000 attributes and 12,000 examples.

� Increasing the size of the hypothesis space does not per se cause over-fitting. In fact, growing
the hypothesis language while the distribution of error rates stays constant leads to a decrease of
error. The increase of error referred to as over-fitting occurs when the distribution of error values
changes such that the frequency of hypotheses with extremely low (and high) error decreases
(i.e., the variance of Pfhg(ED(h)jHi) decreases). This can, for instance, occur when irrelevant
attributes are added to the hypothesis language.



Chapter 4

Assumptions that Justify Model Selection

PAC and VC theory quantify worst-case bounds on the difference between true and empirical error
of any hypothesis in terms of the size (or the VC dimension) of the hypothesis space and the sample
size (e.g., Vapnik & Chervonenkis, 1971; Valiant, 1984; Haussler, 1992). The larger the hypothesis
language is, the greater the largest difference between true and empirical error of any hypothesis
in this language will be. This motivates “practical” learners to give preference to restricted sub-
spaces of their hypothesis space. Occam algorithms are weak implementations of this idea: From
all hypotheses that are consistent with the sample they return the one which is least with respect to
a particular ordering (or stratification) of the hypotheses. Thus, Occam algorithms obtain a better
estimate of the returned hypothesis’ true error, provided that a consistent hypothesis can be found in a
model with small index. Most practical learners even accept a higher empirical error if this reduces the
complexity of the hypothesis and leads to a better estimated generalization error. Technically, this is
done by employing some pruning/regularization techniques (e.g., neural weight decay; Mingers, 1989;
Cun et al., 1989), or by conducting cross validation (Stone, 1974; Kohavi & John, 1997). While these
model selection approaches usually lead to tighter bounds on the error, they also impose the risk of
“missing” some good hypotheses by excluding them from the hypothesis space. Some positive results
on the power of model selection are known (e.g., Kearns, 1996; Ng, 1998) but, unfortunately, none of
them is strong enough to prove that conducting model selection (as opposed to simply minimizing the
empirical error) is actually beneficial. Empirical results (e.g., Kohavi & John, 1997) show that cross
validation improves the performance of learners for many of the studied problems, but according to
experiments of Schaffer (1993a) and the theoretical analysis of (Wolpert, 1993), this is a property of
the particular problems that are studied rather than a property of model selection. In this Chapter, I
will study whether at all, or why and when, Occam algorithms and cross validation are beneficial and
I will quantify the performance gains, or losses, obtained by cross validation. Most results presented
in this Chapter are based on (Hoffmann & Scheffer, 1998).

4.1 Bounds on the Performance of Model Selection

This Section presents results on the limitations of the power of model selection strategies. These
results contradict the general belief in the usefulness of model selection that often guides the con-
struction of “practical” learners. The first two claims are based on the first No-Free-Lunch Theorem
(see also Section 2.3; Wolpert, 1992). The intuition of this Theorem is that, on off-sample instances,
there are just as many concepts which classify the instance as “0” as there are concepts which clas-
sify the instance as “1”. Therefore, averaged over all possible target concepts, two predictions about
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the class of an instance which is not included in the sample are equally bad. This (together with
the remaining No-Free-Lunch Theorems) implies that any kind of generalization relies heavily on
meta-physical assumptions about the physical reality: It is assumed that some patterns of behavior of
“natural” concepts on unobserved samples are less likely than others – which corresponds to a partial
alignment between an assumed and the actual prior P (f). As an immediate corollary of Theorem 4,
the true errors of hypotheses which are consistent with the sample are equally good or bad, averaged
over all target concepts. Corollary 3 rewrites the first claim of the No-Free-Lunch Theorems for model
selection algorithms and the generalization error.

Definition 4.1.1 (Least consistent hypothesis) Let hH1; : : : ;Hki be a stratification and let S be a
sample. Then h is a least consistent hypothesis if h is consistent with S (i.e., ES(h) = 0), Hi is the
first model in which h occurs and no Hj , j < i, contains a consistent hypothesis.

Corollary 3 Let H1; : : : ;Hk and H
0
1; : : : ;H

0
k0 be stratifications. Let hL and h

0
L be least consis-

tent hypotheses with respect to the orderings hH1; : : : ;Hki and hH0
1; : : : ;H

0
k0i, respectively, and letS

Hi =
S
H
0
i. Uniformly averaged over all target concepts f 2 F , the generalization error rates of

hL and hL0 are equal: 1
jF j
P

f EDX ;f (hL) =
1
jF j
P

f EDX ;f (h
0
L).

Proof. Consistent hypotheses are equally accurate on in-sample instances. The first claim of Theorem 4 ex-
plains that any two hypotheses are equally accurate, averaged over all target concepts.

If we choose k0 to equal one (the potential hypothesis language is stuck into one single model),
Corollary 3 claims that conducting no model selection (but, instead, learning within the whole avail-
able hypothesis language) is just as good as any Occam algorithm. While it appears to be a good idea
to return a hypothesis which is consistent with the sample and originates from a “restricted subset”
(i.e., early in the stratification) of the hypothesis space (because the error estimate is better for small
sets of hypotheses), this intuition is misleading – because “restricted” is a completely relative term.
Whichever hypotheses we chose to inhabit the models with small indexes – it does not make any dif-
ference if no information about the prior P (f) is given. Note also that, in this situation, the description
length is not well defined as, without prior, we can chose an arbitrary encoding scheme. This Corol-
lary has a major impact on consistent learning algorithms, such as the Support Vector Machine: The
Support Vector Machine uses a stratification which is defined in terms of the between a hyper-plane
and positive and negative examples. The VC-dimension in the structural risk minimization framework
corresponds to the model index in this Chapter. From all consistent hyper-planes in the inflated feature
space, the SVM returns the one which maximizes the margin between positive and negative instances.
Corollary 3, however, claims that all consistent hypotheses are just equally good, on average. This
implies that the following propositions are equivalent: (a) The SVM is a better-than-average learner,
and (b) some concepts (which can be characterized in terms of a hyper-plane in a space of polynomi-
als which has a wide margin between the distinct centers of positive and negative instances) are more
frequent in nature than others.

Now, I will study the general case of learners which are not restricted to hypothesis that are
consistent with the sample, such as learners which employ cross-validation based pruning-techniques.
Theorem 9 claims that, when no prior on target concepts is known, it is better to just minimize the
error within the whole hypothesis space.

Theorem 9 (Hoffmann & Scheffer, 1998) Let L1 return an arbitrary hypothesis hL1 from H with
least empirical error ES(hL1). Let L2 be an arbitrary learner (e.g., a cross validation based learner)
which returns a hypothesis hL2 with ES(hL2) � ES(hL1). Uniformly averaged over all target func-
tions f , Eff;Sg(ED(hL1)jm;L1) � Eff;Sg(ED(hL2)jm;L2).



62 CHAPTER 4. ASSUMPTIONS THAT JUSTIFY MODEL SELECTION

Proof. As the off-sample errors of hL1 and hL2 are, on average, equal (follows from Theorem 4), the gener-
alization error of hL1 is at most equal to the true error of hL2 as the on-sample error of hL1 is minimal. The
second statement of Theorem 9 follows from Corollary 3.

4.2 Occam Algorithms

Corollary 3 claims that, when no Bayesian prior is known, we can return any hypothesis that is con-
sistent with the sample. On the other hand, if the prior is known, we can use Bayes rule to find the
Bayes hypothesis which is guaranteed to have the least generalization error. If, however, there is only
partial knowledge on the prior available (this situation is studied as robust Bayesian learning; Berger,
1993), I can prove that Occam algorithms will do much better than PAC learners which return arbi-
trary consistent hypotheses. In fact, it follows from the No-Free-Lunch Theorems that only when at
least some knowledge on the prior is given, any learner can perform better than an algorithm which
returns a random consistent hypothesis. In order to prove this, I need to tweak the definition of PAC
learning to include distributions over target concepts. The learner is now required to produce, with
high probability, a “good guess” of f when f is drawn with respect to a distribution P (f). I do, how-
ever, not require the learner to find a good hypothesis with high probability for any f . The learner is
given some prior information: In addition to the concept class F (which every PAC-learner is given)
the learner is provided with a class of distributions, PF . This class may contain only one element (in
this case, we have a Bayesian scenario with known prior) or potentially infinitely many. The learner
is then required to perform well with respect to any DX and any P (f) 2 PF .

Definition 4.2.1 Let F be a class of target functions and PF a class of distributions over F . A DPAC
learner L accepts values " and � and a sample S. The learner DPAC-learns (F;PF ) with sample size
m iff, for any distribution DX and any P (f) 2 PF , PfS;fg(EDX ;f (L(S)) > "jm;DX ) � � when f

is drawn according to P (f) and S according to DX and f . L DPAC-learns (F;PF ) polynomially if
the sample size m and the runtime are bounded polynomially in n (the size parameter of F ),1" , and
1
� .

What is the relationship between PAC and DPAC learning?

Definition 4.2.2 (Valiant, 1984; Haussler, 1988) Let F be a class of target functions. A PAC learner
L accepts values " and � and a sample S of size m. L learns F with sample size m iff, for any f 2 F

and any DX , PfSg(EDX ;f (L(S)) > "jm;DX ; f) � � when S is drawn according to DX and f . L
PAC-learns F polynomially if the runtime of L and the sample size m can be bounded polynomially
in n (the size parameter of F ), 1

"
, and 1

�
.

Theorem 10 (Hoffmann & Scheffer, 1998) Let L be a PAC learner for a class of target functions
F . Then L is a DPAC-Learner for any class of distributions PF over functions in F .

Proof. Any distribution P (f) 2 PF will produce functions from F . A PAC-learner for F is guaran-
teed to learn any function in F with high probability up to an error of ".

Throughout this Section, I assume that F � H . This implies that there is at least one h 2 H

which is consistent with the sample S. All the positive results apply when the class of target functions
can be stratified into chunks Fi such that the chance of a target function originating from a chunk with
small index is higher than the chance of it lying in a chunk with high index. The actual prior of the
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concepts in these chunks is not constrained (and need not be known to the learner). All results refer to
a learner that produces a least consistent hypothesis with respect to the stratification (i.e., a hypothesis
that is consistent with the sample and comes from the model with the smallest index that contains a
consistent hypothesis).

Theorem 11 (Hoffmann & Scheffer, 1998) If the stratification H1; : : : ;Hu is such that 8P (f) 2
PF , Pffg(f 2 Hi) � 1

2i
and jHij � k, a learner which produces a least consistent hypothesis

will DPAC-learn (F;PF ) (PfS;fg(EDX ;f (hL) > "jm;DX) � �) if the sample size is at least m �
1
" log

2k
� .

Proof. First, I shall prove that in the situation given in Theorem 11,

P (EDX ;f (hL) > "jm;DX) � 2k(1 � ")m

where hL is a least consistent hypothesis of H with respect to the stratification and m is the sample
size. The chance that there is a hypothesis that is consistent with the sample in the first model H1 is
obviously at most 1; the chance that hL is from H2 is at most 1

2
(because with probability at least 1

2

the target concept is from H1 which implies that there is a hypothesis in H1 which is consistent with
the sample). Generally, the chance that Hi (and no earlier model) contains a consistent hypothesis is
at most 1

2i�1
.

P (EDX ;f (hL) > "jm;DX ) �
uX
i=1

1

2i�1
jHij(1 � ")m (4.1)

� 2maxfjHijg(1 � ")m = 2k(1 � ")m (4.2)

This proves that P (EDX ;f(hL) > "jm;DX) � 2k(1 � ")m. In order to find a sample size bound I
have to choose an m such that P (EDX ;f(h

�) > "jm;DX) in Equation 4:2 becomes less than �. The
bound given in Theorem 11 suffices since

2k(1� ")(
1
"
log 2k

� ) � �:

In Theorem 11, the error (and hence the required sample size) is bounded by the size of each
model; the number of models (and hence the actual size of the hypothesis space) can be infinite (and
even have an infinite VC dimension) and is irrelevant to the error.

Is the decrease in the required sample size due to the stratification or simply due to the fact that
the learner is allowed to fail on � of all target functions (whereas the PAC learner has to work reliably
on all target functions? Let us consider the following naive learner: We are allowed to incur a high
error with a chance of �, so one could argue that we could ignore �

2
of the functions and learn the

remaining functions with confidence 1 � �
2

. Since we know that Pffg(f 2 Hi) � 1
2i

we can restrict
ourself to learning only the first log2(

2
� ) + 1 models. This means that the learner picks an arbitrary

hypothesis that is consistent with the sample from a set of k� (log2(
2
�
+1)) hypotheses. If the learner

is constrained to the first M models, we obtain an error bound of 1
2M

+ (k �M)(1 � ")m – i.e., the
learner incurs an error of more than " with chance at most 1

2M
due to ignoring all functions outside of

these models and with chance (k �M)(1� ")m due to choosing a suboptimal hypothesis (according
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to standard PAC theory) which is consistent with the sample. In order to incur an error of at most "
with probability �

2
we need a sample size of

m � 1

�
log

2k(log2(
2
� ) + 1)

�

Note that the bound of Theorem 11 is lower since the size of the hypothesis space does not depend
on �. By choosing an arbitrarily small � we can make the implied upper bound on the sample size
(Ehrenfeucht et al., 1989) exceed the lower bound of Theorem 11. This shows that at least a significant
part of the “saving” in the required sample size is due to the partial alignment between the stratification
and the prior. While Theorem 11 assures us good learning when the models are about equally small, I
will now focus on a setting in which the models are growing – i.e., the ith model is of size 2i – but in
which there are only finitely many different models. This resembles a typical model selection situation
in which increasing the description length of the hypotheses by adding another attribute doubles the
cardinality of the hypothesis language but there are only finitely many attributes.

Theorem 12 (Hoffmann & Scheffer, 1998) If the stratification H1; : : : ;HM is such that 8Pffg 2
PF Pffg(Hi) � 1

2i
and jHij � k2i, a learner which produces a least consistent hypothesis will

DPAC-learn (F;PF ) P (EDX ;f (h
�) > "jm;DX) � � if m � 1

" log
Mk
� .

Proof. I shall first prove that P (ED(h�) > "jm;DX) � (M + 1)k(1 � ")m. Analogously to the
proof of Theorem 11, I argue that the chance of Hi but no Hj , j < i, containing a hypothesis that is
consistent with the sample is at most 1

2i�1
. Hence,

P (EDX ;f (h
�) > "jm;DX) �

MX
i=1

1

2i�1
k2i�1(1� ")m (4.3)

=
MX
i=1

k(1� ")m (4.4)

= Mk(1� ")m (4.5)

A sample size of m � 1
"
logMk� suffices since

Mk(1� ")(
1
"
log MK

� ) � �:

Finally, I study a setting in which the models grow exponentially and there are infinitely many
models. This is the case with, for instance, pattern languages (Angluin, 1980a). The idea here is that
the learner only cares about the first log2(

2
�
) + 1 models. When the target concept does not fall into

one of these models (the chance of this happening is �
2

) the learner returns an arbitrary hypothesis.
This incurs a certain error which, together with all other potential sources of errors, must not exceed
" with probability 1� �.

Theorem 13 (Hoffmann & Scheffer, 1998) If the stratification H1; : : : is such that 8Pffg 2 PF
Pffg(Hi) � 1

2i�1
and jHij � k2i, a learner which produces a least consistent hypothesis if there is a

hypothesis that is consistent with the sample in the first log2(
2
� ) models (and an arbitrary hypothesis

otherwise) will DPAC-learn (F; dc) if m � 1
"
log

2(log2( 2� )+2)k
�

.
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Proof. Intuitively, we learn the concept class of size (log2(
2
� ) + 2)k with confidence �

2
and cause an

error of another �
2

by ignoring all concepts outside this restricted class (which occur with probability
�
2
). Formally, I have to show that the chance of exceeding an error of " resolves to at most�

2
when we

assign m as specified in Theorem 13 and set M to log2(
�
2
), and that ignoring functions from models

above M causes a large error with probability at most �
2
.

P (EDX ;c(h
�) > "jm;DX) (4.6)

� 1

2M
+

�
log2

�
2

�

�
+ 2

�
k(1 � ")

�
1
"
log

2(log2ml( 2� )+2)k
�

�

� �

2
+
�

2
(4.7)

This completes the proof.

4.3 Cross Validation

The theorems of Section 4.1 claim that when the prior on target function is not in alignment with the
stratification, doing anything else than error minimization within the whole hypothesis language is
harmful, and Occam algorithms are just as good as any other algorithm. The theorems of Section 4.2
show that when there is a partial alignment between the stratification and the partially known prior,
Occam algorithms perform considerably better than error minimization algorithms without such a
bias. So far, I have not studied in which cases it can be beneficial to accept a higher empirical error
if this can be traded off for a smaller model index. In this Section, I will quantify the expected error
of one-fold cross validation based model selection (also referred to as training and test, or hold-out
testing) for ERM learners and thus identify cases in which cross validation is beneficial. In the pre-
vious Section, I showed that an alignment between the prior P (f) and the preference for a particular
hypothesis guarantees good generalization. However, in the general cross validation setting, the target
function cannot be guaranteed to be a member of any model (i.e., it may lie outside H =

S
Hi).

It may therefore occur that even a good hypothesis (i.e., one with a low generalization error) has a
posterior probability of being the sought target function of zero (because it is inconsistent with the
data, and therefore PfSg(Sjf) = 0). Central to the analysis in this Section is the prior distribution of
error values in model Hi, Pfhg(ED(h)jHi;DXY ).

First, the sample S is split into training set S0 and hold-out set S00. I assume that, while consid-
ering model Hi, the learner perceives jHij different empirical error values ES0(h), and, among the
hypotheses with least empirical errors, H�i (S

0), the learner draws one uniformly (written h
�
i ). Anal-

ogously to Chapter 3, models are assumed to be finite and the learner is assumed to minimize the
empirical error. After determining the hypotheses h�1 through h�k with least empirical error on training
Sample S0, the learner determines their hold-out errors ES00(h�i ). The model H� which incurred the
least hold-out error is selected and, within H�, the empirical error is minimized by the learner using
the whole sample; thus, hL is determined.

Let some arbitrary distribution DXY = DY jXDX , a training sample size m
0, hold-

out sample size m
00 and a stratification hH1; : : : ;Hki of models Hi be fixed. DXY and

Hi together define the distribution Pfhg(ED(h)jHi;DXY ) of true error values of hypothe-
ses in Hi. DXY also induces a distribution on samples S

0 and S
00, drawn according to

DXY . Pfhg(ED(h)jHi;DXY ) and the distribution of samples lead to a distribution of em-



66 CHAPTER 4. ASSUMPTIONS THAT JUSTIFY MODEL SELECTION

pirical errors PfS0;hg(ES0(h)jm0
;Hi;DXY ) of hypotheses in the model. For a given true er-

ror eD , the corresponding empirical error is binomially distributed; hence, the distribution of
empirical errors can be determined by integrating over the true errors: PfS0;hg(ES0(h) =
eS jm0

;Hi;DXY ) =
R
eD

B[eD;m
0](eS)dPfhg(ED(h) = eDjHi; DXY ). The learner draws a hy-

pothesis h�i uniformly from the set of ERM hypotheses H
�
i (S

0). This together defines a distribu-
tion on error rates of the ERM hypothesis which I write as PfS0;h�

i
g(ED(h

�
i )jHi; DXY ;m

0
; h

�
i 2

H
�
i (S

0)). The expectation of this error is EfS0;h�
i
g(ED(h

�
i )jHi;DXY ;m

0
; h

�
i 2 H

�
i (S

0)) =R
e e dPfS0;h�

i
g(ED(h

�
i ) = ejDXY ;Hi;m

0
h
�
i 2 H

�
i (S

0)). At this point, the learner has deter-
mined k hypotheses h

�
i (one for each model), the true errors of which are distributed accord-

ing to PfS0;h�
1
g(ED(h

�
1)jHi; DXY ;m

0
; h

�
1 2 H

�
1 (S

0)) through PfS0;h�
k
g(ED(h

�
k)jHi;DXY ;m

0
; h

�
k 2

H
�
k(S

0)). These k distributions are distinct. The distribution of hold-out examples S
00 of size

m
00 induces a distribution of hold-out errors PfS0;S00;h�

i
g(ES00(h

�
i ) = eH jHi;DXY ;m

0
;m

00
; h

�
i 2

H
�
i (S

0)) =
R
eD

B[eD;m
00](eH)dPfS0;h�

i
g(ED(h

�
i ) = eDjHi;DXY ;m

0
; h

�
i 2 H

�
i (S

0)). The learner
now selects the model H� the hypothesis h

�� of which incurred the least hold-out error (breaking
ties in favor of small indexes). It returns the hypothesis hL which minimizes the error on the
whole sample S

0 and S
00 within the selected model H�. This, finally, induces a distribution of

true error values of the hypothesis hL. PfS0;S00;h�
1
;:::;h�

k
;hLg(ED(hL)jH1; : : : ;Hk;DXY ;m

0
;m

00
; h

�
i 2

H
�
i (S

0); hL 2 h
��(S0 [ S

00)). The expected error of the finally returned hypothesis hL is
EfS0;S00;h�1;:::;h�k;hLg(ED(hL)jH1; : : : ;Hk;DXY ;m

0
;m

00
; h

�
i 2 H

�
i (S

0); hL 2 H
�� (S0 [ S

00)). I shall
now quantify the abovementioned distributions. Theorem 6 (Chapter 3) quantifies the true error of the
ERM hypotheses h�i and Theorem 14 quantifies the error of the returned hypothesis hL.

Theorem 14 (Hoffmann & Scheffer, 1998) The distribution of true error rates of the hypothesis hL
which minimizes the sample error on S = S

0 [ S
00 (of size m

0 and m
00) within model H� which

is selected by hold-out testing (using S
0 as training and S

00 as hold-out set) is a function of the
distributions of errors Pfhg(ED(h)jHi;DXY ) of the models Hi 2 hH1; : : : ;Hki, m0, m00, and the
jHij (under Assumptions 1, 2, and 3).

PfS0;S00;h�
1
;:::;h�

k
;hLg(ED(hL) = eDjH1; : : : ;Hk;DXY ;m

0
;m

00
; h

�
i 2 H

�
i (S

0); hL 2 H
�
� (S))

=
kX
i=1

PfS;hig(ED(hi) = eDjHi;DXY ;m; hi 2 H
�
i (S))PfS0 ;S00;h�1;:::;h�kg(Hi = H�) (4.8)

where m0 and m
00 are fixed but S0 and S

00 are random variables, drawn according to (DXY )
m0

and
(DXY )

m00

, and the PfS;hig(ED(hi) = eDjHi;DXY ;m; hi 2 H
�
i (S)) are distinct distributions for all

i, as defined by Theorem 6. Furthermore,

PfS0;S00;h�1;h�kg(H� = Hi)

=
X
eH

PfS0;S00;h�
i
g(ES00(h

�
i ) = eH jH1; : : : ;Hk;DXY ;m

0
;m

00
; h

�
i 2 H

�
i (S

0)) (4.9)

�
Y
j<i

PfS0;S00;h�
j
g(ES00(h

�
j ) > eH jHi;DXY ;m

0
;m

00
; h

�
j 2 H

�
j (S

0))

�
Y
j>i

PfS0;S00;h�
j
g(ES00(h

�
j ) � eH jHi;DXY ;m

0
;m

00
; h

�
j 2 H

�
j (S

0))

where PfS0;S00;h�
i
g(ES00(h

�
i ) = eH jHi;DXY ;m

0
;m

00
; h

�
i 2 H

�
i (S

0)) =
R
eD

B[eD;m
00](eH )

dPfS0;h�
i
g(ED(h

�
i ) = eDjHi;DXY ;m

0
; h

�
i 2 H

�
i (S

0)) and the PfS0;h�
i
g(ED(h

�
i ) =

eDjHi;DXY ;m
0
; h

�
i 2 H

�
i (S

0)) are given by Theorem 6.



4.4. CASE STUDY: BOOLEAN FUNCTIONS 67

Proof. Equation 4.8 follows from the training and test learning procedure and sais that the true error
of hL is equal to the error of hi – which minimizes the error on the sample S0 [ S

00 within model Hi

– times the chance that model Hi is selected. Equation 4.9 quantifies the chance of model Hi being
selected. This happens when the hold-out error of Hi (learned on sample S0 within model Hi) is eH
and the hold-out error of all models j, j < i, is strictly greater, and no hold-out error of any model
j, j > i, is greater than eH . Equation 4.9 incorporates the assumption that the hold-out errors of the
ERM hypotheses h�i are independent (i.e., they are depending on their corresponding true error but
not on each other.

What is the practical benefit of Theorem 14? For a given learning problem, this Theorem provides
answers to the following questions.

1. Given a potential hypothesis language H , how should this language be stratified into k models
hH1; : : : ; i such that the expected error rate is minimized? We can obtain an answer by “trying
out” different stratifications. For each stratification, we have to estimate the distribution of
error values for each model from the sample, and input these distributions into Theorem 14. A
decision can be based on the estimates of the generalization error rate of hL returned by the
Theorem.

2. Given a stratification and a learning problem, how should we split the sample into training and
hold-out set? A decision can be based on the generalization error rates estimated by Theorem
14 for each split.

3. Given a stratification hH1; : : : ;Hki, should we conduct hold-out testing based model selection
or should we rather simply minimize the empirical error rate in the union of models H1 [ : : : [
Hk? By comparing the outcomes of Theorems 7 and 14, we can estimate which option will
lead to a lower error rate.

4.4 Case study: Boolean Functions

Theorem 14 quantifies the error rate of a learner which uses training and test based model selection.
Unfortunately, the solution is relatively complicated and does not provide simple answers to questions
regarding the construction of a good learner. However, when the error priors are known, Theorem 14
predicts the resulting error rate. For a particular learning problem, the error priors can be estimated
from data. For certain problems, such as the problem of learning a randomly drawn Boolean function,
the error priors can be determined analytically. In this Section, I will study the problem of learn-
ing randomly drawn Boolean functions. Here, the model selection task is to “guess” the number of
relevant attributes. The problem is very similar to the situation studied in Section 3.5. Each target
distribution DXY induces a set of error priors Pfhg(ED(h)jHi;DXY ) – one for each model Hi. Let
P ((p1; : : : ; pk)jP (DXY )) be the chance of observing error priors p1 through pk when P (DXY ) is, in
our case, the uniform distribution over all Boolean functions with n attributes.

EfS0;S00;h�
1
;:::;h�

k
;hL;DXY g(ED(hL)jH1; : : : ; Hk;m

0;m00; h�i 2 H�
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Figure 4.1: Expected error of cross validation based model selection and learning without model
selection depending on the training/hold-out split.

For uniformly drawn Boolean functions, P (pjP (DXY )) as well asEfS;hL;DXY g (ED(hL)jHi;m;

hL 2 H
�
i (S)) has been determined in Appendix G. By plugging this into Theorem 14, I can now
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error over all possible targets which are distributed according to P (DXY ). Figure 4.1 shows expected
error values for various sample sizes, and training/test splits. As we can clearly see, the optimal
training/test split ratio is not fixed but varies with the number of attributes and the sample size (in
accordance with the results of Kearns, 1996). We can also see that the error rates of model selection
based learning are uniformly greater than the error rates obtained by a learner that uses the whole
potentially available hypothesis space. As there are no irrelevant attributes in this setting, this is not
surprising. The best that cross validation can do is to select all n attributes – which the learner that
does not conduct model selection does in the first place. However, this picture changes when some
of the attributes are irrelevant (see Figure 4.2). The error rates of model selection based learning
are almost independent of the number of attributes while the error of the learner that does not conduct
model selection increases dramatically as the number of irrelevant attributes grows. This demonstrates
how well model selection based learners can do in the presence of many irrelevant attributes. Similar
observations have been made, for instance, by Ng (1998). Ng gives an error bound for cross validation
based model selection (when Hi contains all hypotheses over i attributes) in which the number of
irrelevant attributes occurs logarithmically.

4.5 Discussion and Related Results

Model selection techniques such as pruning/regularization (Moody, 1992), cross validation, or struc-
tural risk minimization (Vapnik, 1982) are generally considered to lead to generalization errors. This
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Figure 4.2: Expected error when some of the attributes are irrelevant (m = 100).

general belief is based on many empirically supported claims – (e.g., Kohavi & John, 1995; Cun
et al., 1989; Mingers, 1989). However, empirical studies by Schaffer (1993a) and a theoretical analy-
sis of Wolpert (1993) contradict this general belief and render model selection as a particular learning
bias which will fail for as many problems as it will perform well for. In this Chapter, I picked up
on these qualitative results, specified the learning problems for which model selection is an appro-
priate bias, and quantified the gain which model selection yields in these situations. I characterized
distributional assumptions on the target problems which make Occam algorithms and cross validation
an appropriate bias and quantified the performance gains, and losses, of Occam algorithms and cross
validation. It turns out that Occam algorithms perform much better than PAC learners when some
knowledge on the prior distribution on target functions is given and is encoded in the stratification.
In the more general cross validation setting, the target function is not assumed to be in any model
(i.e., even the best hypothesis may not be consistent with the sample). The Bayesian prior P (f) and
posterior PfSg(Sjf) are not helpful in this situation as even a hypothesis which is inconsistent with
the sample and is therefore certainly not the sought target function can have a small true error and
may be a good solution to the learning problem. However, the prior Pfhg(ED(h)jHi;DXY ) on error
values in the model is extremely elaborate in this situation. Based on this prior, Theorem 14 quantifies
the expected error of one-fold cross validation based model selection and thus compares it to the error
of learning without model selection. If the distribution of error values is equal in all models, a learner
which does simple error minimization is superior to a learner which conducts cross validation based
model selection. If, however, the “ratio of good hypotheses” is higher in few models (as is the case
when many of the attributes are irrelevant), model selection performs well. Note that, by contrast,
the known positive results on model selection (Kearns, 1996; Kearns et al., 1997; Ng, 1998) do not
prove that model selection does better than simple error minimization. The expected error analysis
quantifies the expected error of the hypothesis returned by cross validation as a function of the error
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distributions in the model. Theorem 14 also makes a claim on the optimal training/test split for a
particular problem specified in terms of the distributions Pfhg(ED(h)jHi;DXY ). The problem of
finding an optimal training/test split has been studied intensely. Unfortunately, the answer for the
optimal training/test split is not simple. But this is not surprising as previous results showed that the
resulting error rate depends on all factors of the learning problem (Kearns, 1996; Müller et al., 1995).

Besides contributing to a better understanding of model selection and its benefits, these results
have two practical implications. First, Theorem 14 can be used to decide, in a learning scenario
described in terms of the distributions Pfhg(ED(h)jHi;DXY ) for each Hi, whether one-fold cross
validation or learning without model selection is preferable. Second, when a decision has been made
for model selection, the theorem can be used to determine the optimal training/test split.

4.6 Summary

� Occam algorithms require an ordering on hypotheses. Among the hypotheses which are con-
sistent with a given sample, they prefer the one which is least with respect to this order. This
enables Occam algorithms to give better bounds on the largest difference between true and em-
pirical error of any hypothesis in the model. However, this order can be chosen arbitrarily and,
when the order is not aligned with the prior distribution on target functions P (f), all hypothe-
ses that are consistent with the sample incur an equal error on average which renders Occam
algorithms useless. Several similar theorems can be proven which provide further evidence of
the uselessness of model selection in the absence of additional distributional assumptions.

� When partial knowledge on the distribution on target functions is available (i.e., when P (f) is
known to be a member of a particular class), Occam algorithms which give preference to more
likely hypotheses perform far better than learners which do not conduct model selection.

� I conducted an analysis of the expected error of the hypothesis which is returned by a learner
which conducts one-fold cross validation (also called training and test or hold-out testing).
The solution provides the optimal training/test split for a given problem and allows to deter-
mine whether, for a given learning problem, one is better off not conducting model selection.
The input to the analysis is the set of distributions Pfhg(ED(h)jHi;DXY ;m) of error rates
of hypotheses in models Hi 2 hH1; : : : ;Hki which can be estimated from the sample or can
sometimes be determined analytically.



Chapter 5

Assessment of Learning Algorithms

Empirical assessment of the performance of learning techniques with respect to sets of benchmark
problems is a topic that has experienced much attention in the ML community. “Performance” most
often translates to expected generalization accuracy. Estimating the generalization error with respect
to a particular set of benchmark problems (such as the collection of StatLog data sets or the UCI
repository of machine learning data sets; Murphy & Aha, 1998) implies that the assumption is made
that the studied learning algorithms are likely to be applied to these (or similar) problems. Remember
that the No-Free-Lunch Theorems (see Section 1.2) imply that, under uniform distribution over the
target function, two learning algorithms with distinct learning bias perform just equally well. This
means that, when learner A does better than learner B for some problem, there has to be another
problem for which B does better than A. Empirical studies can help to reveal for which learning
problems a particular learning technique is suited.

Learning techniques are usually assessed empirically be means of hold-out testing or n-fold cross
validation (Stone, 1974; Toussaint, 1974). I discussed cross validation in Section 2.4.3. When the
available data set is too small for the error to be estimated reliably, n-fold cross validation is often
used instead of hold-out testing.

Quantifying the performance of the “best of several learners”. Virtually any practical learning
algorithm possesses a number of parameters (e.g., learning rates, number of learning steps, pruning
thresholds, etc.). Selecting values for these parameters is the model selection task, which has to be
considered a part of the training process. Unfortunately, sometimes these parameters are adjusted
such that the error on either the hold-out set, or, in case of n-fold cross validation, the averaged
error on the n hold-out sets, is minimized. Since the error on the test set is used as the quality
criterion for the model selection task, the hold-out set influences the training process. Hence, the
assumption that the hold-out sets are not used for learning, which is essential to the result that n-fold
cross validation is bias-free, is violated. What happens here is very similar to what happens when a
learning algorithm selects the hypothesis (from a set of potential hypotheses H) that minimizes the
empirical error on a sample. The hypotheses which resulted from some parameter settings will be
assessed optimistically while the hypotheses from certain other parameter settings will be assessed
pessimistically. The parameter setting which minimized the hold-out error (or cross-validation error)
is likely to be an optimistically assessed parameter setting. Taking this hold-out (cross validation) error
for an estimate of the learner’s expected generalization error would incur an optimistic bias. In this
Chapter, I will quantify this bias. This quantification is of practical relevance: If the bias turns out to be
negligibly small, then many results which have been obtained with this particular experimental setting
are reliable. Otherwise, a more expensive experimental setting which uses nested cross validation



72 CHAPTER 5. ASSESSMENT OF LEARNING ALGORITHMS

(discussed in Section 5.6) has to be used.
Throughout this Chapter I will assume that the generalization error of a learner with p binary

parameters is estimated while the p parameter are adapted at the same time. Note that all results can
easily adapted to a learner with p0 parameters that can take v values by setting p = log2 v

p0 . Note that,
although a learner may have continuous parameters, only finitely many settings are tried out.

5.1 Chernoff Bounds

In this Section, I use simple Chernoff bounds to bound the true generalization error of the best of
several parameterizations that were assessed on the same hold-out set. This simple result resembles
PAC style bounds on the error of the best of several hypotheses.

Theorem 15 Let learner L possess p binary parameters. Let p� be the parameter setting which leads
to the least error on the hold-out set S00 of size m00. The error of the “best of several learners” Lp�
can be bounded as follows:

P (ES00(Lp�(S)) < ED(Lp�(S))� "jm; p;DXY ) � 2p � e
�2m00"2

: (5.1)

Consequently, with probability at least 1� �, the hold-out error can be guaranteed to be “off” by no
more than " – P (ES00(Lp�(S)) < ED(Lp�(S)) � "jm; p;DXY ) � � – if the hold-out sample is of
size at least
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Proof. Equation 5.1 follows from the Chernoff inequality. Regarding Equation 5.2,
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This completes the proof.

It suffices if the hold-out sample grows linearly in the number of parameters. However, the re-
quired hold-out samples are still relatively large for the estimates to be reliable. Consider the following
examples.
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Figure 5.1: If model selection and accuracy estimation are mixed, the parameters for a communication
channel, delivering information about the hold-out set to the learning algorithm.

Such large hold-out samples are usually only available for data mining or text categorization
problems. These very discouraging results can be criticized for two reasons. First, the results do
not cover the advantage of n-fold cross validation over hold-out testing. This difference may be
significant; in particular, when the sample is small. Second, Theorem 15 is a worst case result. For a
particular given problem, the bias may be considerably smaller. In order to overcome both problems,
I will pursue an information theoretic approach in which I will treat the dependencies between the
results of distinct cross validation folds explicitly and in which I will refer to properties of the given
data set, rather than to the worst case.

5.2 Information-Theoretic Approach

When parameter adaptation is performed on the hold-out sample that is used for error estimation,
then the parameters form a communication channel from the hold-out set to the learning algorithm
(see Figure 5.1) and the resulting bias depends on the capacity of this channel, i.e., the number of
parameter settings, and the number of different parameter settings which are tested.

In the following sections, I will consider different experimental settings: Section 5.3 quantifies
the bias of one-shot training and test, Section 5.4 quantifies the bias of n-fold cross validation when
different parameter settings are used for each of the n trials, and Section 5.5 is dedicated to cross val-
idation with equal parameter settings for each of the n trials. In Section 5.6, I discuss an experimental
setting which yields almost unbiased ranking experiments. The results of this Chapter are based on
(Scheffer & Herbrich, 1997).

In this section, I assume the following setting. A learning algorithm L accepts a set of parameters
and there are 2p distinct parameter settings (i.e., the algorithm possesses logb(2p) parameters with b

possible values each). This set of parameters can be viewed as a communication channel from the
parameter optimizer to the learner with a capacity of p bits.

As Figure 5.1 illustrates, when the learner is presented a set of parameters and a training set, it
generates a hypothesis h which is used to determine the accuracy of h on the hold-out set of size m.
The parameter optimizer is told this accuracy and responds with a new set of parameters, which are
again used for training. This cycle is repeated t times, and the best observed accuracy on the hold-
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out set is then submitted for publication. Based on the accuracy measured on the hold-out set, the
parameter optimizer can send p bits of information on the hold-out set to the learning algorithm. If
H is the entropy of the hold-out set (do not confuse entropy H with the hypothesis space which was
abbreviated H as well in the preceding chapters) then the capacity of the parameter channel allows to
transmit information about the class labels of c = p

H hold-out examples (because H bits are required
to encode the class label of one example); e.g., if the hold-out set contains 4 uniformly-distributed
class labels, the entropy will be 2, allowing a parameter channel of width 4 (16 distinct settings)
to transmit the class labels of 4=2 = 2 hold-out objects. Intuitively, a parameter channel of p bits
accounts for a bias which is as strong as if someone had told the learner the class labels of the firstpH
hold-out examples.

However, this knowledge will not actually improve the result by another pH hits because without
this knowledge the learner would not necessarily have failed on all those examples. I will quantify the
actual gain in hits on the hold-out examples separately for hold-out testing and n-fold cross validation.
First, I will describe a theoretic algorithm that actually does achieve such a difference between true
and hold-out error rate.

5.2.1 Parameter Adjustment

The parameter optimizer guesses parameters and obtains the accuracy on the hold-out set in return.
I assume that the learning algorithm passes these parameters on to the hypothesis, which uses the
information to classify the first p

H hold-out objects that it encounters in some particular way, i.e., the
parameters encode class labels for the first p

H hold-out objects. Then the parameter optimizer can use
the following strategy:

1. for all objects i, 1 through p
H

(a) for all labels y, 1 through jY j
– tell the learner to classify the ith example as class y and determine the empirical error

on the hold-out set.

(b) keep the label of i to the class value y� that resulted in the lowest hold-out error.

This algorithm tries the assignment of every possible class label to each of p
H

hold-out examples
(and leaves the class labels of the remaining examples fixed according to the underlying hypothesis),
resulting in a complexity of p

H � jY j learning trials (where Y is the set of class labels), and finds
the parameter setting that encodes correct class labels for p

H samples. We can view this algorithm
as greedy search for optimal learning parameters, but since the correct class label of example i is
independent of the assigned class label of any other sample, the greedy algorithm will find an optimal
assignment after p

H � jY j trials.1

5.3 One-Shot Training and Test

Now, after being told the class labels of the first p
H hold-out objects, how much can this knowledge

improve the accuracy on the hold-out set? Assume that there is an initial classifier h, learned by C4.5

1Note that this is not a lower bound on the number of trials, as there is an algorithm that needs only p

H
( 3
2
�

1
2

p

H
+n)�n

trials in the worst case, but while the algorithm given above essentially performs a gradient search in parameter space, the
faster algorithm behaves unlike one would expect a parameter optimizer to behave, so the first result should be somewhat
closer to the behavior of a “real” learning algorithm.
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(Quinlan, 1993) say, which classifies ph objects of the hold-out set (of size m
00) correctly. Instead

of classifying the first p
H

instances according to h, we reflect the correct class labels which were
determined by the parameter adaptation procedure. We classify the remaining m

00 � p
H

instances
using h. Hence the number of hits is ph � x + p

H
, where x is the number of hits that h would have

obtained on the first p
H hold-out instances (which are now classified correctly). What is the probability

P ( pH �X � z) that this procedure increases the number of hits by z? Drawing c = p
H examples from

a total of m00, we know that ph of the m00 are “hits” (classified correctly by h). Hence, the number of
hits within the c drawn examples follows a hyper-geometric distribution (note that m00 is finite). The
c drawn examples can be replaced with c “hits” (because the parameter optimizer discloses their class
labels via the parameter channel).

P (c�X � z) =
cX

k=z
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This leads to the bias and computational effort (explained in Section 5.2.1), required to achieve this
bias for one-shot training and test. t is the expected number of learning experiments that need to be
conducted in order to obtain ph+ z hits on the m00 hold-out examples with probability P (c�X � z),
when ph is the true hit rate of h, provided a parameter channel with p bits of capacity is used.

P (c�X � z) =

p

HX
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� (5.10)

t = jY j � p
H

(5.11)

5.3.1 Affected Benchmark Problems

In this Section, as well as in Sections 5.4.1 and 5.5.1, I will quantify the bias on concrete data sets. I
assume that one uses a real learning algorithm, C4.5 in most cases, which is “tuned” with additional
parameters in order to pretend to outperform the learning algorithm one rank higher than the initial
learner in the StatLog performance chart (Michie et al., 1994). I will answer two questions: How many
parameters are needed to succeed with probability > 90% after performing sufficiently many trials
and how many trials are needed, on average, to obtain this result, provided the parameter optimizer
performs gradient search in the parameter space, which may be an inexact result since it depends on
the actual optimizer as well as how strong the parameters influence the result.

Land-sat satellite images: This data set contains 4435 training and 2000 hold-out instances. The
default error rate is .231. Based on (Michie et al., 1994), C4.5 is ranked 10th (error .150, i.e., 1700
hits on the hold-out set). To be ranked 9th it would have to outperform Bay-tree (error .147) for which
C4.5 needs only z = 6 extra hits on the hold-out set. When the class labels of c = 60 instances are
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known, then P (c�X � z) > 90%. Hence we need t = 6 � 60 = 360 trials with different parameter
settings and since H = 2:5 we need a parameter channel of 150 bits. Although an automatic parameter
adjustment system may very well run 360 trials, a parameter channel of 150 bits is fairly uncommon
(e.g., achieved by 45 parameters with 10 possible values each). Using c = 16 examples (parameter
channel of 40 bits) and 96 experiments, we still have a 2% chance of being over-ranked.

DNA: This data set, also described in (Michie et al., 1994), possesses 2000 training and 1186 hold-out
instances. C4.5 is ranked 10th (1096 hits). To be ranked 9th it would have to outperform INDCart,
requiring z = 4 extra hits. We need to be told c = p

H
= 85 class labels to achieve this with 90%:

P (c �X � z) > :9. Since we have 3 classes, we need t = 3 � 85 = 255 trials. Since H = 1:4908,
we need p = 126 bit of parameters, e.g., 37 parameters with 10 possible values each.

For both data sets only a very eager scientist may obtain a modest over-ranking of his algorithm
by using an incremental algorithm and an automatic parameter-adjustment procedure.

5.4 n-Fold Cross Validation with Parameter Adjustment

In this section I study the bias caused by parameter adaptation when n-fold cross validation is con-
ducted with parameter values chosen differently for the n runs of the learning algorithm. As an
example, the number of learning steps is crucial to the performance of back propagation (e.g., Rum-
melhart & Hinton, 1986). Often, the optimal number of learning steps is determined by observing
the error on the hold-out set and selecting the point at which the error rate starts increasing again.
The minimum errors that occurred in the n learning curves are then averaged and published, i.e., the
number of learning steps may not be fixed to one value within the n folds. Also, this setting is often
used when the splits of the training set are explicitly stated (e.g., mesh or vehicle silhouettes).

To achieve an average of z extra hits per fold this way, n � z has to equal at least npH �PiXi,
where Xi is the number of hits lost by not using h on c = p

H examples of fold i.
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Unfortunately, there is no explicit formula for the distribution of a sum of hyper-geometric random
numbers. However, the probability of a sum of random numbers can be split, considering every
possible combination that yields this sum: P (X + Y = z) =

P
j P (X = j)P (Y = z � j). This

equation can be used to decompose the last summand, resulting in the following recursive equation:
P (
Pm

i=1Xi = x) =
Px

j=0 P (
Pm�1

i=1 Xi = x� j)P (Xm = j). Instantiated to the situation this yields
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Straightforward evaluation of this recursive equation for an instantiation is very expensive, since
for each evaluation of P (

Pn
i=1Xi = k) for every k0 < k P (

Pn�1
i=1 Xi = k

0) has to be calculated. By
iteratively filling an array that is indexed n and k with P (

Pn
i=1Xi = k) the formula can be evaluated

quickly.

5.4.1 Affected Benchmark Problems

FEM mesh design: (Dolsak & Muggleton, 1992), a relational problem popular in inductive logic
programming (e.g., Lavrac & Džeroski, 1994). It is explicitly split into five learning problems. There
are 277 examples and 13 classes and the entropy is H = 2:87. FOIL (Quinlan, 1990) achieves an
accuracy of 21% (59 hits). To achieve 26% accuracy with a probability of 99%, FOIL needs c = p

H
=

5 class labels, while to achieve 31% with a probability of 93% FOIL would need c = 8 class labels. To
achieve 26%, we need to conduct 65 trials and a parameter channel of 14 bits, while to achieve 31%
we require 104 trials and a parameter channel of 23 bits. The parameter adaptation bias is so strong,
that accuracy results can easily be pushed from 21% to 31% on this data set. Although this does not
prove that the actual accuracy of any learning algorithm actually is 10% lower than claimed, it clearly
shows, that no accuracy claim is validly empirically supported by such an experiment. Results that
were achieved with parameter optimization and different parameter settings in the folds are strongly
biased.

Diabetes: There are 768 examples with 2 classes, H = :9331. C4.5 achieves 561 hits (rank 13), we
need to outperform Quadisc (.5 additional hits per fold). We only need c = 4 class labels to succeed
with probability 92%, i.e., we need a parameter channel of 3.7 bits and have to conduct 8 trials.

In this experimental setting (parameter optimization in each of the n folds) almost arbitrarily
good results are easily achievable. Ranking results achieved with this setting are distorted with high
probability.

5.5 n-Fold Cross Validation with Fixed Parameters

While in the last section the parameter optimizer was able to communicate the class labels of the first
p
H

hold-out objects to the learner, the best the parameter optimizer can do here is to communicate the
most frequently observed class label of hold-out object i in all folds for the first p

H
objects. If, for

example, 3 folds are conducted and in two of them the first presented hold-out object is of class A, the
parameter optimizer may tell the learner that the first presented hold-out object is of class A, which
results in 2=3 of an extra hit, averaged over the three folds.

Now what is the probability that the number of extra hits Y gained this way takes value y? I study
this problem for two class labels. In this case, for each position in the hold-out set j, 1 � j � p

H , I
choose the class that the majority of the n examples (drawn from position j of the n folds) belongs to.
There will be maxfy; n� yg representatives of this class. Assuming that c = p

H is significantly less
than m and the probability of choosing y examples is binomially distributed B[n; p0](y), where p0 is
the probability of the default class, i.e., the most frequent class in the data set2. Hence:

P (Y = y) =

8><
>:

0 y <
n
2

B[n; p0](y) +B[n; 1� p0](y) y >
n
2

B[n; p0](y) y = n
2

(5.17)

2Without this assumption the probability would be hyper-geometrically distributed, but the number of parameters needed
to determine the class labels of a number of examples that gets close to the size of the hold-out set would be outrageous.
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The total number of nz additional hits on n folds is the difference between the number of extra hits
as explained in the last paragraph and the number of lost hits by not using the hypothesis h calculated
in the last section:

P

0
@ cX
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Yj �
nX
i=1

Xi � nz
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ncX
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Note that in this situation the probability of being ranked too high depends on the hit rate of a
default classifier and the hit rate of the initial hypothesis: if the default hit rate is high and the initial
classifier performs poorly, the probability of being over-ranked is high.

5.5.1 Affected Benchmark Problems

Diabetes: In this setting, we need c = p
H

= 7 parameters to achieve .5 extra hits per fold with
a probability of 2%. Increasing the number of parameters further decreases the probability, since
the expected number of examples with equal class labels at some position in n folds, divided by the
number of folds, is small compared to the hit rate of the initial hypothesis. In this experimental setting,
diabetes is “safe”.

Heart disease: In this data set (Michie et al., 1994) there are 270 examples, 2 classes, H = :991.
Since C4.5 performs poorly for this problem we only need c = 2 extra hits, a parameter channel of 2
bits and 4 trials are sufficient to succeed with > 90%. If we use k-NN as true learning algorithm (16
hits per fold), we need 6 extra hits to be ranked one rank better. With c = 9 examples, we succeed
with probability of 90%. This is due to the fact that the default probability is not much worse than our
initial hypothesis. A parameter channel of 8 bits is required and 18 trials have to be conducted. There
is a strong bias on this data set.
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Figure 5.2: n2-fold cross validation yields an almost unbiased estimate of the resulting generalization
error because each outer hold-out set is used for only one single hypothesis.

5.6 Almost Unbiased Assessment

In this Section I want to review how almost unbiased ranking experiments can be conducted. The key
is not to confuse parameter adaptation and error estimation. One possible way to obtain an estimate
with only a small bias is n-fold triple cross validation (Norman, 1965). In this setting, we have to
split the available data into n chunks and repeat the following procedure n times. For all parameter
settings which we wish to try out: use n� 2 chunks to generate a hypothesis and use one chunk (the
first hold-out chunk) to obtain an almost unbiased estimate of the generalization error. Then select the
hypothesis obtained with the parameter setting that imposed the least error rate on the first hold-out
chunk and assess the hypothesis on the second hold-out chunk, the last available chunk. Repeat this
procedure n times and average the error rates incurred on the second hold-out chunks. This procedure
estimates the generalization error of the hypothesis which is learned when we use hold-out testing
to adapt the parameters. It runs in O(t � n) when we try out t parameter settings. The estimate is
only subject to a small pessimistic bias because only (n � 2)=n of the training data has been used
for learning and 1

n of the data has been used for hold-out testing whereas, when we learn and adapt
the parameters on the whole data set, we could use slightly larger sets because the second hold-out
set is no longer needed. However, when we adapt the parameters using n-fold cross validation we
can expect to find better parameter settings than by hold-out testing. The following algorithm which
I shall refer to as n2-fold cross validation (which has, for instance, been applied by Kohavi & John,
1997) obtains an almost unbiased estimate of the expected generalization rate of learner Lp� for the
given problem and sample size where p� is the parameter setting which minimizes the n-fold cross
validation error rate over all parameter settings.

Algorithm n
2-fold cross validation.

1. Split the sample S into n chunks.

2. Repeat n times,

(a) Let Si = S minus the ith chunk.

(b) Split Si into n chunks and repeat n times

i. Use n� 1 chunks of Si.
ii. For all possible parameter settings which have to be tried out, invoke the learner, and

evaluate the resulting hypothesis on the remaining chunk of Si which has not been
used for training. Thus, determine the parameter setting which leads to the least error
on the hold-out chunk.
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(c) Use the parameter setting determined by the parameter optimizer and invoke the learner,
providing it with Si.

(d) Determine the ith hold-out error of the resulting hypothesis on S n Si.

3. Return the average of the n measured hold-out error rates.

As Figure 5.2 illustrates, parameter adaptation needs to be performed without considering the
hold-out set. In order to get a reliable estimate of the optimal parameter settings, an outer loop of
n-fold cross validation evaluates only one hypothesis in each fold. In an inner cross validation loop,
the parameters are optimized.

5.7 Discussion

The results presented in this Chapter clearly show that adapting the parameters such that the accuracy
on the hold-out set is optimized causes an optimistic bias that depends on the number of parameters
and the number of trials. I quantified the bias that will be observed when sufficiently many trials are
conducted and the learner makes optimal use of the available parameters, and I calculated the expected
number of trials needed, assuming the parameter optimizer follows a gradient descent-like search.

It shows that it is hard to be over-ranked in the one-shot training and test situation if the hold-out
set is large. In the n-fold cross validation situation, the probability of being over-ranked is high if the
difference between default hit rate and true accuracy is low. If in the n-fold cross validation setting
different parameter values are used (i.e., the parameters are optimized locally) a highly over-ranked
result can be achieved, so experiments conducted this way do not yield valid results.

These considerations do not prove that any learning algorithm actually does perform much worse
than claimed, but they do show that such claims are not validly supported by experiments in the
naive setting. The results are constructive in some sense: using the provided equations it can easily be
proven that in some situations – depending on the properties of the data set – the naive but inexpensive
experimental setting yields perfectly valid results.

Based on these results, the validation of performance evaluations for new learning algorithms
seems to be difficult: Empirical results that are based on the naive setting are likely to be distorted
and cannot be compared to those obtained with unbiased experiments. Heuristic modifications that
add new parameters may easily be over-estimated. Even if the modification does not improve the true
accuracy of the hypothesis, a new parameter may improve the ranking results.

5.8 Summary

� The averaged hold-out error (or cross validation error) obtained by a particular learner on a
sample is a slightly pessimistically biased estimate on the expected error of that learner for the
given problem. It is subject to a small pessimistic bias because not the whole sample is used for
training when cross validation is conducted. This bias can be minimized by choosing n = m

(leave-one-out cross validation).

� However, when a learner is started with several distinct parameter setting, the least observed
cross validation error is an optimistically biased estimate of the corresponding learner’s perfor-
mance (just like the training error is an optimistically biased estimate of the returned hypothesis’
true error).
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� The parameters can be seen as a communication channel between the hold-out set and the
learning process. An information theoretic approach can then be used to quantify the optimistic
bias of the cross validation error.

� Whether this bias has to be considered depends on several factors, which can be determined
from the data set. In some cases, the bias can be neglected – e.g., in one-shot training and
test situations when the hold-out sample is large. In the n-fold cross validation setting, the
bias becomes considerable when the default error rate is not much higher than the error of the
returned hypothesis. When each cross validation fold is allowed to have distinct parameter
settings, the bias is extremely strong. Many earlier empirical results appear questionable given
these results.

� In order to obtain an unbiased estimate of the generalization error of a learner (the parameters
of which have been optimized on the sample) one has to conduct two nested loops of cross
validation. The parameters have to be optimized in the inner loop and the error rate of the
resulting hypothesis are estimated in the outer loop. In some cases, however, this expensive
procedure is not necessary. The results presented here show whether a single loop of cross
validation can yield a reliable result.



Chapter 6

Complexity Issues

In model selection based learning, the learner is constrained to a fixed model, determined by the
model selection strategy. The complexity of the process of finding a minimizing element in a set of
hypotheses has been studied intensely (see, e.g., , Nilsson, 1998). Minimizing the empirical error in
some hypothesis language Hi usually requires an effort of O(jHij). There are only very few hypoth-
esis languages for which jHij is polynomial in the size parameter n (e.g., the number of attributes).
This is only the case for shallow decision trees (Dobkin et al., 1997; Auer et al., 1995), or pattern
languages with bounded length (Mitchell et al., 1998). Finding a hypothesis that is consistent with
the sample in some language Hi (if one exists) is often less difficult. Although the general worst case
complexity is O(jHij) as well, there are algorithms which run in O(poly(log jHij)) for many lan-
guages, such as conjunctive concepts (Valiant, 1985), k-DNF (Valiant, 1984), k-DL (Valiant, 1985),
or linear threshold units (Blumer et al., 1989).

At first blush, these results seem to show that learning in a large model is easier than learning in a
small model which would vindicate the use of model selection based learning algorithms from a com-
plexity point of view. In this Chapter, I will discuss that this is often not the case. I will demonstrate
this referring to multilayer perceptrons with a fixed number of hidden units (as an example of model
selection based learning) and to boosting. Boosting is a technique of growing hypotheses dynamically
by compounding elementary hypotheses by majority voting. I will show that it is primarily the restric-
tion of the hypothesis space to a small model that makes learning difficult. I will support this claim
by showing a worst-case time bound of O(m2 logm) for the AdaBoost algorithm while solving the
same problem with a static hypothesis space is NP-complete. The results of this Chapter are based on
(Scheffer & Stephan, 1998).

6.1 Boosting

Suppose that, for some learning problem, we have several strategies available that can be guaranteed
to perform just slightly better than randomly guessing. In this situation, majority voting algorithms
provide a scheme to combine these weak learners into a powerful system which can achieve arbitrarily
high accuracies. The intuition of majority voting is that, for the whole system to give an incorrect
answer to some query, at least half of the weak hypotheses have to be wrong for this query. However,
as the weak learners perform at least slightly better than random guessing, the chance of at least
half of them being wrong at the same time vanishes as the number of weak hypotheses grows. Ada-
Boost (Freund & Schapire, 1996, 1997) is an implementation of this idea into an algorithm which
subsequently trains weak hypotheses such that the combined hypothesis can be guaranteed to produce
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an arbitrarily low (empirical) error. At stage t, AdaBoost gives high weight to examples which are
misclassified by the majority of hypotheses 1 through t � 1 and trains hypothesis t on the weighted
sample. Thus, the overall error incurred by the majority of all hypotheses (error with respect to the
sample) drops exponentially fast.

In many empirical studies (many of which are based on the “UCI” repository of machine learning
data sets) boosting algorithms (as well as the related Bagging algorithms; Breiman, 1996) have proven
to “boost” the generalization accuracy of decision tree learners (Quinlan, 1996a), first order learners
(Quinlan, 1996b), and neural networks (Drucker et al., 1993). The empirical success of boosting algo-
rithms can be considered to be due to the particular “geometrical” bias which is induced by majority
voting: By adding further weak hypotheses (even after the error on the training sample is zero) boost-
ing maximizes the margin between positive and negative instances in a space which is being “inflated”
as new weak hypotheses are added (Schapire et al., 1997). This resembles the learning bias of Support
Vector Machines (Vapnik, 1982; Cortes & Vapnik, 1995) or the DIPOL algorithm (Schulmeister &
Wysotzki, 1994) or other “wide margin” classifiers. Support Vector Machines stratify the hypothesis
space such that the hypotheses are “centered” around the hypothesis which maximizes the margin (in
a polynomially inflated instance space) between positive and negative instances. From all hypotheses
which are consistent with the sample, the SVM returns the one which is (approximately) closest to
this center, as measured in terms of the VC-dimension.

Unfortunately, the analysis of AdaBoost depends on how much better than random guessing the
weak hypotheses are. Consequently, the known error bounds are in terms of the difference between the
accuracy of the weak hypotheses and the accuracy of random guessing. In this paper, I present a worst-
case analysis for AdaBoost when the weak hypotheses are perceptrons or decision trees. The main
result is that the “boosted perceptrons” can be learned in O(m2 logm) (where m is the sample size)
whereas the “boosted decision tree” cannot be guaranteed to converge unless the tree depth is at least
logm. Considering the result that training a neural network of two hidden and one output perceptron
is NP-complete (Blum & Rivest, 1992) this clearly points out an unnoticed benefit of boosting: By
growing the hypothesis space dynamically, AdaBoost maps the search space into a larger space in
which a greedy algorithm exists that can decide the existence of a hypothesis which is consistent with
the sample (and, consequently, find that hypothesis) in polynomial time.

Analogous results have been obtained, for instance, for the learnability of Boolean functions:
While k-term CNF is not polynomially PAC learnable because no polynomial algorithm can find a
hypothesis that is consistent with the sample , k-DNF is learnable although k-term CNF � k-DNF
(Pitt & Valiant, 1988). The reason is that a greedy algorithm exists which decides the existence of a
consistent hypothesis in k-DNF.

6.2 Further Definitions

Learning problem. In this Chapter, I assume that there is an unknown target function f : X !
f0; 1g. The learner perceives a sample S consisting of m points xi 2 XS and the corresponding f(xi)
and returns a hypothesis h : X ! f0; 1g. The learner may also have access to a distribution � on
sample points. This distribution must not be confused with the underlying (but unknown) distribution
DX . � is a somewhat artificial distribution the objective of which is to put higher weight on those
examples which are misclassified by previous elementary hypotheses. By putting a higher weight on
these instances, we can maximize the chance that they will be classified correctly by newly learned
elementary hypotheses and, eventually, by the majority of elementary hypotheses. The (empirical)
error of h with respect to � is then defined as Ef;XS ;�(h) =

1
m

P
xi2XS

`(h(xi); f(xi))�(xi), where
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` is the zero-one loss function.

AdaBoost. The algorithm AdaBoost (Freund & Schapire, 1997) receives a sample S, a distribution �

on points, and an integer T which indicates the desired number of iterations. The algorithm initializes
the weight vector w1

i to �(xi) and, at step t, proceeds as follows:

1. �t(xi) =
wt
i

wt1+w
t
2+:::+w

t
m

.

2. The weak learner is invoked with distribution �
t and returns hypothesis ht.

3. �t = �t
1��t where �t is the error of ht with respect to �t.

4. The new weight vector is set to wt+1
i = w

t
i�

1�jht(xi)�f(xi)j
t . The final hypothesis consists of a

final weight vector � and the weak hypotheses h1; : : : ; hT .

The compound hypothesis is then the weighted majority (weighted according to �) of the individual
hypothesis, more formally:

h(xi) =

(
1; if

PT
t=1

�
log 1

�t

�
ht(xi) � 1

2

PT
t=1 log

1
�t

0; otherwise

Perceptrons. A perceptron is a discriminating hyperplane. A perceptron is specified by vectors a and
b which define the function

hfa;bg(x) =

(
1; if ax+ b � 0
0; otherwise

Accordingly, a boosted perceptron consists of a collection of T perceptrons together with a weight
vector (the weights may be equal for all perceptrons). The outcome of a boosted perceptron for a point
xi is 1, if the weighted majority of the T perceptrons outputs 1, and 0 otherwise.

Shallow decision trees. The decision tree of fixed depth k which minimizes the error on some sample
S can be found in polynomial time (decision trees of depth 2 can be learned in O(n2m logm) Auer
et al., 1995; Dobkin et al., 1996). This is a surprisingly positive finding as the error minimizing hy-
potheses for half-spaces (Höffgen et al., 1995) or conjunctive concepts (Kearns et al., 1992) cannot be
found in polynomial time. This makes shallow decision trees particularly interesting weak hypotheses
for boosting algorithms. In some empirical studies, even decision trees of depth 1 (“decision stumps”)
are studied (Freund & Schapire, 1996; Breiman, 1996).

6.3 A Worst-Case Bound for AdaBoost with Perceptrons

In this Section, I will study the worst-case behavior of boosted perceptrons. First, I have to discuss
the worst-case behavior of the weak learner, i.e., of a perceptron. When the examples are linearly
separable, a simple, well-known greedy algorithm can construct the separating perceptron (Rosenblatt,
1958). Unfortunately, in the general case, finding a half-space which minimizes the error rate on a
sample is NP-complete (Höffgen et al., 1995)1. However, this does not necessarily mean that learning
a boosted perceptron is not possible in polynomial time. It suffices when a weak hypothesis with an

1Not that, while finding a hyper-plane that minimizes the zero-one loss is NP-complete, finding a plane that maximizes
the squared distance between positive and negative examples is much easier (Unger & Wysotzki, 1981) which gives rise to
more efficient piecewise linear classifiers (Schulmeister & Wysotzki, 1994)
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error of slightly less than 1
2

can be constructed in polynomial time. As we will see, this can easily be
done in an efficient manner. I prove this by demonstrating such an algorithm. The algorithm picks
an arbitrary example point x and constructs a hypothesis which classifies at least half of the sample
without x correctly and classifies x correctly. Hence, the number of correctly classified points exceeds
the number of mis-classified sample points by at least 1. In Lemma 1, I show that a hyper-plane which
touches x but no other point can be constructed efficiently from the sample. This is always possible
because the finitely many examples cannot “fill” the space.

Lemma 1 Let x be a point in IR
n and let F be a finite set of points not containing x. Then one can

efficiently find a hyper-plane p 2 IR
n�1 containing x but no point from F .

Proof of Lemma 1. Without loss of generality, we can assume that all coordinates of x are 0 —
otherwise this could be obtained easily by a coordinate transformation. Now p is constructed as a
linear mapping f on the subspace generated by the coordinates x2; : : : ; xn to the first one such that
the plane contains the points (f(x2; : : : ; xn); x2; : : : ; xn). Since F does not contain x, the definition
f(0; : : : ; 0) = 0 guarantees that the plane is disjoint to all points in F of the form (a; 0; : : : ; 0). Now
the linear function f is defined inductively on the values zk which are 0 for the all coordinates except
the k-th one where zk takes 1. The goal of the construction is to define f(zk) such that p is forced
not to contain any points from Fk in the k-th step where Fk contains those points in F for which the
k-th coordinate is the last non-zero one, that is, Fk is in the linear hull of fz1; z2; : : : ; zkg but not in
the linear hull of fz1; z2; : : : zk�1g. For each number in yi 2 Fk there is a unique fi such that y 2 p

iff f(zk) = fi. One can compute these finite numbers and define that f(zk) = 1 + jf1j+ : : : + jfm0 j
for the m0 numbers fj . It follows that none of the elements of Fk is on p and, by induction, that p is
disjoint from F .

I now use Lemma 1 to show that we can efficiently construct a perceptron which achieves a hit
rate of at least m+1

2m
. Essentially, we pick a point x with maximal weight �(x) from the sample

and construct a hyper-plane which touches x but no other example. By switching the sign of the
perceptron, we can always achieve an error rate of at most1

2
on the sample without x. After fixing the

sign, we can “shift” the plane slightly “forward” or “backward”, such that x falls on the “right” side
of the plane but no other sample point changes the side. Hence we obtain at least one extra hit.

Theorem 16 (Scheffer & Stephan, 1998) Let XS = fx1; x2; : : : ; xmg be a set of data points with
class labels f(xi) and let � be a distribution on XS . Then one can efficiently find a perceptron h with

Errf;XS;�(h) �
m� 1

2m
:

Proof of Theorem 16. Let xp 2 XS be a point with maximally large �(xp) (if there are several
points which maximize �, xp may be either of them) and let X�p

S = XS n fxpg. We know that
�(xp) is at least 1

m . Lemma 1 implies that we can select a hyper-plane ax+ b = 0 efficiently which
touches xp but none of XS n fxpg. Let, without loss of generality, jaj = 1 (otherwise, we can
normalize a and b). Then we can define the following two perceptrons: h1 = ax+ b � 0, and
h2 = �ax� b � 0 – i.e., h1 and h2 are complementary for all sample points other than xp. Let us
look at the error of h1 and h2 on X�p

S (with respect to �). It follows from the complementarity of h1
and h2 that �(xp)+

P
xi2X�p

S

�(xi)(jf(xi)�h1(xi)j+jf(xi)�h2(xi)j) = 1. xp was chosen such that

�(xi) � 1
m , hence

P
xi2X�p

S

�(xi)jf(xi)�h1(xi)j+
P

xi2X�p

S

�(xi)jf(xi)�h2(xi)j � 1� 1
m . This
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implies minfP
xi2X�p

S

�(xi)jf(xi) � h1(xi)j;
P

xi2X�p

S

�(xi)jf(xi) � h2(xi)jg � 1�1=m
2

= m�1
2m

.

Hence, at least one hypothesis from fh1; h2g incurs an error of no more than m�1
2m on all points except

xp. Let this hypothesis be a�x+ b
� � 0. By now, I disregarded a possible misclassification of xp. Let

the smallest distance the plane and any data point (except xp) be 2� (Lemma 1 implies that the distance
is non-zero). Then we can define two hypotheses: h1� = a

�
x
� + b+� � 0 and h2� = a

�
x
� + b�� � 0.

jaj = 1 and the definition of � imply that these hypotheses behave equally for all points except for xp
but are complementary for xp. Hence, one of them, h��, will classify xp correctly. Therefore, h�� has a
total error (with respect to �) of no more than m�1

2m
.

Unfortunately, the above bound cannot be improved.

Observation 1 No learning algorithm exists which can be guaranteed to find a boosted perceptron
with error less than m�1

2m
on m data points xS with respect to distribution �. In particular, the

worst case complexity of a boosting learner cannot be below m� 1 invocations of the weak learning
algorithm.

Proof of Observation 1. Assume �(xi) = 1
m

for all xi. Assume further that m is odd and that XS =
f1; : : : ;mg. We define f such that f(x) = 1 if x is even, 0 otherwise. The following hypotheses are
possible: (a) x � �1 (effectively no split). There are dm

2
e odd numbers and bm

2
c = dm

2
e � 1 even

numbers; hence, the error is m�1
2m . (b) x � c, where c is even and 0 � c � m� 1. There are equally

many odd and even numbers between 1 and c (for even c) but there are dm�c
2
e odd numbers and only

bm�c
2
c even numbers between c + 1 and m. Hence, this hypothesis incurs errorm+1

2m . (c) x � c for
odd c (1 � c � m). There are dc

2
e even and bc

2
c odd numbers between 1 and c and equally many odd

and even numbers between c+ 1 and m. This hypothesis incurs an error ofm�1
2m . These are all affine

hypotheses in the given space.
The second statement is due to the fact that a majority vote on some perceptrons can identify XS

with error 0 only if there is, for each i < m, a perceptron which outputs different values for xi and
xi+1. Therefore, the final hypothesis needs at least m� 1 perceptrons and the boosting algorithm has
to invoke any given weak learner at least m� 1 times.

Now that it has become clear how much better an accuracy than randomly guessing the weak learners
can be guaranteed to achieve, I can give worst-case bounds on the error of the combined hypothesis
with respect to the sample.

Theorem 17 (Scheffer & Stephan, 1998) AdaBoost, using perceptrons as weak hypotheses, re-
quires at most d2m2 log 1

"
e iterations in order to produce a hypothesis with error at most ".

Proof of Theorem 17. In Theorem 16, I showed that each perceptron incurs an error of at most
m�1
2m

. Hence, I can bound the difference between the weak learner and “randomly guessing” 
 � 1
2m

.
Equation 23 of (Freund & Schapire, 1997) bounds the number of invocations of the weak learner
by AdaBoost, required to reach an error of at most " to d 1

2
2
log 1

"e. This yields d2m2 log 1
"e when


 � 1
2m

.

This shows that AdaBoost converges well, reaching any given error bound in polynomially few steps.

Corollary 4 AdaBoost will produce an error (with respect to the sample) of zero after at most
2m2 logm iterations.
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Proof of Corollary 4. Follows from Theorem 17 using " < 1
m .

The bounds given in Theorem 17 and Corollary 4 are based on the assumption that the number of
hits of the weak hypotheses exceeds the number of failures by just one sample point. Hence, these
bounds give the borderline for any weak learner under which boosting still converges.

Corollary 4 sais that AdaBoost will always find a hypothesis which is consistent with the sample
in polynomial time, but the hypothesis may consist of up to m2 logm elementary hypotheses. On the
other hand, two-layer neural networks have a fixed number of hidden units. But, unfortunately, there
is no known algorithm for the training problem of neural networks with sub-exponential time worst
case complexity.

Theorem 18 (Blum and Rivest, 1992) Deciding whether a neural network with n input, two hidden
and one output neuron exists that is consistent with a given sample (or even finding the neural network
with two hidden unit that minimizes the empirical error) is NP-complete.

In fact, training a neural network with a number of hidden units which is bounded polynomially in the
number of input terminals n is NP-complete.

Observation 2 While being more expressive than neural networks with two hidden and one output
units, boosted perceptrons can be learned in polynomial time while neural networks cannot (unless
P = NP ).

Proof. By more expressive, I mean that there is a boosted perceptron which is consistent with an arbi-
trary f on an arbitrarily large set of points XS (this follows from Theorem 17; this boosted hypothesis
will consist of at most m2 logm perceptrons). By contrast, the VC-dimension of a neural network
with a fixed number of units is a fixed number d which means that it cannot be consistent with every
possible function f on a set of at least d+1 points (otherwise its VC-dimension would be d+1). While
Theorem 17 claims that the boosted perceptron can be learned in P, Theorem 18 shows that training a
neural network is NP-complete.

6.4 Boosting Decision Stumps

The empirical error of shallow decision trees can be minimized very efficiently: when the depth is 2,
the T2 algorithm finds the minimizing tree over n variables in O(n2m logm) (Auer et al., 1995) –
i.e., finding an optimal shallow decision tree is much easier than finding an optimal hyper-plane. This
raises the question whether shallow decision trees (“decision stumps”) can be used as weak hypotheses
for boosting algorithms. Unfortunately, shallow decision trees cannot be guaranteed to drop the error
below 1

2
.

Theorem 19 (Scheffer & Stephan, 1998) Given m examples, AdaBoost does not, in general, termi-
nate when the weak hypotheses are decision trees of depth less than logm.

Proof of Theorem 19. Consider a Boolean space with n dimensions. Let �(xi) give equal weight
1
2n

to all points. Let the xi (1 � i � 2n) be all possible data points and let #1(xi) be the number
of 1’s occurring in xi (e.g., #1((0; 0; 1; 0; 1)) equals 2). I then define f as f(xi) = 1 if #1(xi) is
odd, 0 otherwise (intuitively, f resembles an n dimensional chess board). I claim that no decision tree
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of depth less than logm can achieve an error rate of less than 1
2
. Let Xl be the points which reach

an arbitrary leaf. Let the corresponding branch perform a sequence of tests (v1 = a1; : : : ; vk = ak),
where k is at most logm � 1, vk are Boolean variables and ak are 0 or 1. All points which “reach”
this leaf have defined values for k attributes and arbitrary values on the remaining n � k attributes
– hence, there are 2n�k points in any leaf which differ in their value of n � k attributes. Each of
these points corresponds to a binary number with n� k bits. There are equally many binary numbers
with an odd number of 1’s as there are with an even number; hence, at any leaf the number of points
x with f(x) = 1 is equal to the number of points with f(x) = 0. Therefore, no decision tree can
achieve more than exactly m

2
hits. Voting among hypotheses with error 1

2
yields a total error chance

of 1
2

again.

AdaBoost with decision trees can, however, be guaranteed to terminate yielding an arbitrarily small
error when the trees is of depth at least n (the number of attributes). However, such maximally deep
trees do not match the intuition of boosted decision stumps (note that one single tree of depth n already
is a consistent hypothesis). Of course, Theorem 19 refers to the worst case. Boosting with shallow
decision trees may terminate when the problem is less malicious.

Intermediate decision trees are those which branch at most log(m) + 1 times. Such programs
try to combine learnability with the intuitive idea of small concepts. They allow AdaBoost to learn
decision trees although the boosting algorithm needs a slightly super-polynomial but not exponential
number of iterations.

Theorem 20 (Scheffer & Stephan, 1998) Given m examples, AdaBoost learns the hypothesis in
m

2 log(m)+1 iterations from weak hypotheses which are decision trees of depth log(m).

The proof can be found in (Scheffer & Stephan, 1998).
The lower bound of m � 1 iterations for a weak learner based on perceptrons was established by
showing that the full interpolation of the problems needs at least m � 1 perceptrons. In the present
case, this lower bound can not be improved to a super-linear value, thus there is a gap between the
lower and upper bound for the worst case complexity of AdaBoost when learning decision trees with
logarithmic depth or even only logarithmically many branching points.

6.5 Discussion and Related Work

I showed that a boosted perceptron can be learned in O(m2 logm). By contrast, a two-layer neural
network with two hidden and one output neuron cannot be learned by any polynomial algorithm un-
less P = NP . However, for any function there is a boosted perceptron which is consistent with that
function on any finite sample of points – i.e., the expressive power of boosted perceptrons is greater
than the expressive power of a fixed sized neural network. This shows that increasing the expres-
siveness of the hypothesis eases the difficulty of finding a consistent hypothesis because consistent
boosted perceptrons can be found by a greedy algorithm whereas neural networks cannot. There are
two known analogous results in different domains. An element of k-term CNF(n) is a conjunction
of at most k Boolean disjunctions over n Boolean variables. k-DNF(n) contains all disjunctions of
conjunction with at most k literals over n Boolean variables. Every k-term CNF can be turned into
a k-DNF but not vice versa – i.e., k-term CNF(n) � k-DNF(n). The sample complexity required
to PAC-learn both k-term CNF and k-DNF is polynomial in n (for fixed k). However, in order to
decide the existence of a hypothesis that is consistent with the sample in k-DNF one essentially has to
exhaust the whole hypothesis space which is exponential in n. Using k-DNF as hypothesis language
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one can greedily search for a conjunction of up to k literals which covers at least one positive example
and is consistent with the negative examples, then remove the covered positive instances and recur.
This greedy algorithm will find a consistent hypothesis if one exists and runs in time polynomial in
n. The returned DNF will not necessarily contain the least number of conjunctions but note that, in
contrast to k-term CNF, the number of terms (i.e., conjunctions) is not restricted for k-DNF. A similar
result holds for the Support Vector Machine. While it is NP-complete to find the hyper-plane which
minimizes the mis-classification rate (Höffgen et al., 1995) the Support Vector Machine inflates the
space by adding polynomials of the original attributes (the “kernel trick” assures that these added
attributes need not be represented explicitly). In the inflated space, a hyperplane which is consistent
with the sample can be found by a greedy algorithm in polynomial time.

In all three cases, the drawback of inflating the hypothesis space is that a larger sample is required
for good generalization. But in many situations this may be a reasonable trade-off. The sample
required for k-DNF(n) is still polynomial and for many “practical problems” the appropriateness of
the maximally wide margin bias compensates for the more complex hypothesis space.

6.6 Summary

� In the model selection framework that has been studied in the previous chapter, the model selec-
tion algorithm pre-selects a model and invokes the learner which is then required to minimize
the error within the given model. By contrast, in the boosting setting the learner constructs
a hypothesis and may grow the hypothesis language dynamically until a hypothesis which is
consistent with the sample is found.

� Growing the hypothesis dynamically, as is done by the AdaBoost algorithm, is very efficient.
AdaBoost with perceptrons operates in O(m2 logm) while a comparable task with a “static”
hypothesis language (multilayer network with a fixed number of units) is NP-complete.

� The hypotheses learned by AdaBoost are more complex. They consist of up to m
2 logm ele-

mentary hypotheses. This makes proving meaningful bounds on the largest difference between
the true and empirical error of a hypothesis impossible. However, it does not imply that the
boosted hypotheses are worse than the static hypotheses. According to Chapter 3, this depends
only on how adequate the hypothesis language is for the problem, which can be measured in
terms of the distribution Pfhg(ED(h)jHi;DXY ).



Chapter 7

Conclusion

The problem of error minimization revolves around the following problem. A hypothesis h incurs an
unknown error; the error can be estimated using a sample which usually yields an unbiased estimate
of the true error. When there are many hypotheses hj , then the error rate of each of them can be
estimated unbiasedly on the sample. Unbiased means that the expected empirical error of a hypothesis
hj with true error ED(h) is just the true error ED(h). The empirical error is linked to the true
error by the binomial distribution. However, as we want to minimize the error, we now focus on
the hypothesis which minimizes the observed, empirical error. But the expected empirical loss of
the hypothesis hL which minimizes the empirical error is, unfortunately, distinct from its true error
ED(h). Some empirical error rates are optimistic estimates while others are pessimistic estimates of
the corresponding true error rates and, going for the smallest observed loss, one is likely to choose
a hypothesis the true loss of which has been estimated rather optimistically. In order to know how
well a particular learning bias performs for a particular problem we would like to find out just how
optimistically biased the empirical loss of hL is.

One possible answer to this problem is provided by cross-validation. When a small part of the
sample has been held back and is now used to asses only this one single hypothesis, the estimate is
only subject to a small pessimistic bias. PAC and VC theory provide different answers by bounding the
largest difference between the empirical and true loss of any hypothesis by Chernoff bounds. But the
PAC bounds are overly general as they hold for any problem (not just some particular, given problem
which might be less difficult) and bound the error of all hypotheses (not just hL). The expected error
analysis provides a very different answer for finite models. It quantifies the expected error of the
hypothesis hypothesis which minimizes the empirical error for the given fixed sample size (which
is a very natural and widely used target criterion) in terms of the prior distribution of error rates in
the model Pfhg(ED(h)jHi;DXY ). The error prior can be estimated efficiently from a sample by
recording its empirical counterpart Pfhg(ES(h)jHi; S) which leads to an efficient way to estimate the
error rate of the hypothesis which would be the result of an error minimization process, without this
process having to be carried out.

When the hypotheses hj are the output of a parameterized learner Lp which are assessed on the
same hold-out sample, a similar situation arises. The lowest observed hold-out error of several learners
is an optimistic estimate of this learner’s true error and it would be interesting to know just how opti-
mistically biased the hold-out error rate is. When the hypotheses are assessed by means of training and
test, PAC-style results and elementary statistic results on the confidence of estimates can be applied.
But when the hypotheses are evaluated by n-fold cross validation such approaches would require the
additional assumption that estimates obtained in distinct folds are independent. This assumption is not
reasonable because it would imply that it is possible to increase the available information. In Chapter
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5, I presented an information theoretic approach in which I treated the dependencies between distinct
cross validation folds explicitly and quantified the bias. The solution depends on several elementary
properties of the data set which can easily be measured (such as the entropy and the hit rate of the
default classifier) and is therefore not a worst-case result.

7.1 Expected Error Analysis

One of the main contributions of this thesis is an analysis of the expected error of hL, where hL is a
hypothesis which has been drawn at random under uniform distribution from H

�
i (S), the hypotheses

with least empirical error within model Hi. The posterior distribution of error values of hL is reduced
to the prior distribution Pfhg(ED(h)jHi;DXY ) of error values of hypotheses in Hi. The practical
use of this analysis is that the prior can be estimated by recording Pfhg(ED(h)jHi; S), the empirical
errors of randomly drawn hypotheses which gives an efficient means of estimating the error of the
hypothesis which an error minimizing learner that operates on Hi will return. No learning has to be
conducted in order to obtain this estimate (as opposed to cross validation).

Understanding Learning Curves. Learning curves express the relationship between the hypothesis
language and the generalization error. In order to construct learners which incur a low generalization
error, it is important to understand learning curves. PAC/VC theory provides an explanation to the
shape of learning curves which, when taken as a guideline for the construction of learners, would
sometimes leads to sub-optimal learning algorithms. The PAC model of learning curves is coupled to
the largest difference between true and empirical error of any hypothesis which is inevitably increasing
(and makes PAC theory predict greater errors) when the number of hypotheses grows. However, in
experiments learning curves often behave complementary. This has, for instance, been observed in
the context of boosting (e.g., Schapire et al., 1997), but also with decision trees or other hypothesis
languages (Fisher & Schlimmer, 1988; Schaffer, 1993a). A boosted hypothesis is a weighted majority
of several elementary hypotheses. An increase in the number of elementary hypotheses often causes
the learning curve to decrease which contradicts PAC theory. The expected error analysis explains
that this can happen when the error prior Pfhg(ED(h)jHi;DXY ) stays constant while jHij grows.
This happens, for instance, when further relevant attributes are added to Hi. On the other hand, when
irrelevant attributes are added, the variance of the prior decreases which causes the predicted error to
increase. The predicted learning curves match those measured in simulations nicely, although there is
a small (but fairly constant) bias caused by the assumed independence of empirical errors of distinct
hypotheses.

Empirical Results. I conducted experiments on an artificial problem, on many randomly drawn
Boolean functions, and on a large-scale text categorization problem. Unfortunately, the error esti-
mates did not turn out to be unbiased. Two distinct types of bias interfere. The assumed independence
assumption caused a small pessimistic bias. However, the bias did not distort the shape of the learning
curves considerably. More importantly, the location of the optimal model was predicted quite accu-
rately. A second (optimistic) bias was due to the way in which the prior Pfhg(ED(h)jHi; DXY ) was
estimated. For small sample sizes, the true prior and the distribution Pfhg(ES(h)jHi; S) differ consid-
erably. Note that PfS;hg(ES(h)jHi;m) =

R
eD

B[eD;m]dPfhg(ED(h)jHi;DXY ). This means that,
even if Pfhg(ED(h) = 0jHi;DXY ) is zero, the chance of an empirical error of zero is strictly greater
than zero. This in turn means that the ratio of very good hypothesis is over-estimated. But note further
that PfS;hg(ES(h)jHi;m) converges towards Pfhg(ED(h)jHi;DXY ) as m grows – i.e., the estimate
is asymptotically consistent. The empirical comparison of expected error analysis based model selec-
tion with 10-fold cross validation showed that, even for small sample sizes, the error rates obtained by
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the expected error analysis based model selection are about equal to the error rates obtained by means
of cross validation; in some cases even better. The experiments on the text categorization problem
demonstrated that the expected error analysis scales well to large problems. Here, assessing a model
required about two minutes, while it would have required about 80 hours for 500 attributes. An ex-
cerpt of the learning curve which has been estimated by hold-out testing was matched reasonably well
by the predicted learning curve (up to the usual pessimistic bias). The expected error analysis selected
models for the ten most frequent categories which lead to hypotheses with an average hold-out error
that was close to the least hold-out error that was observed for any model.

Limitations. The presented framework is subject to some constraints. Perhaps the most important one
is the assumed finiteness of the Hi. As yet, the analysis cannot be applied to regression problems, or
to classification problems when the hypothesis language consists of, for instance, linear units. Also,
the number of models has to be finite. This, however, is not usually a problem as the number of
attributes is most often finite. When the learning curve is assumed to be “U”-shaped (i.e., convex),
infinite stratifications can be processed. In this case, the search can be stopped when the minimum has
been passed. Another important constraint is that only the expected generalization error is minimized.
So far, no efficient and practical solutions have been found for other loss functions. The assumed in-
dependence of the empirical errors of distinct hypotheses should be thought of as a source of a modest
bias, rather than a constraint on the applicability. The experiments have shown that this assumption
accounts for a bias, but this bias is not very strong and, more importantly, has not been observed to
distort the position of the minimum strongly.

Extensions: Linear cost models and continuous models. So far, the expected zero-one loss has
been the only loss function for which the expected error analysis has been conducted. This raises
the question whether there is a solution for other loss functions, such as linear cost functions, or
the quadratic loss used for regression. Where is the loss function “plugged” into the derivation?
In the proof of Theorem 6, the empirical error (or zero-one loss) under given true error is given as
PfSg(ES(h)jED(h);m) = B[ED(h);m]. When a distinct cost function is to be used, the distribu-
tion of empirical loss values under given true loss has to be plugged in at this point. It turns out
that there is a similar solution for linear cost functions. For some learning problems, there is a cost
matrix c : Y � Y ! IR available. c(y1; y2) specifies the costs which are imposed when a hypothesis
assigns a class label y2 to an instance, when the instance really belongs to class y1. In many medi-
cal diagnosis applications, such a cost function, rather than the zero-one loss, has to be minimized.
Missing a serious disease is considerably worse than making an overly pessimistic diagnosis. Unfor-
tunately, the solution is based on the prior distribution Pfhg(h(x) = y1jf(x) = y2;Hi; f) instead of
Pfhg(ED(h)jDXY ;Hi). This distribution has jY j2 dimensions – i.e., when k hypotheses are enough

to estimate Pfhg(ED(h)jDXY ;Hi), then k
jY jk hypotheses are required in the linear cost case. This

will usually be too expensive. Extending the analysis to cover regression turns out to be difficult,
too. There is no meaningful equivalent to Pfhg(ED(h)jDXY ;Hi) for infinite spaces Hi because this
would require a uniform distribution over an infinite Hi. One approach that might perhaps lead to
a solution could be to consider only the error values of those hypotheses which are considered by a
greedy learner. But such an approach faces the problem that the recorded empirical errors would not
be an unbiased estimate of the true errors which occurred during the search (because the greedy search
is guided by low empirical errors).

When the sample size
is small, Pfhg(ES(h)jHi; S) is not a good estimate of Pfhg(ED(h)jHi; DXY ) (i.e., the estimate is
biased). Nevertheless, the error rate of expected error analysis based model selection was not worse
than the error rate of cross validation based model selection, even for small sample sizes. However,
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for domains in which the sample size is small it might be interesting to obtain a better solution. The
problem of obtaining Pfhg(ED(h)jHi;DXY ) from Pfhg(ES(h)jHi; S) is equivalent to the problem
of estimating a mixing density (e.g., Goutis, 1997). Many solutions to this intensely studied problem
exist: Several non-parametric approaches are based on the deconvolution of a kernel estimator of the
observed data (e.g., Goutis, 1997; Carroll & Hall, 1988; Liu & Taylor, 1989); furthermore, the dis-
crete maximum likelihood estimator has at most jSj mass points (Laird, 1978). Parametric approaches
assume a model for the mixing density (here, P (ED(h))) and adapt the model parameter such that
the error between the observed and the predicted P (ES(h)) is minimized – using, for instance, the
EM algorithm (e.g., Vardi & Lee, 1993; Eggermont & LaRicca, 1995). These results can be applied
to the expected error analysis and promise more accurate results for very small sample sizes (see also
Section 4.2 of Scheffer & Joachims, 1998b).

7.2 Is the Error Rate an Intrinsic Property of the Hypothesis
Language?

PAC and VC results bound the error rate of any hypothesis which has been learned from a hypothesis
language H in terms of the hypothesis language H . Either the size of H or, similarly, the VC dimen-
sion is used to bound the possible error (or the difference between empirical and generalization error)
which a hypothesis that has been learned from this hypothesis language (or model) can impose. Even
the best hypothesis within a small hypothesis language is likely to incur a relatively high error rate
(the error rate of the best hypothesis in the hypothesis language is often referred to as the bias term in
the resulting error). On the other hand, the greatest difference between true and empirical error rate of
any hypothesis in the hypothesis language grows with the model size. Hence, we know less about the
true error of the returned hypothesis. The difference between the error of the best hypothesis in the
hypothesis language and the error rate of the hypothesis which is returned by the learner is sometimes
referred to as the variance term of the error rate. When the size (or VC dimension) of the hypothesis
language grows, we know less about the error rate which is often misinterpreted as meaning that the
variance term of the error increases. This sometimes leads to the false idea that some language biases
are intrinsically better than others or that conducting model selection (and thereby trading the bias term
against the variance term) is intrinsically beneficial. But experiments of Schaffer (1993a, 1993b) and
the theoretical analysis of Wolpert (1992, 1993, 1995) show that all learning biases are per se equally
good (as long as the empirical error is minimized and as far as the expected generalization error is
concerned). A better-than-average result for a set of problems can only be achieved by implementing
additional assumptions on the problems into the learner and thereby narrowing the learner to these
problems. These considerations provide evidence that the generalization error can only meaningfully
be quantified with reference to both the problem and the hypothesis language and provides further
motivation for the error analysis presented in Chapter 3. The crucial property of the problem which
influences the generalization error is the prior distribution of error rates Pfhg(ED(h)jHi; DXY ). With
reference to this distribution it can be explained in which cases curve simply decreases (although the
bound on the variance term increases) and in which cases the learning curve increases again and over-
fitting occurs. The expected error analysis can be taken one step further (see Section 4.3) to explain
in which cases conduction (training and test based) model selection is beneficial. Whether this is
the case depends on the prior distributions of error rates Pfhg(ED(h)jHi;DXY ) of all models Hi in
the stratification hH1; : : : Hki. A typical situation in which the learning bias of conducting model
selection is beneficial is when it is known that some of the attributes are likely to be irrelevant.

These results have implications on how learning algorithms should be applied to practical prob-
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lems. Since it is impossible to construct a learner that is both general and accurate, one has to spe-
cialize the learner as strongly as possible to a given problem in order to obtain a good result for that
problem. Specializing a learner means to encode all available background knowledge into the learning
bias. When nothing is known about a focused problem, the best one can do is to construct a learner
which solves all possible problem equally well. On the other hand, when the target distribution can
be determined exactly without any learning (this is an extreme special case), one can construct a triv-
ial learner which always returns the function that approximates this distribution optimally without
referring to potentially available data. Such a learner would solve this particular problem optimally
but would solve no other learning problem reasonably. Typically, some background knowledge is
available on the focused learning problem which makes it possible to narrow the hypothesis space to
a model which contains a high density of hypotheses which are good for this problem. This can, for
instance, be realized by choosing (or constructing) a small set of attributes which carry all necessary
information relevant to the classification task.

7.3 When does Model Selection Work?

Model selection is often considered to be a technique which generally improves the performance of
learners. In fact, virtually all “practical” learners employ some type of model selection technique,
such as pruning, or weight decay. However, it is not known for exactly which learning problems
model selection is beneficial (as compared to choosing the maximally complex model in the first
place). The results presented in this book indicate that the class of problems which should be solved
by means of cross validation based learning is smaller than has generally been assumed. Generally
speaking, Theorems 11 through 13 say that Occam algorithms are useful only when the stratification is
aligned with the prior distribution of target functions P (f). Theorem 14 quantifies the generalization
error of a hypothesis that has been generated by one-fold cross validation based learning which can
be compared to the error of a hypothesis generated by simple error minimization with a specific
stratification (quantified by Theorems 6, 7). Which of these errors is lower depends on the problem,
i.e., on the error priors Pfhg(ED(h)jHi; DXY ) for all Hi. These can, in principle, be estimated and a
decision can be made based on the estimates and Theorems 6,7, and 14. In fact, the prior arrays can be
estimated for several distinct stratifications and a decision on the optimal stratification. However, the
error priors are only estimated which imposes the risk of mis-estimating the errors and thus making a
wrong decision. The greater the number of considered stratifications is, the more optimistically biased
the lowest estimated error will be – i.e., a meta-level over-fitting occurs.

Complexity of Model Selection. At first blush, learning from a large hypothesis language appears to
be more difficult than learning from a small hypothesis language because error minimization usually
requires O(jHj). Surprisingly, though, in many cases at least finding a hypothesis that is consistent
with the sample is much easier for larger hypothesis languages. The reason is that for some redun-
dant representation greedy algorithms can be found which can construct consistent hypotheses in time
logarithmically in the time which is required to enumerate the hypothesis space. In Chapter 6, I
demonstrated this phenomenon referring to AdaBoost and multilayer networks. Learning from hy-
pothesis languages which are larger than necessary can result in a lower generalization performance.
However, in contrast to the PAC results, the results of Section 3.5 show that this does not have to be
the case. When the learning bias can be chosen very adequately for the problem, then even techniques
like boosting can find hypotheses with very low error efficiently.

When Should the Expected Error Analysis be Used? In Section 7.1 and in Chapter 3, I discussed
when the expected error analysis can be applied, but this still leaves the question open when it should
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be applied. When the prior distribution P (f) is known, under ideal conditions and when the function
class is small, the optimal Bayes hypothesis can be determined. Returning any other hypothesis (like
a hypothesis determined by the expected error analysis) would lead to a sub-optimal result. When
P (f) is known but the Bayes hypothesis cannot be determined, the MAP or MDL hypotheses are
often reasonable; it is not clear whether these hypotheses perform better than other model selection
algorithms with a stratification which is aligned with the prior. But as the expected error analysis
algorithm exploits the prior P (f) only in a very weak form (only by means of the stratification which
can be aligned with the prior) one can expect to most likely be better off using the MAP or MDL
hypothesis. When the prior is not known, a decision has to be made between complexity penalization,
cross validation, and the expected error analysis. Most complexity penalization algorithms require a
parameter that trades empirical error against model complexity. This parameter effectively determines
which model is selected. It usually has to be adjusted by means of hold-out testing. Some complexity
penalization methods (like Schuurmans, 1997) use a certain heuristic instead of a parameter. On one
hand this means that no parameter has to be adjusted but, on the other hand, the heuristic will certainly
do well for some problems while it will just as certainly fail for others.

An advantage of cross validation over the expected error analysis is that the cross validation es-
timates are almost unbiased. By contrast, the expected error analysis yields pessimistically biased
estimates (for sufficiently large samples) – although this does not necessarily cause the expected error
analysis to chose a sub-optimal model more often than cross validation. However, when the sample
size is below 50, the error prior Pfhg(ED(h)jHi;DXY ) cannot be estimated with sufficient accuracy
which renders cross validation preferable. The principle drawback of cross validation is the high com-
putational complexity. The longer a run of the learner takes, the more preferable the expected error
analysis is.

Therefore, the most promising areas of application of the expected error analysis are large-scale
learning tasks, such as text categorization, knowledge discovery in databases, or other large-scale
classification tasks.

7.4 Applicability of Learning Algorithms

Virtually all loss functions (e.g., the zero-one loss studied throughout this book or the quadratic loss
used for regression) assume a distribution on instances relatively to which the loss is defined, and the
observations are required to be independent and identically distributed according to this distribution.
One should be aware of the restriction which this assumption imposes on the application of learning
algorithms. A hypothesis which has a small expected loss can be guaranteed to incur only little
loss, on average, in the future, provided that it is fed with input that is drawn with respect to this
very same distribution. In some applications, this assumption is met at least to some degree. But in
many other domains, these assumptions are not reasonable. Think, for instance, of databases with
customer transactions. Let us assume that each transaction is one observation. First, transactions
which were conducted by the same customer the same day are by no means independent and, second,
the distribution over transactions changes over time as old products vanish, new products appear, and
some products get advertised. Or think of share prices. The distribution of up-ticks and down-ticks
changes dramatically when the national (or global) economic situation changes, rather than being
stationary.

There are also situations in which the assumption of a “natural” distribution appears questionable
in principle. This is, for instance, the case in scientific inquiry where often a hypothesis is sought that
explains a certain area of discourse completely and exactly – not just with respect to a particular distri-
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bution of observations. In these cases, the available data is often generated by conducting experiments;
and these experiments are guided by scientists rather than according to a “natural” distribution.

The identification in the limit framework, on the other hand, requires no such distributional as-
sumptions. It guarantees that the target is identified exactly eventually. The unboundedness of the
learning time constrains the applicability of some algorithms which emerged from this framework,
although there are average case complexity analyses for some algorithms (e.g., Shinohara, 1982;
Erlebach et al., 1997).
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A Proof of Theorem 5

In Equation 7.1, I refer to the definition of H
�
i (S) and replace hL 2 H

�
i (S) by ES(hL) =

infh02Hi
fES(h

0)g. Following the notational conventions, I then relabel h� as h because the dis-
tribution of h will change during the next equations. Note again that h� is an ERM hypothesis –
i.e., it incurs the least empirical error on S but not necessarily the least true error. In Equation 7.2
I factorize the empirical error. In Equation 7.3, I use Bayes’ equation in order to swap the pos-
terior probabilities. As always, S is distributed according to DXY and h is distributed uniformly
over Hi. What happens in Equation 7.4 is the following: P (ajb)P (c)

P (a;b)
= P (a;b);P (c)

P (b)P (a;b)
= P (c)

P (b)
where

a = fES(h) = eg, b = fES(h) = inffES(h
0)gg, c = fED(h) = eDg. The idea of this Equation 7.5

is P (a; bjc) = P (ajc)P (bja; c). Finally, in Equation 7.6, I state that the empirical error is binomially
distributed (with the true error as mean value).

dPfS;hLg(ED(hL) = eDjm;Hi;DXY ; hL 2 h
�
i (S))

= dPfS;hLg
�
ED(hL) = eDj;Hi;DXY ; ES(hL) = inf

h02Hi

fES(h
0)g
�

(7.1)

=
X
e

dPfS;hg
�
ED(h) = eDjm;DXY ; ES(h) = e;ES(h) = inf

h02Hi

fES(h
0)g
�

PfS;hg
�
ES(h) = ejm;Hi;DXY ; ES(h) = inf

h02Hi

fES(h
0)g
�

(7.2)

=
X
e

PfS;hg
�
ES(h) = e;ES(h) = inf

h02Hi

fES(h
0)gjED(h) = eD;Hi;m;DXY

�
(7.3)

PfS;hg (ES(h) = ejES(h) = infh02Hi
fES(h

0)g;m;Hi;DXY ) dPfhg(ED(h) = eDjHi;DXY )

PfS;hg(ES(h) = e;ES(h) = infh02Hi
fES(h0)gjm;Hi;DXY )

=
X
e

PfS;hg
�
ES(h) = e;ES(h) = inf

h02Hi

fES(h
0)gjED(h) = eD;Hi;m;DXY

�

dPfhg(ED(h) = eDjHi;DXY )

PfS;hg(ES(h) = inffES(hj)gjHi;m�DXY )
(7.4)

=
X
e

PfS;hg (ES(h) = ejED(h) = eD;m)
dPfhg(ED(h) = eDjHi; DXY )

PfS;hg(ES(h) = infh02Hi
fES(h0)gjHi;m;DXY )

PfS;hg
�
ES(h) = inf

h02Hi

fES(h
0)gjES(h) = e;ED(h) = eD;m;Hi;DXY

�
(7.5)

=
X
e

B[m; eD](e)
dPfhg(ED(h) = eDjHi;DXY )

PfS;hg(ES(h) = infh02Hi
fES(h0)gjHi;m;DXY )
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PfS;hg
�
ES(h) = inf

h02Hi

fES(h
0)g)jES(h) = e;ED(h) = eD;Hi;m;DXY

�
(7.6)

In order to determine the chance of finding a hypothesis with least empirical error by randomly
picking a hypothesis I factorize the empirical error (Equation 7.7).

PfS;hg(ES(h) = inf
h02Hi

fES(h
0)gjHi;m;DXY )

=
X
e

PfS;hg
�
ES(h) = inf

h02Hi

fES(h
0)gjES(h) = e;Hi;m;DXY

�
(7.7)

PfS;hg(ES(h) = ejHi;m;DXY )

Exploiting the assumption that the observed empirical errors are independent random events (As-
sumptions 1 and 2) in Equation 7.8, I state that the least empirical error of all errors in Hi is e iff jHij
times an error of at least e is observed (we know that one hypothesis, h, does incur e). This equa-
tion reflects my perspective of viewing the process of exhausting an hypothesis space as a stochastic
process in which perceived empirical error values are outcomes of a random experiment. Under the
assumed independence, I write this conjunction of events as the jHij � 1st power of the individual
event (Equation 7.9).

PfS;hg
�
ES(h) = inf

h02Hi

fES(h
0)gjES(h) = eS ; ED(h) = eD;m;Hi;DXY

�

= PfS;hg

0
BB@ ^

j=1:::jHij

hj�U[Hi]

ES(hj) � eS jES(h) = eS ; ED(h) = eD;m;Hi; DXY

1
CCA (7.8)

=
�
PfS;h;h0g(ES(h

0) � eS jm;Hi;DXY )
�(jHij�1)

(7.9)

=

0
@ X
e�=eS

PfS;h0g(ES(h
0) = ejm;Hi;DXY )

1
A

(jHij�1)

(7.10)

In Equations 7.11 and 7.12 I reduce the prior on empirical errors to the prior on true errors.

PfS;h0g(ES(h
0) = ejm;DXY ;Hi) (7.11)

=

Z
e0
D

PfS;h0g(ES(h
0) = ejED(h

0) = e
0
D;m;Hi;DXY )dPfh0g(ED(h

0) = e
0
DjHi;DXY )

=

Z
e0
D

B[m; e
0
D](e)dPfh0g(ED(h

0) = e
0
DjHi;DXY ) (7.12)

Finally, I eliminated all unknown terms up to Pfhg(ED(h) = eDjHi;DXY ).

B Efficient Implementation of Theorem 5

In this Section, I will assemble Corollary 1 and Theorem 5 into a coherent algorithm. I first present
the algorithm itself and subsequently give some documenting remarks. However, in order to gain a
substantial understanding of the algorithms’ details, the reader will need to study the proof of Theorem



C. PROOF OF THEOREM 6 99

5 given in Appendix A. While a straightforward implementation of Corollary 2 and Theorem 6 would
incur a computational effort of O(m4) the algorithm exploits some intimate details of the derivation
and calculates the error estimate in O(m2).

Algorithm expected error analysis based model selection1 . Input: sample S, stratification
hH1; : : : ;Hki. Output: number i such that the estimated expected error of the ERM hypothesis of
Hi is less than the estimated expected error of the ERM hypotheses of the other models.

1. Initialize all variables to zero.

2. For all models i = 1 : : : k

(a) Draw a fixed number c of hypotheses from Hi. Measure their empirical error on S.

(b) For e = 0 : : : m, Let P ES[e] =
1
c
� the number of hypotheses which incurred an empiri-

cal error of e

m
(from the drawn hypotheses).

(c) For e = 0 : : : m, Let P ED[e] = P ES[e] (identify Pfhg(ED(h)jHi;DXY ) and
Pfhg(ES(h)jHi; S)).

(d) For e = 0 : : : m, Let P h� ES[e] = (
Pm

i=e
P ES[e])

jHij�1 (the chance P (ES(h) =
infh02Hi

fES(h
0)gjES(h) = e) that a hypothesis with empirical error e is an ERM hy-

pothesis).

(e) Let P h� =
Pm

e=0 P h� ES[e] � P ES[e] (chance P (ES(h) = infh02Hi
fES(h

0)g) that a
randomly drawn hypothesis is in H�i (S)).

(f) For eD = 0 : : : m

i. Increment Exp ED[i] by eD �
�Pm

e=0B
�
eD

m
;m
�
(e)� P h� ES[e]

�� P ED[eD]
P h�

(g) (Exp ED[i] is now the estimated expected true error of model i).

3. Return the i which minimizes Exp ED[i].

The algorithm runs in O(m2). In step 2c the algorithm identifies the estimates of
Pfhg(ES(h)jHi; S) and Pfhg(ED(h)jHi;DXY ) – see Section 3.3 for a discussion. In step
2d, the algorithm calculates the probability PfS;hg(ES(h) = infh02Hi

fES(h
0)gjES(h) =

eS ; ED(h) = eD;m;DXY ) as described in Equation 7.9 in the Appendix. Note that
PfS;hg(ES(h) = infh02Hi

fES(h
0)gjES(h) = eS ; ED(h) = eD;m;DXY ) = PfS;hg(ES(h) =

infh02Hi
fES(h

0)gjES(h) = eS ;m;DXY ) follows from assumption 1. Step 2e is an implementa-
tion of Equation 7.7. Step 2(f)i jointly implements the sum of Corollary 2 and Equation 7.6 (note that
the Equation of Theorem 6 is just an expansion of Equation 7.6). The implementation of the binomial
distribution uses Pascal’s triangle for small values of m and refers to the normal distribution for large
values.

In the actual implementation, the resolution of the true error values is restricted to an arbitrary
constant which reduces the time complexity from O(m2) to O(k �m) = O(m).

C Proof of Theorem 6

The expected error EfS;hLg(ED(hL)jHi;DXY ;m; hL 2 H
�
i (S)) can be expressed as the sum over

all errors ED(hj) times the chance that hj is selected by the learner.
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EfS;hLg(ED(hL)jHi;DXY ;m; hL 2 H
�
i (S))

=

jHijX
j=1

ED(hj)PfS;hLg(hL = hjjHi;DXY ;m; hL 2 H
�
i (S)) (7.13)

The chance of a hypothesis being selected which is not in H
�
i (S) (the set of ERM hypotheses)

is zero (Equation 7.14). Now I factorize the number of ERM hypotheses n (Equation 7.15). The
chance of hj being chosen as hL when hj is a minimum error hypothesis is 1

n (Equation 7.17). Now
I factorize the empirical error eS of hj .

PfS;hLg(hL = hj jHi;DXY ;m; hL 2 H
�
i (S))

= PfS;hLg(hL = hj jHi;DXY ;m; hL 2 H
�
i (S); hj 2 H

�
i (S))

PfS;hLg(hj 2 H
�
i (S)jHi;DXY ;m) (7.14)

=

jHijX
n=1

PfS;hLg(hL = hj jjH�
i (S)j = n; hj 2 H

�
i (S);Hi;DXY ;m; hL 2 H

�
i (S)) (7.15)

PfSg(hj 2 H
�
i (S); jH�

i (S)j = njHi;DXY ;m) (7.16)

=

jHijX
n=1

1

n
PfSg(hj 2 H

�
i (S); jH�

i (S)j = njHi;DXY ;m) (7.17)

=
X
eS

PfSg(ES(hj) = eS jED(hj);Hi;m)

jHijX
n=1

1

n
PfSg(hj 2 H

�
i (S); jH�

i (S)j = njES(hj) = eS ;Hi; DXY ;m) (7.18)

=
X
eS

B[ED(hj);m](eS)

jHijX
n=1

1

n
PfSg(hj 2 H

�
i (S); jH�

i (S)j = njES(hj) = eS ;Hi; DXY ;m) (7.19)

The empirical error (given the true error) is binomially distributed, so PfSg(ES(hj) =
eS jED(hj);Hi;m) in Equation 7.18 equals B[ED(hj);m](eS) in Equation 7.19. Now I need to
determine the unknown term PfSg(hj 2 H

�
i (S); jH�

i (S)j = njES(hj) = eS ;Hi; DXY ;m). In Equa-
tion 7.20, I factorize all possible H�i (S) of size n. When the hypotheses in H�

i (S) incur an empirical
error of eS , all other hypotheses have to incur a strictly higher error (according to the definition of
H
�
i (S)). In Equation 7.21, I exploit the independence assumption to resolve the quantifiers.

PfSg(hj 2 H�
i (S); jH

�
i (S)j = njES(hj) = eS ; Hi; DXY ;m) (7.20)

=
X

H��Hi
jH�j=n

P (8h�2H�:ES(h
�) = eS ;8h2 HinH

�:ES(h) > eS jES(hj) = eS ; ED(h�); ED(h); Hi; DXY ;m)

=
X

H��Hi
jH�j=n

Y
h�2H�

P (ES(h
�) = eS jES(hj) = eS ; ED(h�);m)

Y
h2HnH�

P (ES(h) > eS jES(hj) = eS ; ED(h);m) (7.21)
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=
X

H��Hinfhjg;

jH�j=n�1

Y
h�2H�

B[ED(h�);m](eS)
Y

h2HinfhjgnH�

X
e>eS

B[ED(h�);m](e) (7.22)

This completes the proof.

D Proof of Theorem 7

Remember that the learner draws a hypothesis from H
�
i (S) under uniform distribution and that assign-

ing error values to individual hypothesis names was a notational trick in the first place. This means,
if ED(hi) = ED(hj) then PfSg(hL = hijHi;m) = PfSg(hL = hj jHi;m). Let heD be an arbitrary
hypothesis with ED(heD) = eD. Then, Equation 7.13 becomes

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)) (7.23)

=

Z
eD

eDdPfhg(ED(h) = eDjHi;DXY )PfS;hLg(hL = heD jHi;DXY ;m; hL 2 H
�
i (S))

Now I have to take care of PfS;hLg(hL = heD jHi;DXY ;m; hL 2 H
�
i (S)). I insert Equation 7.19

into Equation 7.23.

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S))

=

Z
eD

eDdPfhg(ED(h) = eDjHi; DXY )

X
emin

0
@jHijX
n=1

1

n
PfSg(jH�

i (S)j = njheD 2 H
�
i (S); ES(h) = emin;Hi; DXY ;m)

1
A

P (heD 2 H
�
i (S)jES(heD) = emin;Hi;m)B[eD;m](emin) (7.24)

Exploiting assumption 3, I can claim that

const =

jHijX
n=1

1

n
P (jH�

i (S)j = njh 2 H
�
i (S); ES(h) = emin;Hi;DXY ;m) (7.25)

is constant for all hypotheses h. PfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)) should integrate to 1.

This fixes the scaling factor const to

const =

 Z
eD

dPfhg(ED(h) = eDjHi;DXY )
X
emin

B[eD;m](emin) (7.26)

P (heD 2 H
�
i (S)jES(heD) = emin;Hi;m)

!�1
:

I abbreviate
P

emin
B[eD;m](emin)P (heD 2 H

�
i (S)jES(heD) = emin;Hi;m) as PfSg(heD 2

H
�
i (S)jHi;m;ED(heD ) and thus arrive at Equation 3.5. Now I will focus on Equation 3.6. Equation

7.27 follows from the straightforward observation that heD is in H
�
i (S) iff heD incurs an empirical

error of eS and all other hj incur at least an error of eS . Note that this equation exploits assumption 1.
In Equation 7.28, I group all hypotheses with equal true error e0D into one factor and take this factor to
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the number of hypotheses with that error. Note that one hypothesis (heD ) has already been assigned
an empirical error and is thus not included in the product.

PfSg(heD 2 H
�
i (S)jHi;m;ED(heD ))

=
X
eS

B[eD;m](eS)

jHijY
j=1

hj 6=heD

0
@X
e�eS

B[ED(hj);m](e)

1
A (7.27)

=
X
eS

B[eD;m](eS)
Y
e0
D

0
@X
e�eS

B[e0D;m](e)

1
A
jfh:h2HnfheDg;ED(h)=e0

D
gj

(7.28)

Now Equations 7.24, 7.26, and 7.28 can be rewritten as Equation 3.6. This completes the proof.

E Efficient Implementation of Theorem 7

I shall now give an efficient algorithm which evaluates Theorem 6 in O(m2).

Algorithm expected error analysis2. Input: sample S, stratification hH1; : : : ;Hki. Output: number
i such that the estimated expected error of the ERM hypothesis of Hi is less than the estimated
expected error of all other ERM hypotheses.

1. Initialize all variables to zero.

2. For all models i = 1 : : : k

(a) Draw a fixed number c of hypotheses from Hi. Measure their empirical error on S.

(b) For e = 0 : : : m, Let P ES[e] =
1
c� the number of hypotheses which incurred an empiri-

cal error of e

m (from the c drawn hypotheses).

(c) For e = 0 : : : m, Let P ED[e] = P ES[e] (identify Pfhg(ED(h)jHi;DXY ) and
Pfhg(ES(h)jHi; S)).

(d) For eD = 0 : : : m, For eS = m: : : 0, Let P ES geq eS under eD[eS][eD] =
B[m;

eD

m
](eS) + P ES geq eS under eD[eS + 1][eD]. (make a table of PfSg(ES(h) �

eS jED(h) = eD).)

(e) For emin = 0 : : : m

i. Let prod[emin] = 0,
ii. For eD = 0 : : : m, Let

prod[eD] = prod[eD]� pow(P ES geq eS under eD[emin][eD]; jHij � P ED[eD]).

(f) For eD = 0 : : : m

i. For eS = 0 : : : m, Increment P h in Hstar[eD] by B[eD
m
; m](eS) � prod[eS]

(PfSg(h 2 H
�
i (S)jHi;m;ED(h))).

(g) For eD = 0 : : : m

i. Increment numerator by eD

m
� P ED[eS]� P h in Hstar[eD].

ii. Increment denominator by P ED[eS]� P h in Hstar[eD].

(h) Let Exp ED[i] =
numerator

denominator
(the estimated expected true error of model i).

3. Return the i which minimizes Exp ED[i].

The algorithm generates some tables to avoid double computations. It runs in O(m2).
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F Proof of Theorem 8

In Equation 7.29, I write the expected error as the integral over all error values; in Equation 7.30, I
factorize the empirical error of hL. Note that P (a) =

P
b P (ajb)P (b). In Equation 7.31, I apply Bayes

Theorem: P (ajb) = P (bja)P (a)
P (b)

, where a = fED(hL) = eDg, b = fES(hL) = e; hL 2 H
�
i (S)g,

and c = fES(h) = eg. What happens in Equation 7.32 is P (ajb)p(c)
P (a;b)

= P (a;b);P (c)
P (b)P (a;b)

= P (c)
P (b)

, where
a = fES(hL) = eg, b = fhL 2 H

�
i (S)g, and c = fED(hL) = eDg. The idea of Equation

7.33 is that P (a; bjc) = P (ajc)P (bja; c). Here, a = fES(hL) = eg, b = fhL 2 H
�
i (S)g, and

c = fED(hL) = eDg. In Equation 7.34, I state that the empirical error is binomially distributed; I
can remove the sum since PfS;hLg(hL 2 H

�
i (S)jES(hL) = e) is zero for e > 0 and 1 for e = 0 when

jHij ! 1. In Equation 7.35 I claim that hL is in H�
i (S) if and only if it incurs an empirical error rate

of zero. Note that every hypothesis with error strictly less than 1 has a nonzero chance of incurring an
empirical error rate of 0. As jHij approaches infinity, the chance of at least one hypothesis incurring
an empirical error of 0 (under assumption 1) approaches 1.

lim
jHij!1

EfS;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S))

= lim
jHij!1

Z
eD

eDdPfS;hLg(ED(hL) = eDjHi;m; ;DXY hL 2 H
�
i (S)) (7.29)

= lim
jHij!1

Z
eD

eD

X
e

dPfS;hLg(ED(hL) = eDjHi;m;DXY ; hL 2 H
�
i (S); ES(hL) = e)

PfS;hLg(ES(hL) = ejHi;DXY ;m; hL 2 H
�
i (S)) (7.30)

= lim
jHij!1

Z
eD

eD

X
e

PfS;hLg(ES(hL) = e; hL 2 H
�
i (S)jED(hL) = eD;Hi;m;DXY )

PfS;hLg(ES(hL) = ejHi;DXY ;m; hL 2 H
�
i (S))dPfhLg(ED(hL)jHi;DXY )

PfS;hLg(ES(hL) = e; hL 2 H�
i (S)jHi;m;DXY )

(7.31)

= lim
jHij!1

Z
eD

eD

X
e

PfS;hLg(ES(hL) = e; hL 2 H
�
i (S)jED(hL) = eD;Hi;DXY ;m)

dPfhLg(ED(hL) = eDjHi;DXY )

PfS;hLg(hL 2 H�
i (S)jHi;m;DXY )

(7.32)

= lim
jHij!1

Z
eD

eD

X
e

PfS;hLg(ES(hL) = ejHi;m;DXY ; ED(hL) = eD)

dPfhLg(ED(hL) = eDjHi;DXY )

PfS;hLg(hL 2 H�
i (S)jHi;m;DXY )

PfS;hLg(hL 2 H
�
i (S)jHi;m;DXY ; ES(hL) = e;ED(hL) = eD) (7.33)

=

Z
eD

eDB[eD;m](0)
dPfhLg(ED(hL) = eDjHi; DXY )

PfS;hLg(hL 2 H
�
i (S)jHi;m;DXY )

(7.34)

=

R
eD

eD � (1� eD)
m
dPfhg(ED(h) = eDjHi;DXY )

PfS;hg(ES(h) = 0jHi;m;DXY )
(7.35)

=

R
eD

eD � (1� eD)
m
dPfhg(ED(h) = eDjHi;DXY )R

eD
(1� eD)mdPfhg(ED(h) = eDjHi;DXY )

(7.36)

Note that B[eD;m](0) = (1� eD)
m which completes the proof.
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G Expected Learning Curve for Boolean Functions

G.1 Boolean Functions over Attributes x1; : : : ; xi

In this Section, I focus on EfDXY ;S;hLg(ED(hL)jHi;m;DXY ; hL 2 H
�
i (S)), the expected error of

the ERM hypothesis hL, where DXY is governed by the uniform distribution over Boolean concepts.
Assume that the learning domain is characterized by a prior P (DXY ) over target dis-

tributions. What is now the expected error of hL? Theorem 6 claims that, when
Pfhg(ED(h)jHi;DXY ) is known, knowledge of the exact DXY is not necessary. Each DXY yields
some Pfhg(ED(h)jHi;DXY ). Let P (Pfhg(ED(h)jHi;DXY )jP (DXY )) be the probability of a par-
ticular error prior Pfhg(ED(h)jHi;DXY ) under the given distribution of targets P (DXY ). In order
to determine the expected error over all target functions, we integrate over all possible error priors.

EfDXY ;S;hLg(ED(hL)jHi;m; hL 2 H
�
i (S))

=

Z
p
EfS;hLg(ED(hL)jHi; p;m; hL 2 H

�
i (S))dP (pjP (DXY )) (7.37)

EfS;hLg(ED(hL)jHi; p;m; hL 2 H
�
i (S)) is the expected error of hL when the error prior

Pfhg(ED(h)jHi;DXY ) is p and is given in Theorem 6. For Boolean functions, this Equation has
an explicit solution.

Let P (DXY ) = P (DY jXDX) be such that DX is the uniform distribution over all Boolean in-
stances and DY jX is governed by the uniform distribution over all Boolean concepts over the Boolean
variables x1 through xn. Let Hi be the set of all Boolean functions over Boolean variables x1; : : : ; xi.
Let S be a sample of size m and let hL be drawn uniformly from H

�
i (S), the hypotheses with least

empirical error. Two cases have to be distinguished.

(1) i < n. DXY splits the Boolean space into 2n instances whereas the hypotheses h split the space
only into 2i distinguishable subspaces. Hence, 2n�i Boolean instances with potentially distinct class
labels fall into each subspace. However, the hypothesis has to assign one class label to each subspace.
Since the target function is uniformly distributed, assigning a class label of 0 will mis-classify a
number of instances distributed according to � = B[1

2
; 2n�i] while a class label of 1 will incur an

error of 2(n�i) � �. Let �1; : : : ; �2i be the number of instances which are mis-classified when the
corresponding subspace (1 through 2i) is assigned a class label of 0 (the �j lie between 0 and 2n�i).
The �j are the parameters of the distribution Pfhg(ED(h)jHi;DXY ). Over all target functions, these
parameters are distributed according to

PfDXY g([�1; : : : ; �2i ]) = B

�
1

2
; 2n�i

�
(�1)� : : : �B

�
1

2
; 2n�i

�
(�2i): (7.38)

For a given set of parameters �1; : : : ; �2i , Pfhg(ED(h)jHi;DXY ), the sum of errors Ej incurred
in subspace j = 1 through 2i, is distributed according to

Pfhg(ED(h) = eDjHi;DXY ) = P [�1; : : : ; �2i ]

0
@ 2iX
j=1

Ej = 2ieD

1
A (7.39)

where

P [�1; : : : ; �k]

0
@ kX
j=1

Ej = e

1
A (7.40)
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=
1

2
P [�2; : : : ; �2i ]

0
@ kX
j=2

Ej = e� �1

1
A+

1

2
P [�2; : : : ; �2i ]

0
@ kX
j=2

Ej = e� 2n�i + �1

1
A

and

P [�1](E1 = e1) =

8>>><
>>>:

1 i� �1 = 2n�i � e1 = e1
1
2

i� �1 = e1
1
2

i� �1 = 2n�i � e1

0 otherwise

(7.41)

Equation 7.40 is recursive; the intuition of this equation is that an error of e is incurred in subspace
1 through k when either an error of �1 (class label 0) is incurred in subspace 1 and an error of e� �1

is incurred in subspace 2 through k, or an error of 2n�i � �1 is incurred in subspace 1 (class label 1)
and the remaining error of e� (2n�i � �1) is incurred in subspaces 2 through k.

In this case, EfDXY ;S;hLg(ED(hL)jHi;m; hL 2 H
�
i (S)) takes the form

EfDXY ;S;hLg(ED(hL)jHi;m; hL 2 H
�
i (S))

=
X

(�1;:::;�2i)

EfS;hLg(ED(h)jHi;m; Pfhg(ED(h)jHi;DXY ); hL 2 H
�
i (S))

PDXY
([�1; : : : ; �2i ]) (7.42)

where Pfhg(ED(h)jHi;DXY ) depends on [�1; : : : ; �2i ] and is given by Equation 7.39, dPDXY

([�1; : : : ; �2i ]) is given by Equation 7.38, and EfS;hLg (ED(h)jHi;m; Pfhg(ED(h)jHi; DXY ); hL 2
H
�
i (S)) is given by Theorem 6.

i � n. In this case, the target function assigns one class label to 2i�n instances which can be distin-
guished by the hypothesis. Given a target function DXY ,

Pfhg(ED(h) = eDjHi;DXY ) = B

�
1

2
; 2i
�
(2ieD): (7.43)

What is the distribution of the distributions Pfhg(ED(h) = eDjHi;DXY ) when P (DXY ) is the
uniform distribution over all Boolean functions with n attributes and DX is the uniform distribu-
tion over all Boolean instances? Here, the key observation is that, in this situation, Pfhg(ED(h) =
eDjHi; DXY ), as given in Equation 7.43, does not depend on the concrete DXY . Hence,
Pfh;DXY g(ED(h)jHi) = Pfhg(ED(h)jHi;DXY ). EfDXY ;S;hLg(ED(hL)jHi;m; hL 2 H

�
i (S)) takes

the form

EfDXY ;S;hLg(ED(hL)jHi;m; hL 2 H
�
i (S))

= EfS;hLg(ED(hL)jHi;m; Pfhg(ED(h)jHi;DXY ); hL 2 H
�
i (S)) (7.44)

where the error prior Pfhg(ED(h)jHi;DXY ) is given by Equation 7.43
and EfS;hLg(ED(hL)jHi;m; Pfhg(ED(h)jHi;DXY ); hL 2 H

�
i (S)) is given by Theorem 6. Note

that the expected error of hL only depends on n (the number of relevant attributes), i (the number of
attributes of model Hi), and the sample size m.

G.2 Expected Learning Curve for Boolean Functions over i Attributes

In this Section, I will discuss the solution to Equation 7.37 when Hi contains all Boolean functions
over any i attributes when there are b possible attributes and the target is a Boolean function over
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n attributes. By contrast, in the previous section, Hi included only hypotheses over the particular
attributes x1 through xi. What is the error prior in this situation? Let us first look at how many
relevant and how many irrelevant attributes a randomly drawn hypothesis h 2 Hi contains. There
are n relevant attributes out of a total of b attributes, hence the number of relevant attributes in Hi is
hyper-geometrically distributed: H[b;nb ; i]. Let us now assume that i� u attributes are relevant and u
attributes are irrelevant.

Pfh;DXY g(ED(h) = eDjHi) =
X
u

H

�
b;
n

b
; i

�
(i� u)� Pfhg(ED(h)jn; i; u) (7.45)

In the next part, I will have to refer to a particular distribution, which I shall call M2. M2[m; p1; p2](x)
gives the chance of the sum of m random numbers being x, when the chance of each random number
being p1 or p2 is 1

2
each. When p1 equals p2, the sum m � p1 occurs with probability 1. Otherwise

p1 has to occur a certain number of times. When p1 occurs � times (and p2 occurs m � � times),
the result is �p1 + (m � �)p2. Hence, p1 has to occur x�mp1

p1�p2 times. Therefore, M2 can then be
characterized as follows.

M2[m; p1; p1](x) =

(
1 i� x = m� p1

0 otherwise
(7.46)

M2[m; p1; p2](x) = B

�
m;

1

2

��
x�mp2

p1 � p2

�
i� p1 6= p2 (7.47)

When p1 = 0 and p2 = 1, M2 is the binomial distribution with individual probability 1
2
. The

relevant attributes split the space of instances into 2i�u subspaces. Each of these subspaces is split
into 2n�i+u parts by the target function. A very similar situation has been studied in the previous
subsection. The hypothesis will assign one class label to the whole of the 2n�i+u parts. Since the
correct class label is uniformly distributed in each part, assigning one class label to all of them will
misclassify a number of instances � which is distributed according to B[2n�i+u; 1

2
]. Hence, for a given

target function, in each of the 2i�u subspaces only error values of �
2n�i+u

or 2n�i+u��
2n�i+u

are possible.
The �j , 1 � j � 2i�u are, again, the parameters of the prior distribution Pfhg(ED(h)jHi; DXY ).
Each of the 2i�u subspaces (say subspace j) which are generated by the i � u relevant attributes is
split into 2u subspaces by the u irrelevant attributes. Now remember that only error values �j

2n�i+u

or 2n�i+u��j
2n�i+u

are possible in subspace j. Assume that whenever the hypothesis assigns class 0 to a

subspace, an error of �j
2n�i+u

occurs, an error of 2n�i+u��j
2n�i+u

otherwise. How is the number of possible
assignments of class labels to the 2u subspaces which incurs a particular error values distributed? 2n

random experiments with possible outcomes �j and 2n�i+u��j (chance 1
2

for each possible outcome)
are carried out. Hence, the sum of the outputs is governed by the M2 distribution. P (Ej = e

2n�i+2u
) =

M2[2
u; �j ; 2

n�i+u � �j](e). Consequently, the chance that the sum of all error values over all 2i�u

subspaces generated by the relevant attributes is eD is

Pfhg(ED(h) = eDjn; i; u) = P [�1; : : : ; �2i�u ]

0
@2i�uX

j=1

Ej = eD2
i�u
1
A (7.48)

where

P [�1; : : : ; �k]

0
@ kX
j=1

Ej =
e

2n�i+2u

1
A
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=
X
ej

M2

h
2u; �1; 2

n�i+u � �1

i
(ej)P [�2; : : : ; �k]

0
@ kX
j=2

Ej =
e� ej

2n�i+2u

1
A (7.49)

and

P [�1]

�
Ej =

e

2n�i+2u

�
= M2

h
2u; �1; 2

n�i+u � �1

i
(e) (7.50)

The distribution which governs the parameters �1 through �2i�u of the error prior is analogous to
Equation 7.38.

P ([�1; : : : ; �2i�u ]) = B

�
1

2
; 2n�i+u

�
(�1)� : : :�B

�
1

2
; 2n�i+u

�
(�2i�u) (7.51)

Now the parametric error prior and the prior distribution of the parameters have been determined
and can be “plugged” into Theorem 6. When P (DXY ) is the uniform distribution over Boolean
functions with n attributes and Hi contains all Boolean functions over i attributes (when there are b
possible attributes), then

EfS;DXY ;hLg(ED(hL)jHi;m; hL 2 H
�
i (S))

=
iX

u=0

X
(�1;:::;�2i�u)

EfS;hLg(ED(hL)jHi;m; Pfhg(ED(h)jn; i; u); hL 2 H
�
i (S))

P ([�1; : : : ; �2i�u ])H

�
b;
n

b
; i

�
(i� u): (7.52)

This completes the derivation.

H Notation

In this Section, I provide a quick reference table for the notation used throughout the book.

B[p; n](x). Binomial distribution density. B[p; n](x) is the chance of achieving x “hits” on n trials
when the chance of a hit is p for each trial and when the trials are independent. B[p; n](x) =�n
x

�
p
x(1� p)n�x.

BC . A learner identifies the target function behaviorently correct (the corresponding learnability
class is abbreviated BC) if it makes only finitely many erroneous predictions and, from some
finite point on, keeps making true predictions although it may still change its conjecture about
the target function.

DXY . Target distribution. DXY = DY jXDX where DY jX(yjx) is the chance of class y for instance
x and DX(x) is the probability (mass) of instance x. See Section 2.1 for the definition.

ED(h). True error (with respect to target distribution DXY ) of hypothesis h. See Section 2.1 for the
definition.

ERM hypothesis. The set of hypotheses H�
i (S) with least empirical error (with respect to sample S)

are called the ERM hypotheses. A single hypothesis which is drawn from this set under uniform
distribution is an ERM hypothesis.
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ES(h). Empirical error of hypothesis h on sample S. See Section 2.1 for the definition.

EX . The class of explanatory learnable languages. A language class is explanatory learnable if there
exists a learner that identifies each language of that class with certainty eventually. After each
new example the learner outputs a new hypothesis; the learner may change its mind finitely
often but no bound on the required number of example is needed.

Efxg(f(x)). The expectation of f(x) over all x, distributed according to P (x) (which is usually given
in the context).

FIN . The class of finitely identifiable languages. A learner identifies a language class finitely if it
outputs one single correct hypothesis after finitely many examples and does not change its mind
thereafter.

h. Arbitrary hypothesis. Usually refers to hypotheses which are drawn at random under uniform
distribution in Chapter 3.

Hi. i’th model. A model is a set of hypotheses h 2 Hi. In Chapter 3, these models are assumed to be
finite.

H
�
i (S). The set of hypotheses of Hi with least empirical error on S.

hL. Hypothesis which is returned by learner L.

k-CNF(n). The class of all conjunctive normal forms (conjunctions of disjunctions) over n Boolean
attributes where each disjunction has up to k literals.

k-DL(n). The class of all decision lists over n Boolean attributes where each rule consists of a body
of at most k literals and a head which is labeled with a class symbol. The first rule which fires
for some instance assigns the class label to the instance. See Section 3.8.

k-DNF(n). The class of all disjunctive normal forms (disjunctions of conjunctions) over n Boolean
attributes where each conjunction has up to k literals.

LHi
(S). The result of a deterministic learner L which operates on model Hi when given sample S is

a particular hypothesis.

PL(hLjHi; S). The chance of learner L returning hypothesis hL when operating on model Hi and
the sample is S.

Pfxg(f(x) = y). The probability of drawing an x such that f(x) = y.

X . The set of instances.

Y . A finite set of class labels.
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