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Abstract

Machine learning algorithms search a space of possible hypotheses and estimate the error of each
hypotheses using a sample. Most often, the goal of classification tasks is to find a hypothesis with
a low true (or generalization) misclassification probability (or error rate); however, only the sample
(or empirical) error rate can actually be measured and minimized. The true error rate of the returned
hypothesis is unknown but can, for instance, be estimated using cross validation, and very general
worst-case bounds can be given. This doctoral dissertation addresses a compound of questions on
error assessment and the intimately related selection of a “good” hypothesis language, or learning
algorithm, for a given problem.

In the first part of this thesis, | present a new analysis of the generalization error of the hypothesis
which minimizes the empirical error within a finite hypothesis language. | present a solution which
characterizes the generalization error of the apparently best hypothesis in terms of the distribution
of error rates of hypotheses in the hypothesis language. The distribution of error rates can, for any
given problem, be estimated efficiently from the sample. Effectively, this analysis predicts how good
the outcome of a learning algorithm would be without the learning algorithm actually having to be
invoked. This immediately leads to an efficient algorithm for the selection of a good hypothesis
language (or “model”). The analysis predicts (and thus explains) the shape of learning curves with
a very high accuracy and thus contributes to a better understanding of the nature of over-fitting. |
study the behavior of the model selection algorithm empirically (in particular, in comparison to cross
validation) using both artificial problems and a large scale text categorization problem.

In the next step, | study in which situations performing automatic model selection is actually ben-
eficial; in particular, | study Occam algorithms and cross validation. Model selection techniques such
as tree pruning, weight decay, or cross validation, are employed by virtually all “practical” learners
and are generally believed to enhance the performance of learning algorithms. However, | show that
this belief is equivalent to an assumption on the distribution of problems which the learning algorithm
is exposed to. I specify these distributional assumptions and quantify the benefit of Occam algorithms
and cross validations in these situations. When the distributional assumptions fail, cross-validation
based model selection increases the generalization error of the returned hypothesis on average.

When several distinct learners are assessed with respect to a particular problem (or one learner is
assessed repeatedly with distinct parameter settings), an effect arises which is very similar to over-
fitting that occurs during error-minimization processes. The lowest observed error rate is an optimistic
estimate of the corresponding generalization error. | quantify this bias. In particular, | study the bias
which is imposed by repeated invocations of a learner with distinct parameter settings when n-fold
cross validation is used to estimate the error rate. | pursue an information theoretic approach which
does not require the assumption that empirical error rates measured in distinct cross validation folds
are independent estimates. | discuss the implications of these results on the results of empirical studies
which have been carried out in the past and propose an experimental setting which leads to almost
unbiased results.

Finally, I address complexity issues of model selection. In model selection based learning, the
learning algorithm is restricted to a (small) model, chosen by the model selection algorithm. By con-
trast, in the boosting setting, the hypothesis is allowed to grow dynamically, often until the hypothesis
is fitted to the data. By giving new worst-case time bounds for the AdaBoost algorithm | show that in
many cases the restriction to small sets of hypotheses causes the high complexity of learning
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Chapter 1
| ntroduction

This Chapter provides an informal introduction to supervised machine learning and an overview over
this doctoral dissertation. In particular, PAC Theory, Bayesian learning, the No-Free-Lunch Theo-
rems, and the principle idea of model selection are discussed on an intuitive level.

1.1 MachineLearning

Learning is studied in many disciplines and many definitions try to capture the intuition of what we
actually consider learning. Attempts to define learning were made by, among others, Simon (1983).
Simon defines learning as a modification in the behavior of a system which leads to an improvement
with respect to the repeated performance of some task. This definition may appear to be overly general
as it includes, for instance, the physical modification of a system. More specifically, Michalski et al.
(1986) define learning as the construction and modification of representations of experience.

Many categories of learning processes are distinguished in psychology, statistics, and computer
science. The learning settings differ in the task which the student has to accomplish and the infor-
mation which is provided by the teacher. In the concept formation setting, the student (or learner) is
provided with a set of positive and often additionally a set of negative examples of a concept. It then
has to identify the target concept from the data. Classification differs slightly from concept formation.
Here, the learner has to discriminate finitely many classes from each other. Regression is studied in
statistics; here, the learner has to identify a target function (from sample points) rather than just dis-
criminate finitely many classes. Language acquisition has a somewhat different meaning in learning
theory than it has in psychology: In Gold’s mathematical model (Gold, 1967), language learning is
considered the problem of finding a grammar which identifies a language syntactically (i.e., discrim-
inates its sentences from the complementary language); the acquisition of a semantic is disregarded.
In the skill acquisition setting, a learner is able to perceive parameters of a system and has to select a
control action, such that some performance criterion is maximized. In order to acquire such a control
policy, the learner can either conduct control experiments (this setting is referred to as reinforcement
learning; Sutton & Barto, 1998), or it can observe a perfect operator controlling the system (referred
to as behavior cloning; Sammut et al., 1992).

In this thesis, I will focus on mathematical models which also try to capture the intuition of
learning. Many of these models and the whole of this thesis is committed to classification (a detailed
overview on the various other fields of machine learning is given by Mitchell, 1997). | assume that
there is an unknown target function which the learner has to “guess” from examples. The domain of
this target function is generally referred to as the “instances” and the elements of the finite co-domain
are called “class labels”. Typically, the learner is given a finite sequence of input-output pairs (a
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sample). The various models differ in their success criteria: While Gold’s model of Identification in
the Limit (Gold, 1967) requires that the learner identifies the target concept exactly and with certainty
but in unbounded time, Valiant’s framework of Probably Approximately Correct learning (Valiant,
1984) requires the learner to find, with high probability, a hypothesis which incurs an error of no more
than e from a batch of examples (preferably polynomial in size) where the error is measured in terms of
the misclassification probability for new instances. The notation of the misclassification probability
(or “error rate™) of hypotheses implies the existence of an (unknown) underlying distribution over
instances. The error rate is then the chance of the hypothesis making a false prediction on an instance
drawn according to this distribution. What makes this setting nontrivial is that the learner is only
able to perceive the error incurred on the sample; however, the success criterion refers to the actual
target function which is unknown to the learner. The way that PAC theory argues to bound the true
(or generalization) error rate of hypotheses is the following: The chance of a hypothesis with error
of at least ¢ giving the correct answer for a new instance is at most 1 — . Hence, the chance of our
hypothesis classifying a sequence of m instances correctly (although the true error is € or more) is at
most (1 — &)™, provided that these examples are independent and identically distributed. Suppose that
the learner searches a finite hypothesis space H and returns an arbitrary hypothesis which is consistent
with a sample of size m. In the worst case, all | H| hypotheses incur an error of at least ¢ with each
hypothesis having a chance of (1 — )™ of being consistent with the sample. Hence, the chance that at
least one of | H| hypotheses incurs a true error of at least £ and is consistent with the sample is at most
|H|(1 —e)™. When we employ the worst possible learner, it might return the hypothesis with the
highest true error which is consistent with the sample. Therefore, if our learner returns a hypothesis
that is consistent with a sample of size m, we can claim that, with probability at least 1 — | H|(1 —¢e}?,
the true error is no more than e. This simple result gives an intuition on how PAC theory allows to
make statistical claims on the true error of a hypothesis when only the empirical error is known.
This result also demonstrates that our knowledge on the generalization error of a learned hypothesis
decreases with the size of the hypothesis language which the hypothesis was learned from. If we
consider a hypothesis space with one single hypothesis, the empirical error is an unbiased estimate
of the true error (the chance of the empirical error being an optimistic estimate is just as large as
the chance of it being a pessimistic estimate). Unbiased means that the expectation of the empirical
error rate of a hypothesis is the true error rate. However, if we consider a hypothesis space with
many hypotheses, then certainly some of them will have an empirical error which is greater than their
true error while others will have an empirical error which is less than their true error. If we choose
a hypothesis with low empirical error we are likely to select one with an optimistically estimated
error. The more distinct hypotheses there are in the space, the less we can say about the true error
of a hypothesis which is consistent with the sample. However, this result must not be misinterpreted
as meaning that the generalization error of the returned hypothesis increases when the hypothesis
language which it was learned from grows.

In Bayesian Learning (e.g., Berger, 1985), the learner is assumed to have some extra information,
compared to a PAC learner. While the latter is required to perform well for any target function (from a
given set of possible functions), one averages the error rate of a Bayesian learner over all possible
target functions, according to a known prior probability P(f) on target functions. So, Bayesian
learning is easier than PAC learning in some sense because it does not “hurt too much” when the
learner performs poorly for unlikely target functions, and the learner knows the prior probability of
target functions. The hypothesis which minimizes the expected error (or, more general, the loss) is
called the Bayes hypothesis. The Bayes hypothesis makes a prediction for an instance x according to
the weighted majority of all possible functions f(z), where the weights are the posterior probabilities
P(f|S) of the function f having generated the observed sample S. Using Bayes’ rule, this posterior
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works out to P(S|f)%. P(S]f) can often be determined and P(f) is assumed to be known; P(S)
can in some cases be derived from P(S|f) and P(f). In this situation, one can make an optimal
decision —i.e., one that minimizes the expected misclassification probability in classification learning.
When P(S) is not known or summing over all possible f is not tractable, one can still determine the
MAP (or “Maximum a posteriori’”) hypothesis which maximizes the posterior probability P(f|S) of
having generated the sample by maximizing P(S|f)P(f) (P(S) is constant for a given learning
problem). Unfortunately, assuming that the prior P(f) is known for a given environment is not
entirely realistic. Robust Bayesian learners (Berger, 1993) can be guaranteed to perform well for
a whole class of possible priors which differ from each other to some degree.

1.2 TheNeed for Biasin Learning

The term “learning bias” entails various mechanisms which have an influence on which hypothesis
a learning algorithm is going to come up with. Mathematically, this learning bias can be written as
Pr(h|S) - i.e., the chance that hypothesis A is returned by learner L given the data S. One factor
which influences the learning result is the hypothesis language which is therefore also referred to as
“language bias”. Learning algorithms which minimize the empirical error rate have to decide which
of the hypotheses with least empirical error within the language to return. One possible bias is to draw
at random (under uniform distribution) from the hypotheses with least empirical error. | will assume
this particular bias throughout Chapter 3. However, a learner might follow a completely different bias;
e.g., it might prefer the hypothesis which is least with respect to the alphabetical ordering. Instead
of choosing among the error minimizing hypotheses, a learner might choose a particular hypothesis
which maximizes some merit criterion (this is what complexity penalization algorithms do) which
leads to some particular learning bias.

It is obvious that the learning bias has a major impact on the generalization ability of the resulting
hypothesis. But precisely what does the relation between learning bias and generalization ability look
like? Or, asked in another way, is there a learning bias which can be proven to be superior to all other
biases? PAC and VC theory (discussed more carefully in Section 2.2.2) study the generalization ability
as intrinsic properties of the learning bias. The PAC results are sometimes interpreted as suggesting
that, in order to achieve good generalization, one should choose certain hypothesis languages while
avoiding others. However, a careful analysis often reveals that such interpretations are undue. By
contrast, the No-Free-Lunch Theorems (for a more detailed discussion, see Section 2.3) clarify that
the generalization ability of a particular learning bias is a property of the focused problem, rather than
a property of the bias itself.

PAC theory requires learners to produce a hypothesis with low true error when only minimal
domain knowledge is available (only a class of possible target functions is known). One way of
quantifying the generalization performance of learners is to look at the sample size which is required
to guarantee a low true error. The “sample complexity” of learning has been studied intensely, and
many classes of target functions and hypothesis languages have been identified which can be learned
from sample sizes polynomial in the size parameter of the function or language class. Blumer et al.
(1987) proved the well-known result that the generalization error of a hypothesis 4 which is consistent
with a sample of size m and which has been learned from a hypothesis language H can be bounded
by e (with confidence 1 — d) when the sample size m is at Ieast% log % Assume that two hypotheses,
hi and hg, which are consistent with a sample S have been learned from hypothesis languages H
and Ho, respectively, with |H;| < |Ha|. Then Blumer’s result shows that we can prove a better error
bound for h; than we can for hy. It is very tempting to misinterpret this result as meaning that H is
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a better language bias than H,. This, however, is not necessarily true; in particular, it is only likely to
be true when the target function is known to lie in H;. A different way of thinking about this problem
reveals that, on average, h; and hy incur an equal generalization error.

Wolpert (1992) adopted a different perspective towards the question of how good learners can
be and came to some very insightful results — the No-Free-Lunch Theorems. If we assume that all
learners minimize the sample error anyway, the off-sample error (error on all instances that are not
in the sample) becomes an interesting issue. Imagine that, for some classification problem, only four
instances xz; though x4 are not in the sample. If the hypothesis language is powerful enough, there are
24 distinct hypotheses which are consistent with the sample (these four hypotheses form the version
space; Mitchell, 1982) but behave differently on the remaining four instances. Every learner L which
returns hypotheses that are consistent with the sample needs to have a built-in preference to choose
between hypotheses which are equally consistent with the sample (this preference is sometimes also
referred to as learning bias). Let learner Iy return the hypothesis which classifies all four instances
as 0, Looo1 labels z; through 25 as 0 and z4 as 1, and so on. There are also 2* possible target functions
which behave differently on z; though z4, let us label them fyo00 through fi1111 as well. Let us
now look at the off-sample error of Lyggo, averaged over all possible target functions, under uniform
distribution of the instances. For fyoq, learner Lgggo incurs an off-sample error of zero, for fyoo1 Of
i, and so on. On average, Ly incurs an off-sample error of % Learner Lyggo incurs an off-sample
error of 0 for figgg, Of i on foooo and, averaged over all functions, of% as well. In fact, all learners
Lo through L;11; impose an average off-sample error of%. This observation leads to the first No-
Free-Lunch Theorem: Uniformly averaged over all possible target functions, the off-sample errors of
two arbitrary learners are equal. This theorem holds for arbitrary learners and basically says that it
is impossible to construct a learner which is better-than-average on all problems. But the important
point is that we averaged the error uniformly over all target functions. If, however, some functions
occur more frequently than others (i.e., there is a known nonuniform prior P(f)), it is possible to
construct a learner that performs well for this particular distribution. If the prior is nonuniform but
unknown, the third No-Free-Lunch Theorem claims that, again, no better-than-average learner can be
constructed. See Section 2.3 for a formal presentation of the No-Free-Lunch Theorems

This argues that, as far as the generalization error rate is concerned, there is no such thing as an
“intrinsically good learning bias”. One cannot construct a learner which is both general and accurate.
Instead, a low generalization error is due to an alignment between the bias of the learner and the
prior probability of target concepts which occur in some domain. This indeed justifies the need for a
learning bias which is adequate for the given learning problem.

Another aspect of the learning bias is the complexity of learning algorithms which use that partic-
ular bias. Consider this example. When the target function is a k-term CNF(n) (a conjunction of up
to k disjunctions over n variables), then no learner which uses k-term CNF(n) as hypothesis language
can be guaranteed to find a hypothesis which is consistent with a sample of size m in time polynomial
in n. If, however, k-DNF(n) (disjunctions of arbitrary many conjunctions which may consist of up
to k£ Boolean literals each) is used as hypothesis language, then a polynomial algorithm can be found
that finds a k-DNF which is consistent with the sample and approximates the target £-term CNF(n)
well — although %£-DNF(n) is a proper superset of k-term CNF(n). This is because, for £-DNF(n),
a greedy algorithm exists while, when k-term CNF(n) is selected as hypothesis language, the whole
hypothesis space has to be enumerated to check for a hypothesis which is consistent with the sample.
In Inductive Logic Programming (ILP) (e.g., Lavrac & DZeroski, 1994; Muggleton, 1992), the target
function is a set of Horn clauses (usually the class of Horn clauses is subject to further restrictions).
In this learning problem, even calculating the class label which a hypothesis assigns to an instance
is undecidable (under logic implication) or NP-complete (under 6-subsumption). Consequently, the
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learning problem is, in most cases, extremely expensive. It does, however, turn out that certain sets of
clauses can be learned in polynomial time (usually those for which #-subsumption can be proven effi-
ciently; e.g., Kietz & Dzeroski, 1994; Scheffer et al., 1996) while other, equally large sets cannot be
learned polynomially. So from a complexity oriented point of view, there are language biases which
are intrinsically superior to others.

1.3 Model Selection

Consider the following situation: In order to solve a learning problem we are free to choose a hy-
pothesis language from a set of languages (or models) — decision trees of variable depth perhaps, or a
neural network with a variable number of hidden neurons. One can think of a model as a collection
of structurally identical (or similar) hypotheses. Statisticians like to think of models as parametric
schemes and of hypotheses as models with instantiated parameters. If we choose too simple a model
(a tree of depth one say) even the best hypothesis in that model is likely to incur both a high empirical
and a high true error. On the other hand, if we choose too rich a model (e.g., a neural network with a
hundred hidden units) our hypothesis is likely to be poor due to over-fitting effects. This problem is
often referred to as the bias-variance trade-off, based on Breiman et al. (1984) who distinguish a bias
and a variance term in the generalization error. The bias part of the generalization error is the error
rate of the best approximation of the target within a given model. By increasing the model size, the
bias term decreases monotonically. The variance term quantifies the error that is imposed by improper
labeling of the nodes caused by limited data which is available. Whether or not (and by how much)
the variance term increases when we increase the model size depends on the problem. So what can
we do in this situation? Three classes of approaches can be distinguished: Hold-out testing methods
use parts of the data to assess the hypotheses learned from increasingly complex models; complexity
penalization approaches minimize a demerit criterion (instead of the empirical error) which consists
of the empirical error plus a complexity penalization term; Bayesian approaches exploit additional
information in terms of a prior on target functions which is assumed to be known in advance.

Hold-out testing. One thing we might do is stratify the hypothesis language into increasingly complex
models (e.g., model H; could consist of networks with 4 hidden units), and use cross validation (e.g.,
Stone, 1974; Toussaint, 1974) or Bootstrapping (Efron, 1979) to obtain an estimate of the true error of
the hypothesis which is returned by the learner when the learner operates on model H. Starting with

the smallest model, the learning algorithm returns one hypothesis from each model. The hold-out set is
then used to obtain an estimate of the expected generalization error; the model with the lowest estimate
is selected and the learner is invoked for this model with the whole sample. In order to minimize the
variance of the estimate the idea of n-fold cross validation, e.g., (Stone, 1974), and bootstrapping
(Efron, 1979) is to average many error measurements which are generated on re-sampled data sets
(the instances in the re-sampled data set are drawn from the original data set, without replacement
in case of cross-validation and with replacement in the case of bootstrapping). The model which
incurred the least cross-validation error is then selected and the learner is run on that model using the
complete training set. This method illustrates how intimately error assessment and model selection
are related. It also shows a trivial bound on how good model selection techniques can be: Suppose that
we stratify the hypothesis language H into models H through H,p| — each containing exactly one

distinct hypothesis. If we then use the sample S to decide which model to chose, we will necessarily
end up with a hypothesis which is just as good as the one we would have obtained by using one
model containing all hypotheses. For many applications, n-fold cross validation works quite well and
reliably, although it should be noted that while this class of approaches yields a reasonably accurate
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estimate of the expected error it does not yield a good estimate of the variance. More precisely, the
empirical variance is generally much less than the true variance as the n error estimates are based
on “very similar” data (rather than being independent measurements) (Dietterich, 1997). The main
drawback of this approach is the high computational effort. Depending on the sample size, the learner
has to be invoked about ten times per model (e.g., Kohavi & John, 1997). In domains in which
learning is very time consuming and the number of potential models is large, cross validation may
incur an unacceptably large computational effort. This is the case, for instance, in Inductive Logic
Programming (e.g., Muggleton, 1992) and neural segmentation of satellite data (here, the number of
attributes is often extremely large; Milne, 1997).

Complexity penalization. Instead of assessing the models by means of cross validation, we could
have assigned a complexity based penalty term to each model. While hold-out testing based al-
gorithms sequentially consider the hypotheses which have been learned from increasingly complex
models, complexity penalization based methods minimize a demerit criterion which consists of the
empirical error and a complexity based penalty term. One member of this class is Structural Risk
Minimization (SRM) (Vapnik, 1982, 1996, 1998) which is based on the VC framework (e.g., Vapnik
& Chervonenkis, 1971). The Support Vector Machine (SVM) is an (approximate) implementation of
SRM. The “vanilla” Support Vector Machine inflates the instance space by introducing polynomials
of the original attributes as new attributes. Ideally, this should result in positive and negative examples
being separable by a single hyper-plane. From all those planes which are consistent with the sample
the SVM chooses the one which is least with respect to a stratification that is defined in terms of the
width of the margin between positive and negative samples. Effectively, the SVM returns the plane
(in the inflated space) which maximizes the margin between examples of distinct classes. This par-
ticular stratification which leads to a maximally large margin has proven to be beneficial for many
practical learning problems. Intuitively, the SVM works best when the two classes are somehow clus-
tered around distinct centers. However, the SVM does not actually trade off model complexity against
empirical error as the empirical error is pinned down to zero. This may result in over-fitting in cases
where there is no consistent hypothesis but the best approximation is fairly simple. This constraint
is weakened in Soft-Margin-Machines (Cortes & Vapnik, 1995), but only by introducing a parameter
that trades a higher VC-dimension against lower observed error and that has to be adjusted by cross
validation or according to some heuristic. Similarly to other complexity penalization approaches like
regularization (Moody, 1992), neural weight decay methods (e.g., Cun et al., 1989), or decision tree
pruning algorithms (e.g., Quinlan, 1993; Mingers, 1989), the merit of the selected model depends
strongly on the value chosen for the penalization/regularization parameter. Effectively, this parame-
ter forms a meta-level model selection problem and “trying out” different parameter settings incurs
meta-level over-fitting (Ng, 1997).

Recently, a new penalization based model selection algorithm has been proposed by Schuurmans
(1997) in the context of regression. Given the distribution of unlabeled instances, one can define
a metric on hypotheses, and between hypotheses and the target distribution. Knowing the distance
between hypotheses one can use the triangle inequality to decide when the distance to the target
distribution must be increasing. This approach turns out to perform better than cross validation and
complexity penalization methods for problems with a steep variance profile (Schuurmans et al., 1997).

Bayesian learners (Berger, 1985) solve both the learning and the model selection problem at the
same time. Under certain ideal conditions, one can, under high computational effort, derive the Bayes
hypothesis from the posterior P(f|.S) which is guaranteed to have the least generalization error. In-
tuitively, the prior P(f) relates to the hypothesis complexity (in an optimal coding scheme, frequent
hypotheses have a small description length) and the likelihood P(S|f) relates to the empirical behav-
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ior of a hypothesis function f. The Bayes hypothesis yields the optimal trade-off between likelihood
(empirical behavior) and prior (complexity). Often, the posterior is used for less expensive model se-
lection heuristics such as MAP (the maximum a posteriori hypothesis maximizes the chance of having
generated the data) or MDL (Rissanen, 1978, 1989) (the MDL hypothesis minimizes the description
length required for the data by compressing it to a hypothesis and the exceptions to the hypothesis
in the data). However, the prior distribution P(f) is assumed to be known in advance — which is
indeed a very strong assumption. The general belief is that Bayesian learners are fairly robust against
some degree of misalignment between the actual and the assumed P(f). The No-Free-Lunch The-
orems (Wolpert, 1992) explain that Bayesian learners perform better than randomly guessing only if
the actual and the assumed prior are “not completely unaligned”.

In Section 2.3, 1 will discuss the No-Free-Lunch Theorems which claim that one cannot construct
a learner that performs better than average for all possible problems. These theorems also imply that
a learner which conducts model selection cannot be superior to one that does not, averaged over all
possible target functions. This raises the question in which situations conducting model selection is
actually beneficial.

1.4 Applications of Machine Learning

From an engineering point of view, the most interesting aspect of machine learning is perhaps that
it provides methods for automatic adaptation of a system to a particular environment. Successful
applications of machine learning techniques are numerous, only few can be mentioned here.

An area of applications which is gaining interest is knowledge discovery in databases (e.g., Hol-
sheimer & Siebes, 1991; Fayyad et al., 1996). Currently existing commercial databases contain large
quantities of potentially valuable knowledge regarding, for instance, typical patterns of customer be-
havior. The idea of “data mining” is to automatically extract potentially interesting patterns. One of
the most frequently studied problems is the discovery of association rules. Association rules (Agrawal
et al., 1993) are simple implications between database items of the form “if the customer buys beer
then the customer is likely to also buy potato chips”. The large size of typical databases imposes a
particular difficulty on data mining problems. Data mining algorithms are usually required to operate
in time at most linear in the size of the database — preferably even sub-linear (e.g., Toivonen, 1996).
Discovering patterns of customer behavior and detecting fraudulent credit card transactions belong to
the most popular data mining tasks.

A large number of applications fall into the general field of pattern recognition. This entails
computer vision (e.g., Jain et al., 1997), optical character recognition (e.g., Cun et al., 1989), and
recognition of spoken words (e.g., Lee, 1989).

Text categorization (e.g., Salton & Ruckley, 1988) is the problem of mapping texts to seman-
tic categories. Interesting applications are automatic classification of news stories for later research
(Lewis, 1991; Lang, 1995), and the classification of web pages (e.g., Joachims et al., 1997).

Automatic control is a very large field of application. Algorithms which automatically acquire
a control skill fall into the classes reinforcement learning and behavior cloning (the relative bene-
fits of these two approaches have been discussed by Scheffer et al., 1997). Reinforcement learning
algorithms (e.g., Sutton & Barto, 1998) acquire a skill by conducting control experiments and re-
ceiving performance feedback. Perhaps the most successful application of reinforcement learning
is TD-gammon (Tesauro, 1992, 1995), a program that plays backgammon on world championship
level. Other applications include, for instance, automatic control of cars on highways (Pomerleau,
1989). Behavior cloning algorithms which learn from examples of good behavior have been applied
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to problems such as satellite control (Miiller & Wysotzki, 1995) and flight simulators (Sammut et al.,
1992).

Knowledge acquisition (e.g., Quinlan, 1989) is the process of elaborating background knowl-
edge on some domain from a domain expert and implementing this knowledge into an expert system.
Knowledge acquisition is generally considered to be the bottleneck of the construction of expert sys-
tems. Machine learning algorithms have been used to support this process by extracting knowledge
from examples of behavior rather than from descriptions of the expert (e.g., Gaines & Compton,
1992; Kang et al., 1995; Scheffer, 1996).

There are many other applications of machine learning; classification algorithms have been ap-
plied to problems of medical diagnosis (e.g., Ulbrich & Wysotzki, 1972; Richter & et al., 1974;
Kononenko, 1993), regression algorithms have often been applied to share price prediction, and many
other problems.

1.5 Principle Contributions

In this doctoral dissertation, | discuss a compound of questions on assessment of hypotheses and the
related selection of a good hypothesis language, and learner. The following is a sketch of the main
results.

1. | conduct a new analysis of the expected true error of the hypotheses which minimize the ob-
served error. The analysis characterizes the generalization error of the apparently best hypoth-
esis in the model in terms of the prior distribution of error rates in the model which can be
estimated efficiently. The results predict and thus explain learning curves much more precisely
than PAC-style results and thus contribute to a better understanding to the nature of generaliza-
tion.

2. As an immediate result, the analysis leads to an efficient algorithm for model selection; its
primary benefit is that it is much more efficient than cross validation, while usually being at
least as accurate. | conduct a series of empirical studies which support this claim. | demonstrate
the scalability of the algorithm on a text categorization problem.

3. I study in which situations conducting model selection leads to better generalization than not
conducting model selection. After a couple of generally negative results, | characterize a class
of learning scenarios (located in the gap between Bayesian and PAC learning) in which Occam
algorithms (which can be considered a “weak” form of model selection) perform better than
PAC learners. | develop a framework which quantifies the expected error of cross validation
based model selection.

4. The abovementioned framework has some practical implications: It provides an answer to the
guestion how the sample should be split into training and hold-out sets, and it predicts whether
cross validation based model selection (with respect to some given stratification) will do better
or worse than simple error minimization.

5. When many instantiations of a parametric learning algorithm (many learners have parameters
such as learning rates, regularization parameters, and so on) are being compared with respect to
their performance on a collection of data sets, some results will necessarily be optimistic while
other results will be pessimistic estimates of the true performance. The best observed accuracy
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is likely to be an optimistic estimate. | quantify just how optimistic this estimate is and discuss
the consequences of this result for the empirical assessment of learners.

6. In the model selection approach, the learner is constrained to a fixed model. By contrast, in
the boosting approach the hypothesis space is allowed to grow dynamically. By giving new
worst-case time bounds for the AdaBoost algorithm | show that in many cases the restriction to
small sets of hypotheses causes the high complexity of learning.

1.6 Organization

This Section gives an overview on the structure of the following chapters. In Chapter 2, | discuss some
principles of machine learning and introduce the necessary definitions and methodology. In Chapter
3, I present the new analysis of the error of hypotheses which minimize the empirical error rate and the
resulting model selection algorithm. 1 also present empirical results on learning Boolean functions and
on text categorization. Chapter 4 deals with the question when model selection is beneficial and, in
particular, what the expected error of cross validation based model selection is. Chapter 5 analyzes the
accuracy of the apparently best of many hypotheses, generated by differently parameterized learners.
Chapter 6 addresses the complexity of model selection based learning and Chapter 7 contains some
concluding remarks. The Appendix contains all proofs and derivations which exceed one page in
length. Appendix H furthermore contains a list of all frequently used abbreviations.



Chapter 2
Preliminaries

In this thesis, | study the problem of classification learning from labeled examples. Most results
refer to the expected generalization error of hypotheses which requires the existence of a “natural”
distribution of instances.

2.1 Terminology Used throughout the Book

Instances. There is a set of instances X and a finite set of class labels Y (sometimes, for simplicity,
Y is assumed to be the set {0,1}). A classification problem is defined by an unknown distribution
Dxy = Dy|xDx over labeled instances (X x Y), which has to be approximated as closely as
possible. Dy |x (y|x) is the chance that y is the class label of an observed instance x and Dk (z) is the
probability distribution or density which governs the instances x. In classical PAC theory, learning
problems are often defined as consisting of a function f from a class of target functions F' together
with a distribution Dx on instances. Sometimes it is more convenient to refer to the notation of
the target function f but note that this definition is subsumed by the notation of Lxy (proposed by
Kearns et al., 1992). Given a Dy and f one can define Dxy as Dy |x Dx where Dy x (y|z) is 1 iff
y = f(z), 0 otherwise.

Hypotheses and Error. A hypothesis & : X — Y is a mapping from instances to class labels. The
true (or generalization) error rate of a hypothesis, with respect to the (unknown) distribution Xy

is the difference between the predicted value h(x) and all class labels y, weighted with Ixy(z,y)

—more formally, Ep(h) = [, e x <y ¢(h(z),y)dDxy (z,y), where £ is the zero-one loss function.

Sometimes, when it is more convenient to talk about target functions f in conjunction with distribu-
tions Dx on instances, | write the error as Ey p, (h) = [£(h(z), f(z))dDx (x). | will switch be-

tween the notations of target functions f and target distributions Dxy-, using whichever is more appro-

priate in the given situation. Let the sample S be a sequence of labeled instances drawn independently
and identically distributed according to Dxy . The sample size is abbreviated /m throughout this book.
Each example is drawn according to Dxy or, put in another way, the whole sample is drawn accord-
ing to (Dxy)™. The empirical or observed error is the difference between the predicted value A (x)
and the class label observed in the sample, for all sample instances: £ (h) = L P (ay)es Lh(z), y).

A hypothesis that incurs an empirical error of zero for a sample S is said to be consistent with that
sample.

Hypothesis Language and Model. There is a given hypothesis language H which may be infinite
and may even have an infinite VC-dimension. A stratification of the hypothesis language is a finite
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sequence of models (H, ..., Hy), H; C H. The models do not have to properly include each other
(in fact, 1 do not even assume that the models are monotonically growing). But in Chapter 3, | will
assume that each model is a finite subset of H.

Learner. A learner L takes as input a sample S and a model H; and returns a hypothesis h;,. The

learner may be deterministic (in which case Ly, (.S) refers to the output of L for sample S), or stochas-
tic. In the latter case, P (h|S, H;) is a distribution (for finite H;) or a density (infinite H;) over

hypotheses. A learner may determine the set H'(S) = {h € H; : Es(h) = minyepy,(Es(h'))}

of hypotheses with least empirical error. There is at least one such hypothesis. | will call a learner
which determines H;(S) and draws one hypothesis from this set at random an ERM learner (error
minimizing learner) an the corresponding hypotheses ERM hypotheses.

Definition 2.1.1 (ERM Learner) Given a sample S and a model H; an ERM Learner L(S, H;) re-
turns a hypothesis 4z, with minimum empirical error Eg(hr) = minpem, Es(h) on S. If there are
multiple hypotheses with the same minimum error, the learner picks one of them at random under
uniform distribution.

Learningcurve. Let (Hy,. .., Hy) be a stratification of models and let L be a learner. For a sample S,
a learning curve is a set of points (i, Ep (L, (S))) —i.e., the learning curve displays the generalization
error incurred by learner L on model H; for all models. When the sample is not fixed yet, the expected
learning curve for a fixed sample size m can be plotted. When no target distribution but a prior
distribution over targets, P(Dxy ), is fixed, the expected learning curve over all targets can be plotted.
Often, learning curves are “U” shaped. Model selection algorithms try to determine the minimum of
the learning curve. Unless the target distribution Dyy is known, the learning curve can only be
estimated; often, the cross validation error is plotted.

Notations. | generally write probability distributions and densities in the form F,,(f(z) = y) where
the subscript z indicates that x is a random variable. The distribution of = should become clear in the
given context. P, (f(z) = y) refers to the density of f(X) at = and can, for discrete distributions,
be thought of as the chance of drawing an z such that f(z) = y. Similarly, I write E,(f(z)) for
the expectation of f(x) over all = (again, the distribution of = becomes clear in the context). | write
the binomial distribution as B[n, p](z), denoting the chance of observing = marked instances, when
drawing n instances with replacement and the chance of observing a marked instance is p. The hyper-
geometric distribution is written H|[m, p, ¢|/(z) and quantifies the chance that = instances are marked
when we draw c instances from a set of m instances of which p x m are marked.

2.2 Modelsof Generalization

In this Section, | discuss three distinct mathematical models of generalization and their relations. In
the theory of computation, there is a canonical model of computability (the Turing machine) which en-
tails all other models of computability (e.g., the Lambda calculus) and completely entails the intuition
of computability. Unfortunately, there is no such canonical model of learnability which is powerful
enough to completely capture the intuition of learning. Instead, there is a hierarchy of learnability
classes in the identification in the limit framework (e.g., Angluin & Smith, 1983; Jain et al., 1999)
and orthogonal concepts of learnability in other frameworks, such as PAC theory (Valiant, 1984), the
Bayesian framework (e.g., Berger, 1985), and the Statistical Physics framework (e.g., Tishby, 1995).
In the following, | will briefly survey the “vanilla” versions of some of these models and their rela-
tions. In this survey, | will come to a new result on the relationship between identification in the limit
and PAC theory.
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2.2.1 Gold’sFramework of Learning

The construction of the identification in the limit model (Gold, 1967) was guided by the intuition of
language acquisition; the related study of language acquisition in linguistics (Wexler & Culicover,
1980) has revealed some restrictions on the grammatical structure of natural languages which are
necessary for languages to be learnable. A learner is said to identify a function (or language) class
in the limit iff it can be guaranteed to win the following game: (a) The learner is given the class of
possible target functions. (b) The teacher starts producing a “text” (i.e., a sequence of instances which
may consist of only positive or of positive and negative examples) such that every example occurs
eventually. (c) After each new instance is read, the learner may change its mind and make a new
hypothesis (or conjecture) about the target function. The learner wins the game if, after only finitely
many mind changes, the hypothesis is correct and does not change upon reading new instances any
more. This definition of learning is referred to as explanatory learning; the corresponding class of
learnable function classes is abbreviated EX. An easy example for a class of functions in EX is
the class of functions f : IN — IN (where IN denotes the natural numbers) that are zero almost
everywhere (i.e., everywhere except in finitely many places). A learner which reproduces all observed
nonzero function values and guesses zero at all other places identifies this class in the limit. Since
there are only finitely many nonzero values and every example occurs eventually, the learner will have
observed all nonzero values after finitely many examples. Note, however, that the learner does not
know when it has identifies the target and, in fact, the number of examples cannot be bounded (there
may be arbitrarily many nonzero values). By contrast, the class of all computable functions cannot be
learned in the limit by any computable machine (Gold, 1967).

There are two important variations of Gold’s learning paradigm: A learner identifies the target
function behaviorently correct (the corresponding learnability class is abbreviated BC) if it makes
only finitely many erroneous predictions and, from some finite point on, keeps making true predictions
although it may still change its conjecture about the target function. BC' can be shown to be a proper
superset of EX (Barzdin, 1974; Case & Smith, 1983). Finite identification (or “one-shot learning”,
learnability class F'IN) imposes a further restriction on the learner: After finitely many examples, the
learner has to come up with one correct hypothesis; the learner may not change its mind. Clearly, this
setting is more restrictive than £ X-learning since the learner has to be aware whether the data seen
so far suffices for a correct conjecture. Not surprisingly, FIN C EX (Lindner, 1972).

One of the many compounds of questions which are studied within the identification in the limit
framework is the learnability relative to oracles (e.g., Bshouty et al., 1994; Kobler & Lindner, 1997;
Stephan, 1998). A set A is computable relatively to an oracle B if there is an algorithm that computes
A which is allowed to ask questions of the form “is « in B?”. Similarly, a class of functions is learnable
relatively to an oracle B if an algorithm which may ask questions of the form “is z in B?” can identify
it. A massive corpus of results exists on identifiability of functions relative to queries to a teacher (e.g.,
Gasarch & Smith, 1988; Angluin, 1993), and on learnability of function classes by teams of learners
(e.g., Jain & Sharma, 1990; Smith, 1994). For a detailed overview on the identification in the limit
framework the reader is referred to (Jain et al., 1999).

2.2.2 ThePAC and VC Models of Generalization

The PAC framework of generalization (Valiant, 1984) (for an overview, see Kearns & Vazirani, 1994;
Vidyasagar, 1997) is more strongly focused on efficient learning and learning from fixed-sized sam-
ples. In PAC theory, one distinguishes between a hypothesis language H and a class of target functions
F. Alearner L is a PAC generalizer if it can be guaranteed to win the following game: (a) The learner
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gets to know the class of possible target functions F' but no further information on the target. The
learner is also given parameters ¢ and §. (b) At this point, the learner can request a required sample
size . Note that the sample size must only depend on F', H, and the parameters as no further infor-
mation is available at this point. (c) The “teacher” now fixes a target function f € F' and an arbitrary
distribution Dy on instances. The teacher is free to choose any target function and may, for instance,
always select the function which matches the learning bias of L the worst. (d) When a sample S of
labeled instances of size m is drawn according to Dy and f and given to the learner, the chance of
the learner returning a hypothesis /;, such that P(Ep, ;(hr) > €) must not exceed ¢.

Hence, the learner wins (and is a PAC generalizer) if the chance of drawing a sample S of size m
such that the resulting hypothesis incurs an error of more than ¢ is below ¢ for every I and f € F.
PAC theory is a worst case theory in two respects: The chosen sample size has to suffice for any
distribution Dy and for any target function f € F. Furthermore, most PAC bounds on the required
sample size hold for any learner — i.e., the bounds are subject to the additional assumption that the
learner manages to select the worst possible hypothesis. What makes this setting particularly hard is,
as we will see later, that there has to be a fixed sample size (depending only on F', H, ¢, and ) which
suffices for all Dx and f. A PAC learner is said to be a polynomial PAC learner for F' if the required
sample size and the total running time are polynomial in%, % and the size parameter of F' (usually
the number of attributes n).

PAC theory is most concerned about which function classes can be learned polynomially (i.e.,
learned in polynomial time and from a polynomially sized sample). The most fundamental learnability
result has been obtained by Blumer et al. (1987): The chance that the error of any hypothesis &,
which is consistent with a sample of size m exceeds an error of e can be bounded by P(£), ¢(hr) >
e|Eg(hr) = 0,m) < |H|(1 —¢e)™. As a corollary, one can conclude that for any hypothesis A,
(which is consistent with a sample of size m) P(Ep, r(h) > €|Es(hy) = 0,m) < ¢ holds if the

sample size is at least m < % log % because

[H]

P(Ep, ;(hy) > e|Bs(h) = 0,m) < |[H|(1 —¢) (315 5) <. @.1)

This elementary result provides an easy-to-follow scheme for conducting learnability proofs in the
PAC framework: A function class F' can be learned polynomially using hypothesis language H O F
if () log | H| (and hence the required sample size) is polynomial in n (where n is typically the number
of attributes) and (b) there is an algorithm which constructs a hypothesis which is consistent with
any sample in the class of target functions in polynomial time. Several function classes have been
shown to be polynomially learnable: Conjunctive concepts (Valiant, 1984), linear threshold units
(Blumer et al., 1989), k-DNF (Boolean disjunction with up to & literals per conjunction Valiant,
1985), k-CNF (Valiant, 1985), and k-decision lists (Rivest, 1987) are polynomially learnable for fixed
k. On the other hand, disjunctions of two conjunctions are not polynomially learnable (Valiant, 1984),
neither are conjunctions of two linear threshold units (Blumer et al., 1989), or conjunctive concepts
in structural domains which consist of at least two nodes with n unary attributes (Haussler, 1989).
Pattern languages with one variable (Mitchell et al., 1998) are not PAC learnable at all (not only not
polynomially learnable). It is still unknown whether Boolean formulae in disjunctive normal form
(DNF) are polynomially learnable and whether there exists a decision tree learner which runs in time
polynomial in the size of the smallest possible decision tree. In virtually any hypothesis space, a
locally optimal hypothesis can be found in polynomial time (Greiner, 1996).

Some function classes are not polynomially learnable when H equals F' because there is no poly-
nomial algorithm which constructs a consistent hypothesis. In some cases, these classes become
polynomially learnable when the hypothesis language H is extended. This is a puzzling finding as
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learning generally becomes more difficult for larger hypothesis spaces. One example of this is k-term
CNF(n) which contains conjunctive normal forms with up to &£ conjunctions of disjunctions (with
arbitrarily many literals) over n variables (Pitt & Valiant, 1988). Since log |k-term CNF| is polyno-
mial in n, the required sample size is polynomial, too. But in order to find a consistent hypothesis
one has to exhaust the whole hypothesis space which requires exponential computational effort. The
class k-DNF (disjunctions of conjunctions with up to % literals) is a superset of k-term CNF although
log |k-DNF is still polynomial (and so is the sample size required to learn £-DNF). However, while
learning k-term CNF requires to exhaust the whole space, there is a greedy algorithm which learns
k-DNF in polynomial time. The algorithm first finds a conjunction of up to & literals which covers at
least one positive and no negative example. The procedure then commits to this conjunction, removes
all covered instances, and recurs until all positive instances are covered. There are further examples
for cases in which extending H eases the learning task: While it is NP-complete to find a consistent
neural network with three units (Hoffgen et al., 1995), this task can be accomplished in O(n? log m)
when arbitrarily many units can be introduced by the learner (Chapter 6 and Scheffer & Stephan,
1998).

Classical PAC theory is subject to two major restrictions. First, the target function is assumed to
be a member of the hypothesis language (i.e., a consistent hypothesis is always assumed to exist) and,
second, the “standard” PAC bounds and proof techniques do only work for finite hypothesis languages.
The finiteness of H is a particularly strong restriction because finite languages are always PAC learn-
able (albeit not necessarily polynomially learnable). Agnostic learning theory (Kearns et al., 1992;
Haussler, 1992) aims at extending PAC theory to account for cases in which no hypothesis which is
consistent with the sample is available. Independently (but much earlier), Vapnik and Chervonenkis
(1971) developed a theory which is connected to PAC theory by a fundamental result and allows for
results which are very similar to the elementary results of agnostic learning theory. Vapnik tried to
find a statistical explanation for the success of Rosenblatt’s experiments on the perceptron (Rosen-
blatt, 1958). Since linear threshold units form an infinite hypothesis space, Vapnik and Chervonenkis
focused on the number of behaviorently distinct hypothesis to find a bound on the true error of hy-
potheses. The VC-dimension is a combinatorial property of hypothesis languages which accounts for
the number of behaviorently distinct hypotheses and is defined as follows: A set S is shattered by
a set H if for any subset S C S there is an element » € H such that S N h = S. Intuitively, S
is shattered by H iff S can be labeled in all possible 25! ways by H. The VC-dimension of H is
the largest number d such that there is a set .S with |S| = d which is shattered by H. Intuitively,
the VVC-dimension of some language H is d iff H can realize all 2 possible Boolean functions on d
instances. The fundamental result that links PAC and VC theory together is that a class of functions
F is PAC-learnable iff the VC-dimension of F' is finite (Blumer et al., 1989). The VC dimension can
now be used to bound the difference between the empirical and the true error of any hypothesis, based
on Chernoff bounds. This leads to lower (Ehrenfeucht et al., 1989) and upper (e.g., Vapnik, 1982,
1996) bounds on the sample size required for the empirical error of every hypothesis in the hypothesis
space being e-close to the corresponding true error. Vapnik (1982) proves that the largest difference
between true and empirical error rate of any hypothesis in the model is, with a confidence of at least
1 — 4, no more than

z\ld(logZTm—i-l)—i-log%

m

where d is the VC-dimension of H;.
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2.2.3 TheReéationship between PAC and Gold’'s Framewor k

What is the main difference between Gold’s and Valiant’s models of generalization? If we analyze
explanatory (EX) and PAC learning, two distinctions occur: (a) While EX learning requires an exact
match between f and h (a BC' learner is still required to emulate the behavior of f perfectly from
some point on), a PAC generalizer is only required to find a hypothesis the behavior of which is e-close
to the behavior of f with respect to Dx (with high probability). This argues that Gold’s framework
might be stronger than PAC learning. (b) At no point in time does the EX learner know that the target
function has been identified. A FIN learner, by contrast, does know when f has been identified but
even with the F'IN learner the required number of learning steps cannot be bounded a priori (i.e.,
before any examples have been observed). However, the sample size required by the PAC learner has
to be bounded, given only the class of target functions F' and no further information. This argues that
PAC is actually more restrictive than identification in the limit. 1 will now study the question which
of these frameworks is stronger, referring to a function class which has been studied in both, the PAC
and the identification in the limit framework — namely pattern languages.

The simple and intuitive notion of pattern languages was formally introduced by (Angluin, 1980a)
and has been studied extensively, both in the context of formal language theory and computational
learning theory. | refer the reader to Salomaa (1994a, 1994b) for a review of the work on pattern
languages in formal language theory.

A quick definition of pattern languages is useful for discussion. Let X (the alphabet) be a count-
able set of constants of the language and V' (disjoint from X) be a countable set of variables. Any
element of (X U V)* is a pattern. Let p be a pattern and let z, ..., z, be the list of all distinct
variables in p. Let strings wy,...,u, € 1. Then p{z1/u1,..., 2z, /u,} denotes the string w € X*
obtained by substituting «; for each occurrence of z; in p. The language generated by p is defined as
L(p) = {p{z1/u1,...,zn/un} | u1,...,u, € T1}. Let Pat denote the set of all patterns and PAT
denote the set of all pattern languages.

Angluin (1980b) showed that the class PAT is identifiable in the limit from only positive data
in Gold’s model. Since its introduction, pattern languages and their variants have been a subject of
intense study in the identification in the limit framework (for a review, see Shinohara & Arikawa,
1995). The reader should note that the definition of Angluin’s class, PAT, does not allow for empty
substitutions. If empty strings are allowed to be substituted for variables, this leads to the larger class,
ePAT, of extended pattern languages (see Shinohara, 1982). This class turns out to be very complex
and it is still open whether for finite alphabets of size > 1, ePAT can be identified in the limit from
only positive datal.

Since PAT is identifiable in the limit from only positive data, a natural question is if there is
any gain to be had if negative data is also present. Lange and Zeugmann (1993) observed that in the
presence of both positive and negative data, the class PAT is identifiable with 0 mind changes, that
is, there is a learner that after looking at sufficient number of positive and negative examples comes
up with the correct pattern for the language (this restricted “one-shot” version of identification in the
limit is referred to as finite identification). Theorem 1, however, proves that even 1-variable pattern
languages are not learnable in the PAC setting.

Theorem 1 (Mitchell, Scheffer, & Sharma, 1998) Let £ > 0. The VC-dimension of k-variable pat-
tern languages is unbounded.

!See Mitchell (1998) where a subclass of ePAT is shown to be identifiable in the limit from only positive data. Mitchell
et al. (1998) also show that ePAT is learnable if the alphabet size is 1 or cc.
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The proof of Theorem 1 can be found in (Mitchell et al., 1998). This Theorem is a significant
strengthening of Schapire’s negative result on general pattern languages (Schapire, 1990) and, at first
blush, seems to contradict the learnability result for k variable pattern languages by Kearns and Pitt
(1989). However, a closer look at the result of Kearns reveals that the learnability is only due to the
assumption that the length of the substitution strings be bounded. Is there a more precise explanation
why pattern languages are £ X learnable but even 1-variable pattern languages are not PAC learnable?

Theorem 2 (Mitchell, Scheffer, & Sharma, 1998) Let ¢ and § be given. Let L be a k-variable pat-
tern language and D be an arbitrary distribution on . Let S be an initial set of positive sentences
of size at least one and let l,;, = min{|z| | z € S}. Let h be any pattern consistent with a sample of
size at most rn > !aia log 51—y Then P(Errp,p[h] > ¢) < 4.

Theorem 2 (the proof can be found in Mitchell et al., 1998) claims that k-variables pattern lan-
guages can be learned, but that the required sample size can only be bounded after the first positive
example has been observed. The reason is that, after the first positive sentence has been read, the
length of the target pattern and the alphabet can be bounded which renders the space of possible target
patterns finite and thus PAC learnable. So far, we have seen that FIN and PAC have a nonempty
intersection. This raises the question whether PAC' is a subset of F'IN. This, however, is not the
case. In fact, PAC is not even a subset of BC. Consider the class ZO of linear threshold functions
over the one-dimensional real-valued interval [0,1]. The VC dimension of this ZO is 2. But ZO
cannot be BC-identified in the limit.

Theorem 3 The class of threshold functions over the one-dimensional real-valued interval [0, 1] can-
not be BC-identified in the limit (ZO ¢ BC).

Proof. Let the target function be z < ¢ where ¢ is drawn quasi-uniformly from the interval [0, 1]. |
will show that, after m positive and m negative instances have been observed, the expected difference
between h and f is still positive (i.e., there is no sample size n from which on the hypothesis behaves
correctly). Let xzq,...,z,, be the positive and Z, ..., Z,, the negative examples. According to the
definition of P(f), the positive instances are drawn quasi-uniformly from the interval [0, ¢] and the
negatives from (¢, 1]. Let x4, = max{x;} be the largest positive and z,,;,, = min{z;} the least

negative instances. Since the negatives are drawn from the open interval (¢, 1], Znin —Zmaz > 0 holds.

The quasi-uniform distribution of ¢ together with the bounds of Z,;, and x,,.. for possible values

of ¢ induce a quasi-uniform distribution of ¢ in the interval [%,40, Tmin)- L€t £, Zmaz <t < Zimin,

be the guess for ¢ made by some learner. Then, averaged over all possible ¢ (distributed according to
P(f) restricted on [Z,n4e, Tmin)) the difference between ¢ and is ffﬂ’j{j: |t — t|dt = Zmaz—Tmin > (),

Hence, the learner cannot be guaranteed to produce even a behaviorently correct hypothesis after 2m
steps (for arbitrary m). 1l

These results prove that the learnability concepts of PAC and identification in the limit are orthog-
onal, as illustrated in Figure 2.1.

2.24 TheBayesian Framework

Bayesian learning (Bayes, 1763) is focused on the posterior distribution P(f|S) of a function f hav-
ing generated the observed data S. Given P(f|S), one can construct the Bayes hypothesis 7 as
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)

Figure 2.1: Relation between PAC and identification in the limit.

follows: h*(z) = argmin, ¢y {3 €(f () — y)P(f]S)} where £ is the zero-one loss functior?. The
fundamental Theorem of Bayes is that the Bayes hypothesis minimizes the expected generalization er-
ror. Unfortunately, P(f|S) is hard to get hold of. Using Bayes rule, it can be reduced to P(S|f)%
and P(S) can be reduced to - P(S|f)P(f) (for the MAP hypothesis, P(S) does not have to be
determined as it is constant for all hypotheses, given a particular data set). P(S|f) can in some cases
be determined, but this still leaves us with two problems: P(f) has to be known in advance (which is
a strong assumption) and, in order to determine the Bayes hypothesis, one has to sum over the whole
space of functions f € F'. There is an ongoing philosophical debate about what P(f) “means”. While
frequentists like to think of probabilities as “objective” properties of intrinsically stochastic systems
(e.g., Neyman, 1967), Bayesians see probabilities as a means of modeling the behavior of a system by
a subject who cannot predict the precise behavior of that system, due to a limited level of informed-
ness (even if the system is not intrinsically stochastic). This motivates the notation of *“subjective
probabilities”. Some Bayesians take this idea one step further and think of probabilities as subjective
beliefs about the chances of events (again, the underlying systems are not required to be intrinsically
stochastic). For a more detailed discussion on the meaning of probability, see Berger (1985), Jeffreys
(1961), de Finetti (1972), Schafer (1981), Good (1983). As far as it concerns the results in this book,
probabilities can be interpreted as both, intrinsically to the system and subjectively based on lack of
information, but I will distinguish between “actual” probabilities of the physical reality and the belief
of some agent.

Since computing the Bayes hypothesis (even if P(f|S) is given) is extremely expensive, several
heuristics have been proposed. A well-known heuristic is to choose the MAP (maximum a posteriori)
hypothesis which maximizes P(f|S). Minimum description length (MDL) (Rissanen, 1978, 1985,
1989) is another well-known heuristic. In order to communicate a sample of labeled instances one
can transmit the data set by itself or, alternatively, find a hypothesis which covers some of the instances
and append those instances which are not properly classified by the hypothesis (the exceptions). The
more complex this hypothesis is, the more examples will be covered and the less exceptions have to be
appended. The MDL hypothesis is the one which minimizes the description length of the hypothesis
plus the description length of the exceptions. Of course, determining the description length of a
hypothesis requires the definition of an optimal code which, in turn, requires knowledge of the prior
distribution P(f).

Certainly, one of the main drawbacks of the Bayesian framework (including MDL and MAP hy-
potheses) if its demand for P(f) to be known. The third No-Free-Lunch Theorem (Wolpert, 1992)

2For function approximation (as opposed to classification), usually the quadratic loss is chosen as ¢-function and the
corresponding Bayes hypothesis can then be guaranteed to minimize the quadratic loss
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claims that when P(f) is not known and the learner assumes some Q(f), the expected off-sample
error (averaged over all possible priors P(f)) is just the error achieved by random guessing. It is,
however, most interesting (and realistic) to assume that some knowledge on P(f) is given (this sce-
nario is referred to as robust Bayesian learning; e.g., Berger, 1993). Technically, this is modeled by
assuming that the true P(f) is an element of a class of possible distributions. Several classes of dis-
tributions have been studied intensely. e-contamination classes are defined as all distributions Q(f)
which can be written as (1 — €)g + ec where ¢ is an assumed prior and ¢ € C' is the contamination; C
can, for instance, be defined as the class of all distributions (e.g., Berger & Berliner, 1986; Moreno
& Cano, 1991; Bose, 1994). Moment classes contain all priors with a common set of moments (e.g.,
Sivaganesan & Berger, 1993; Goutis, 1991). Density bands are classes of priors Q (k) which lie be-
tween bounds L(h) < Q(h) < U(h). Consequently, such priors do not necessarily have to integrate
to 1. The justification of such generalized priors is that if it cannot be guaranteed that the target func-
tion is in H, then [, P(h) can be less than 1 (e.g., DeRobertis, 1978; Hartigan, 1983; Lavine, 1992;
Sivaganesan, 1994). Many other classes of priors are studied, such as quantile classes (Cano et al.,
1985), mixture classes (Bose, 1993), and shape or smoothness classes (Bose, 1994). The hypothesis
found by a robust Bayesian learner is off by 3" (P (f[S) — Q(f]5))f(z)) when P(f]S) is the actual

and Q(f1]S) the assumed posterior, which also yields implications on the gain on error incurred by a
lack of knowledge on the prior.

2.25 Linksbetween PAC/VC and Bayesian L earning

Relations between the VC framework and Bayesian learning have been characterized by Haussler
et al. (1994). Haussler et al. show how the VC dimension can be related to the learning curves of
Bayesian learners (under both correct and inaccurate priors). McAllester (1998) gives some PAC
style error bounds for consistent hypotheses, in the presence of a (known) prior distribution. An-
other interesting link between PAC and Bayesian learning is given by the No-Free-Lunch Theorems
(Wolpert, 1992): Due to the worst-case nature of PAC theory (worst-case with respect to the target
function), the PAC error bounds can be achieved by any learner which reflects the data but behaves
arbitrarily poorly on all other instances. The No-Free-Lunch Theorems prove that it is impossible
to generalize a function for unobserved instances unless information on the prior is given. Baxter
(1997a) has studied a link between hierarchical Bayesian learning and the PAC/VC framework. A
hierarchical Bayesian learner (Good, 1983) is one that has a prior distribution P(P(f)) over priors
over target functions available; i.e., it does not know the actual prior P(f) but it knows how likely
certain priors are. By studying a sequence of learning problems, a hierarchical Bayesian learner can
attempt to identify the prior P(f) that actually generates the target functions which in turn generate
the data. Baxter (1997b) gives a PAC-style analysis which bounds the number of learning problems
which have to be observed for the prior to be estimated to some degree of accuracy. His main result
are (PAC-style) error bounds for the n-th hypothesis (after n — 1 problems have been observed) which
are considerably lower than the known bounds on stand-alone learning problems.

In Chapter 4, | will establish further links by studying how partial knowledge on the prior can
improve the sample complexity, compared to a PAC learner which has no such knowledge. 1 will also
discuss the learnability of function classes which are not PAC-learnable without knowledge on the
prior.
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2.3 NoFreelLunch

In Section 1.2, | discussed the question whether any learning bias can be superior to all other learning
biases informally. PAC results by Blumer et al. (1987) and similar VC style results (Vapnik, 1998)
which show that we can be more certain about the error rate of a hypothesis which has been learned
from a small hypothesis language than we can be about the error rate of a hypothesis which origins
from a large hypothesis language give rise to the idea that this might be the case. This idea experiences
further intuitive support by Breiman’s bias-variance decomposition (Breiman et al., 1984). Breiman
et al. split the error rate of the CART algorithm into a bias term (which is the error rate of the tree of
a given depth which has the class labels assigned optimally to the leaf nodes) and the variance term
(which is the error rate that is imposed by an improper labeling of the nodes caused by insufficient
data). Breiman then shows that the bias term decreases when the hypothesis complexity (i.e., the tree
depth) is increased. He also shows that we know less about the variance term of the error when the
complexity grows (i.e., worse bounds can be proven) which is frequently misunderstood as meaning
that the variance term increases. These results have lead to the general believe that there is such a
thing as a “good” learning bias and that, in particular, the complexity of the hypothesis has to be
regularized (i.e., a model has to be selected) for the hypothesis to be accurate. However, examples of
complementary behavior have been observed. Fisher and Schlimmer (1988) have observed problems
for which unpruned decision trees outperform decision trees with regularized complexity. Schaffer
(1993a, 1993b) shows several controlled experiments which support the idea that the suitability of a
particular learning bias is a property of the learning problem studied, rather than being a property of
the learning bias. Schaffer (1994) argues that conducting model selection is just a particular learning
bias rather than being inherently useful. Wolpert (1993) has studied this question mathematically and
came to a result which clarifies the meaning of the learning bias. The No-Free-Lunch Theorems claim
that, uniformly averaged over all problems, two learning biases are equally good, provided that all
learners minimize the empirical error.

Theorem 4 (Wolpert, 1992, 1993, 1995) Let I, and L, be two arbitrary learners which imple-
ment distributions P (h|S) and Py(hr|S) over returned hypotheses. Let E;%(Ly(S)) =
Jn, E°dPy(hr|S) and E;%(Ly(S)) be the expected off-sample error of 7y, incurred by learners
L, and Lo, respectively (the true error on all instances except for those which occur in the sample).
Let Dxy = Dy |x Dx where Dy x implements a function from X to Y (Dy x (y|z) = 1ify = f(=)
and 0 otherwise). Let, furthermore, X and Y be finite’. The following equations hold for all Dy and
uniformly averaged over all f.

1. Uniformly averaged over all targets functions f, E{ny,s}(EBS(Ll(S)”DXYam) -

E{nyys}(EBS(LQ(S)ﬂDXy,m) = 0. In other words, for any Dx and uniformly averaged
over all targets f, two learners incur an equal off-sample error.

2. Uniformly averaged over all targets f, for any sample S, E{DXY}(EE,S(Ll(S)HDXy, S) —
E{DXY}(EBS(LQ(S)NDXy,S) = 0. For any sample S, two learners incur an equal off-
sample error, averaged over all targets.

3. Uniformly  averaged over all distributions on target functions  P(f),
E(p(),s} (E;)S(Ll(S))m) — E{p(s),5} (EBS(_LQ_(S))W_L) = 0. When the prior P(f) is not
known, two learners (which perhaps assume distinct priors) perform equally well, averaged
over all possible priors.

3The No-Free-Lunch Theorems can extended to cover countable (but infinite) domains X (Wolpert, 1993)
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4. Uniformly averaged over all P(f) and for all samples S, E{P(f)}(EBS(Ll(S))|S) -
E{p(f)}(EBS(LQ(S)ﬂS) = 0. When the prior P(f) is not known, two learners (which perhaps
assume distinct priors) perform equally well, averaged over all possible priors, for any given
sample.

The first and third No-Free-Lunch Theorems discuss the expected (off-sample) error rate when no
sample has been drawn yet. By contrast, Theorems two and four discuss the error rate for a particular
sample. Note that the definition of generalization error used in this book (see Section 2.1) resembles
the error rates used in Theorems (1) and (3) (but note that the No-Free-Lunch Theorems refer to the
off-sample error rather than the generalization error). Claims (1) and (2) hold for a particular problem
while Claims (3) and (4) discuss the expected error rate over a distribution of problems. In Section
1.2, I discussed an example which demonstrates that, when only four instances are not present in the
sample, there are 2* hypotheses that are consistent with the sample and assign distinct combinations
of class labels to the four remaining instances. There are also 2 target functions which assign distinct
combinations of class labels to these instances. When we average the error rate of any of these
hypotheses over the 2* possible target functions, it turns out that all error rates are, on average, equal.

The No-Free-Lunch Theorems explain that it is impossible to construct a learner which is both
general and accurate. But this does not mean that, for a particular problem, all learners are equally
good. But when learner L; is superior to Ly for a given problem, this implies that there is at least
one problem for which L is superior, because both learners are equally good when we average over
all possible problems. The only way in which we can construct a learner which is better than average
for a particular (set of) problems is to implement additional assumptions on the target problems in the
learner and thereby narrow the range of suited applications of the learner down. Note that this does
not contradict the assumption that machine learning as such is useful. It only means that, in order
to obtain good learning results, it is necessary to implement as much background knowledge into the
learning algorithm as is available on the focused problems.

2.4 Modd Selection

| discussed the intuition of model selection and some well-known model selection techniques infor-
mally in Section 1.3. In this Section, | will treat some techniques more formally and summarize some
results on these approaches. Generally, the task of model selection is to select a model H such that
a given learner minimizes the expected loss when using model H. Since all results presented in this
thesis refer to the zero-one loss function (or generalization error), the discussion in this Section is
restricted to the generalization error as loss function.

Model selection requires the definition of a stratification of models (H, ..., Hy), where each
H; is a set of hypotheses. Some algorithms require that the H be a sequence of nested models
(Hy C Hy C ... C Hy) and, in some cases, the sequence is allowed to be infinite. Furthermore, a
learner Ly, is fixed which either maps samples to hypotheses in H; or, when Ly, is nondeterministic,
is characterized by a distribution F;,(h|S, H;) over hypotheses, given a sample. A model selection
problem is then given by ((Hi, ..., Hg), L, m); the task of a model selection algorithm is to select
a model H; such that, for deterministic learners, the expected error of Iy, (S), E{sy(Ep(Lu,(5)))
and, for nondeterministic learners, the expected generalization error over all possible resulting hy-
pOtheseS E{S,hL}(ED (hL)) = th ED(hL)dPL(hL|S, H;, ny) is minimized.
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hypothesis version
space space

stratification A stratification B

Figure 2.2: Occam’s Razor: Two competing Occam learners give distinct guarantees for hypotheses
h1 through hs: Learner A guarantees that (with high probability) & incurs at most a very low error ¢,
hs incurs at most a slightly greater error &, and hg incurs at most a fairly high error . By contrast,
learner B guarantees a fairly low error &, for hypothesis hy and gives only a weak guarantee of & for
hi. This is because the two learners operate with respect to distinct stratifications which give different
definitions of “simple”. The No-free-Lunch Theorems claim that &, hs, and h3 have equal errors,
averaged over all target concepts, and are therefore equally good.

2.4.1 Occam Algorithms

Occam’s Razor is one of the oldest elements of folk-lore in machine learning. It dates back to the
work of William of Ockham, a 14th century philosopher. Back then, William claimed that “items
should not be multiplied unnecessarily”. In machine learning, this statement is generously translated
to “the simplest of many explanations is the best one” and generally referred to as the Occam’s Razor
principle. The justification that PAC theory gives for this statement (Blumer et al., 1987) is that
the error bounds for hypotheses that are consistent with the sample become weaker as the size (or
complexity) of the hypothesis grows. As we have seen in Chapter 1, it can easily be proven that
P(Ep(h*) > e|Eg(h*) = 0,m) < |H|(1—¢)™. This motivates Occam algorithms (which require the
stratification to be nested, H, C ... C Hj) to select the smallest index i such that L, (S) is consistent

with the sample. An example of such an Occam algorithm is the vanilla Support Vector Machine. The
Support Vector Machine defines the stratification of the models in terms of the distance between the
hyper-plane and positive and negative examples. Because all models are infinite (hyper-planes are
defined in terms of real-valued vectors), the VC dimension is considered as a measure of the number
of behaviorently distinct hypotheses. Note, however, that the stratification of models depends on the
sample (obviously, the distance between the plane and positive and negative examples depends on the
examples) which makes all guarantees that the Support Vector Machine comes with approximate. At
first blush, returning a hypothesis from a restricted subset of the hypothesis space seems reasonable
as it will enable us to give better guarantees on the accuracy of the returned hypothesis. However, we
have to wonder whether it becomes only possible to prove a better bound on the largest difference
between empirical and true error of any hypothesis, or whether the accuracy of the returned hypothesis
actually increases when we choose the smallest sufficient model. Suppose that there are two Occam
learners, A and B with different stratifications, 4 C ... C A4 and B, through By, respectively,

as illustrated in Figure 2.2. The version space entails all hypotheses which are consistent with some
sample. Perhaps learners A and B use distinct encoding schemes for hypotheses and so their opinions
about which hypotheses are “simple” and thus belong into a model with small index differ. According
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to Vapnik (1982), learner A can prove a much better bound for 4 € A; than it can for hs which
lies only in As. This is because model As (which is larger than A;) is much more likely to contain
a hypothesis that is consistent with the sample that incurs an unusually great true error and, in the
worst case, A could return this hypothesis. By contrast, learner B guarantees a fairly low error s
for hypothesis h, and gives only a weak guarantee of g for h; (because Bs is larger than B, and
more likely to contain an unusually poor hypothesis which learner B could return, in the worst case).
Is hy (which learner A prefers to hy and hs) intrinsically better than h3? The clear answer which
is provided by the first claim of the No-Free-Lunch Theorems is no. Uniformly averaged over all
target functions, all three hypotheses incur an equally large generalization error (because all three
of them are consistent with the sample). Therefore, neither of the learners A and B is intrinsically
superior to the other one. Learner A does better for target functions which lie “on the left hand side”
of the hypothesis space of Figure 2.2 (because in this case there is a hypothesis in a model with small
index of stratification A which is consistent with the sample which will allow learner A to guarantee
a low error) while learner B will be performs better for target functions “on the right hand side” of
Figure 2.2. This argues that in a Bayesian scenario (where certain target functions are more likely
than others) Occam’s razor can indeed be justified. Suppose that the models are stratified such that
P(Hy) > ... > P(Hy) (where P(f) is the prior probability of f being the target). Thus, when
one picks the hypothesis which is consistent with the sample from the model with the least index,
one maximizes the prior and thereby the posterior probability that the selected hypothesis is the target
function. When the prior P(f) is known, one can construct an optimal representation scheme H. Such
an optimal representation minimizes the message length which is required to transmit functions, when
these functions are drawn with respect to P(f). In an optimal coding scheme, functions which occur
frequently are represented by shorter texts than those occurring only very infrequently. In this context,
Occam algorithms certainly make sense: By choosing the shortest hypothesis that is consistent with
the sample one maximizes the prior probability (and thereby implicitly the posterior probability) of
picking the correct target function.

Occam algorithms are a special case of model selection algorithms because they do not trade off
increases in empirical error against increases in complexity, but only select between several hypothe-
ses that are consistent with the sample.

2.4.2 Complexity Penalization

Occam algorithms which only return hypotheses that are consistent with the sample are a special
case of complexity penalization algorithms. A complexity penalization algorithm uses a stratifica-
tion (Hy,...,) with H; C H;; and returns the hypothesis ~ which minimizes a demerit criterion
G(Es(h), H;) where H; is the model with the smallest index 7 in which hypothesis / occurs. The
penalty term G (-, ) penalizes the size or, (more frequently) when the models are infinite, the number
of free parameters (Moody & Utans, 1992; Moody, 1992) or VC dimension (Vapnik, 1998) of the
model H; in which a focused hypothesis h occurs for the first time in the stratification. Frequently,
G(Es(h), H;) = Es(h) + penalty(H;). By means of a penalization term, complexity penalization
algorithms try to reconstruct the learning curve (i, Ep(Lg,(S))) from only Es(h) and some com-

plexity measure of H;. Ideally, G should be such that G(Es(h), H;) is a close guess of Ep(h).

Sometimes, complexity penalization algorithms are thought of as penalizing the complexity (or VC
dimension) of a hypothesis. But note that the underlying suggestion that hypotheses possess an in-
trinsic complexity (or even a VVC dimension) is misleading. The complexity of a hypothesis can — if
at all — only be measured relatively to an encoding scheme. By varying the encoding scheme, we can
assign a hypothesis any description length which we wish to. It is even more confusing to speak of the
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VC dimension of a hypothesis, because the VC dimension is only defined for sets, not for elements
(see Section 2.2.2). The VC dimension of the model H; which 4 is included in depends on which
hypotheses we wish to group into H; — a completely arbitrary decision. An example of complexity
penalization is the Support Vector Machine (SVM). While the original SVM (Vapnik, 1982) required
the empirical error to be zero (see Section 2.4.1), the SVM as extended by Cortes and Vapnik (1995)
minimizes the empirical error plus an approximated worst-case bound on the difference between true
and empirical error of any hypothesis in the model.

Often, Minimum Description Length (MDL; Rissanen, 1978, 1989) is considered to be a com-
plexity penalization based model selection algorithm. This is essentially correct because MDL tries
to reconstruct the learning curve (i, Ep(Lpy,(S))) from only the models H; and the empirical error
Es(Lg,(S)). 1t does so by considering the description length required to encode a hypothesis 4 from
H; plus the description length required to encode the difference between the examples (z,y) € S
and (z, h(x)), the empirical behavior of A on the instances = which occur in the sample. MDL then
chooses the model H; which minimizes the sum of these description lengths. However, one also
might instead think of MDL as a heuristic strategy of Bayesian learning, because MDL assumes that
the prior P(f) be known (the prior is required to determine the optimal code) but selects a hypothesis
which is distinct from (but much easier to determine than) the Bayes hypothesis (see Section 2.2.4).
For a discussion of the MDL principle and its applications to machine learning see, e.g., , (Oliver &
Baxter, 1994; Mehta et al., 1995; Oliver et al., 1996; Atteson, 1991; Grinwald, 1996; Quinlan &
Rivest, 1987).

Complexity penalization based model selection algorithm reflect the idea that the generalization
error is an intrinsic property of the hypothesis language — because they try to reconstruct the learning
curve from only the empirical error and some complexity measure of the hypothesis space. The
considerations discussed in Sections 1.2 and 2.3 show that this approach has certain limitations. For
some problems and stratifications, the (variance term of the) generalization error increases steeply
with increasing model index while for other problems and stratifications this is not the case. It is
always possible to construct a pair of learning problems, one with a steeply increasing and one with
a flat generalization error curve. Any complexity penalization algorithm can only perform well for
one of these two problems and will fail (i.e., produce an additional constant error A which does not
decrease with increasing sample size) for the other. This has been proven by Kearns et al. (1997)
and has been observed empirically by Schuurmans et al. (1997). This is an inherent weakness of
complexity penalization; by contrast, a cross validation based model selection algorithm can perform
“reasonable” for all model selection problems.

Virtually all “practical” learners employ some sort of complexity penalization technique; for in-
stance, decision tree learners (e.g., Mingers, 1989; Quinlan, 1993; Miiller & Wysotzki, 1992), and
many neural network based algorithms (e.g., Cun et al., 1989).

2.4.3 CrossValidation

The term cross validation or, slightly more general, hold-out testing entails a wide range of techniques
for estimation of misclassification probabilities and, intimately related, choosing a model, or a learning
algorithm, which minimizes this estimate. Many cross validation based techniques do not only provide
an estimate of the error but also an (often biased) estimate of the variance, cross validation results are
also used to support (approximate) guarantees that, for a given problem, one technique performs better
than another one (with high confidence).

Suppose that we have a hypothesis h with true error Ep(h). When we draw a sample S with m
independent and identically distributed instances, we can measure the empirical error & (h). When h
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has been chosen such that it minimizes Es(h), then Eg(h) is a strongly optimistically biased estimate
of Ep(h) —ie., Eqs1(Ep(h) — Es(Lp,(S))) is in this case positive. In the earliest days of pattern
recognition, this training set error has been proposed as an estimate of the true error rate (Smith,
1947) but such an estimate cannot be used to select a model because it would always tend towards
greater models which impose a stronger bias. However, when the choice of A is independent of
the sample S (i.e., S is a hold-out sample which has not been used for training), then E(h) is

distributed according to B[m, Ep(h)], where B is the binomial distribution. The technique of splitting
the available sample into a training set and a hold-out set (originally known as H method, or hold-
out testing) has been proposed by Highleyman (1962). When m is greater than 30, the empirical
error is approximately normally distributed. This is because the empirical error is essentially a sum
of many random variables — and the distribution of a sum of random variables always converges
towards a normal distribution (central limit theorem). Keeping this in mind, one can easily determine
the chance that the difference between true and empirical error exceeds a certain threshold. Such a
threshold which is not exceeded (with high confidence) is called a confidence bound.w

is governed by the normal distribution when o = /(1/m)Ep(h)(1 — Ep(h)) is the true standard

deviation of Eg(h) (this follows immediately from the central limit theorem). Of course, the standard
deviation is not known (the standard deviation requires the true mean value F,(h) which is unknown)

but it can be estimated. Let 5 = +/(1/m)Es(h)(1 — Eg(h)) be this estimate. Note that o can only

be estimated unbiasedly when the m examples are independent and identically distributed. Then
w is governed by Student’s ¢ distribution with n — 1 degrees of freedom. Thus, using a
table of the ¢ distribution one can easily determine the chance that E5 (k) is off by a threshold €. As a

rule of thumb, with a confidence of 95%, this difference is no more than 1.96,/ Zs((=Es (1) Thjs
estimate, however, is subject to a pessimistic bias because not the whole sample has been used for
training and we can expect the learner to do better when we do not hold back a part of the sample.

In order to reduce the variance of the estimate further (i.e., to tighten the confidence interval)
and to minimize the pessimistic bias which is caused by not using the hold-out set for training, other
methods have been proposed. n-fold 