
 Open access  Journal Article  DOI:10.1137/070684392

Error Estimation for Reduced-Order Models of Dynamical Systems — Source link 

Chris Homescu, Linda R. Petzold, Radu Serban

Published on: 01 Apr 2007 - Siam Review (Society for Industrial and Applied Mathematics)

Topics: Dynamical systems theory

Related papers:

 Turbulence and the dynamics of coherent structures. I. Coherent structures

 Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics

 Turbulence, Coherent Structures, Dynamical Systems and Symmetry

 Approximation of Large-Scale Dynamical Systems

 A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction

Share this paper:    

View more about this paper here: https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-
24acphntc8

https://typeset.io/
https://www.doi.org/10.1137/070684392
https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-24acphntc8
https://typeset.io/authors/chris-homescu-3472d22m0u
https://typeset.io/authors/linda-r-petzold-3hgxek4hfe
https://typeset.io/authors/radu-serban-2i6gp4vyqw
https://typeset.io/journals/siam-review-1q9nkckt
https://typeset.io/topics/dynamical-systems-theory-24op3dlk
https://typeset.io/papers/turbulence-and-the-dynamics-of-coherent-structures-i-1o6o6m60fm
https://typeset.io/papers/galerkin-proper-orthogonal-decomposition-methods-for-a-3hu8qdmxhp
https://typeset.io/papers/turbulence-coherent-structures-dynamical-systems-and-fqofnixbu9
https://typeset.io/papers/approximation-of-large-scale-dynamical-systems-kqz4ph0io3
https://typeset.io/papers/a-state-space-error-estimate-for-pod-deim-nonlinear-model-1648vs0fn0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-24acphntc8
https://twitter.com/intent/tweet?text=Error%20Estimation%20for%20Reduced-Order%20Models%20of%20Dynamical%20Systems&url=https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-24acphntc8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-24acphntc8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-24acphntc8
https://typeset.io/papers/error-estimation-for-reduced-order-models-of-dynamical-24acphntc8


UCRL-TR-201494

Error Estimation for Reduced

Order Models of Dynamical

Systems

C. Homescu, L.R. Petzold, and R. Serban

December 16, 2003

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This research was supported under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Approved for public release; further dissemination unlimited



Error Estimation for Reduced Order Models of Dynamical

Systems ∗

Chris Homescu
†

Linda R. Petzold
‡

Radu Serban
§

Abstract

The use of reduced order models to describe a dynamical system is pervasive in science

and engineering. Often these models are used without an estimate of their error or range of

validity. In this paper we consider dynamical systems and reduced models built using proper

orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a

combination of the small sample statistical condition estimation method and of error estimation

using the adjoint method.

More importantly, the proposed approach allows the assesment of so-called regions of validity

for reduced models, i.e., ranges of perturbations in the original system over which the reduced

model is still appropriate. This question is particularly important for applications in which

reduced models are used not just to approximate the solution to the system that provided the

data used in constructing the reduced model, but rather to approximate the solution of systems

perturbed from the original one.

Numerical examples validate our approach: the error norm estimates approximate well the

forward error while the derived bounds are within an order of magnitude.

∗This work was supported by DOE DE-FG03-00ER25430, NSF/NCSA ACI-9619019, and NSF/ITR ACI-0086061.
The work of the last author was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

†Department of Computer Science, University of California, Santa Barbara, California 93106
(homescu@cs.ucsb.edu)

‡Department of Computer Science, University of California, Santa Barbara, California 93106
(petzold@engineering.ucsb.edu)

§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551
(radu@llnl.gov)

1



Notation

y Solution of the original ODE system
f(t, y, p) Right hand side function for the original ODE
J(y, t, p) Jacobian of f with respect to y
K(y, t, p) Partial derivative of f with respect to the model parameters p

Φy Fundamental matrix evaluated along the trajectory y
Y Solution of a perturbed ODE system

δy0 Perturbation in the initial conditions
δp Perturbation in the model parameters
ȳ Mean value of POD data

yS Solution of the reduced model in subspace coordinates
ŷ Solution of the reduced model in full coordinates
S POD affine subspace
ρ Projection matrix onto S; ρ ∈ R

n×k

P Projection matrix expressed in full coordinates; P = ρρT ∈ R
n×n

e Error vector for the original ODE; e = ŷ − y
e0, ei Components of e; ei ∈ S, e0 ∈ S⊥

E1 Error vector for the perturbed ODE; E1 = Ŷ − Y

E2 Cummulative error vector for the perturbed ODE; E2 = Ŷ − y
∆ Additional error due to perturbation; ∆ = E1 − e

∆0, ∆i Components of ∆; ∆i ∈ S, ∆0 ∈ S⊥

λy Solution of an n-dimensional adjoint system evaluated along the trajectory y
µy Solution of a k-dimensional adjoint system evaluated along the trajectory y
Ψ Sensitivity matrix
z Unit vector uniformly and randomly selected from a unit sphere

Wn Wallis factor of order n
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1 Introduction

Model reduction of dynamical systems described by differential equations is pervasive in science
and engineering [1]. Reduced models are used for efficient simulation [13, 26] and control [24, 14].
Moreover, the process of creating low-order models forces the researcher to isolate and quantify
the dominant physical mechanisms, revealing effective design decisions that would not have been
identified through numerical simulation, experimentation or “black box” optimization methods [25].

The Proper Orthogonal Decomposition (POD) method has been used extensively in a variety of
fields including fluid dynamics [19], identification of coherent structures [10, 17], control [18, 23] and
inverse problems [15]. This method proved to be equally effective for industrial applications in many
fields, such as damage detection in structures [3], supersonic jet modelling [5], turbine flows [6],
thermal processing of foods [2], and study of the dynamic wind pressures acting on buildings [12], to
name only a few. A detailed description of the POD approach as a reduction method is presented
in [10], where it is shown that, for a given number of modes n, POD is the most efficient among
all linear decompositions as it retains, on average, the greatest possible kinetic energy . In other
words, POD provides the most efficient way of capturing the dominant components of an infinite-
dimensional process with only finitely many, and often surprisingly few, modes.

But as soon as one contemplates the use of a reduced model (such as POD-based reduced models),
questions concerning the quality of the approximation become paramount. To judge the quality of
the reduced model, it is especially important to analyze the error of this model, i.e., the difference
between the approximate and the exact solution. An algorithm for computing the error of a class
of reduction methods based on projection techniques is presented in [27]. In this approach, the
original problem is linearized around the initial time, and therefore the resulting first-order error
estimates are valid for only a small number of time steps (during which the Jacobian matrix can
be considered constant). In the context of fluid dynamics, bounds for the errors resulting from
POD model reduction were computed in [15], with results applied to the Navier Stokes equations
in 2-D. In this work, the approximation error was decomposed into a contribution that arises due
to the POD approximation in space (contribution measured in terms of the spectral properties
specifying the POD basis) and the usual approximation error due to backwards Euler scheme for
time integration. However, the resulting estimates make use of certain inequalities that, although
valid for the nonlinear evolution problem considered, may not be satisfied for other examples. Error
estimates for the reduced models by the adjoint approach were derived in [20]. In this work, the
authors employ the dual-weighted-residual (DWR) method, which uses the solution of an adjoint
system to obtain an estimate of the error for a certain functional of the solution.

First-order estimates of the POD errors have also been used as tools for deciding which regions of
the domain require more information than that available from the reduced model only [16]. Given
an approximate solution (with unknown accuracy) of the reduced model, an augmented POD basis
is constructed and the first order change in the solution due to the addidtional basis functions is
computed. By comparing against the results from a solution of known accuracy, such as one of the
snapshots used to generate the POD basis, the authors are able to decide on the need for domain
decomposition as well as its spatial extent.

In the present work, we take the analysis of reduced models one step further by studying and
quantifying the influence of perturbations in the original system on the quality of the approximation
given by the reduced model. This question is of particular interest in applications (such as control and
inverse problems) in which reduced models are used not just to approximate the solution of original
system that provided the data used in constructing the reduced model, but rather to approximate
the solution of systems perturbed from the original one. To the best of our knowledge, there are no
published results to address the model reduction error of such perturbed systems.

As described in details over the next sections, we base our approach on a combination of the
small sample statistical condition estimation (SCE) method [11] and adjoint models. Under this
framework, we are able to define so-called regions of validity of the reduced models, that is, ranges of
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perturbations in the original system over which the reduced model is still appropriate. We consider
perturbations in both the initial conditions and in parameters describing the dynamical system itself.
The proposed approach is particularly attractive as the resulting error bounds do not rely in the
solution of the perturbed system. In this sense, we provide an a-priori assesment of the validity of
the model-reduction approximation.

Unlike the method presented in [27], our estimates and bounds are valid over the entire time
interval considered and not only in a neighborhood of the initial time. Moreover, we obtain esimates
for the continuous error, as opposed to its discrete computation. Although we study only a particular
projection-based model reduction technique (POD) among those considered in [27], the methodology
developed here for POD can be easily extended to other types of projection. Compared to the
approach taken in [15], our method is applicable to a larger class of problems, our main requirement
being that the norm of the POD-based error is small enough for the linearized error equation to be
a good enough approximation. Furthermore, our estimates are independent of the time integration
method. Finally, we note that our use of adjoint models for error estimation is similar to that
employed in [20]. However, as will be seen below, the use of the SCE method enables the derivation
of error “condition numbers” and allows effective treatment of the regions of validity problem.

The remainder of this paper is organized as follows. In §2.1 and §2.2 we briefly describe the use
of POD for model reduction and the SCE method for norm estimation, respectively. In §2.3 we
motivate our proposed approach of using SCE, combined with error estimation using the adjoint
method, to estimate the errors due to the use of a reduced order model. In §3 we analyze errors
arising purely from the model reduction itself. We consider both the total approximation error
and the subspace integration error. In §4 we analyze regions of validity of POD reduced models.
§5 presents numerical results for several example problems, including semi-discretizations of time-
dependent PDEs, chemical reaction mechanisms, and plant physiology. Finally, §6 summarizes our
conclusions and indicates directions of future research.

2 Background

2.1 POD-based reduced models

POD provides a method for finding the best approximating affine subspace to a given set of data.
When using POD for model reduction of dynamical systems, the data are time snapshots of the
solution obtained via numerical simulations or from experiments.

Consider the ODE system
dy

dt
= f(y, t) , y(t0) = y0 , (1)

for t ∈ [t0, tf ], with y, y0 ∈ R
n and f : R

n × R → R
n. Consider next the solutions of (1) at m time

points, collected in the n×m matrix Y = [y(t1)− ȳ, y(t2)− ȳ, . . . y(tm)− ȳ], where ȳ is the mean of
these observations. POD seeks a subspace S ∈ R

n and the corresponding projection matrix PS so
that the total square distance

‖Y − PY‖2 =

m
∑

i=1

‖ (y(ti) − ȳ) − P (y(ti) − ȳ) ‖2

is minimized. Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 be the ordered eigenvalues of the correlation matrix

R = YYT . Then the minimum value of ‖Y − PY‖2 over all k-dimensional subspaces S, with k ≤ n,
is given by

∑n
j=k+1

λj . Moreover, the minimizing S is the invariant subspace corresponding to
the eigenvalues λ1, . . . , λk. Using the singular value decomposition [7] of the observation matrix,
UTYV = Σ, the projection matrix corresponding to the optimal POD subspace S is obtained as

P = ρρT ∈ R
n×n , (2)
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where ρ is the matrix of projection onto S, the subspace spanned by the reduced basis obtained
from the SVD. The matrix ρ ∈ R

n×k consists of the columns Vi (i = 1 . . . k), the singular vectors
corresponding to the k largest singular values.

In a coordinate system embedded in S, the projection of a point y onto S is represented by
yS = ρT (y− ȳ) ∈ R

k , while in the full space, the same projection is expressed as ỹ = P (y− ȳ)+ ȳ ≡
ρyS + ȳ ∈ R

n .
A POD-based reduced model that approximates the original problem (1) can then be con-

structed [22] by projecting onto S the vector field f(s, t) at each point s ∈ S. If yS are the subspace
coordinates of s, then

dyS

dt
= ρT f(ρyS + ȳ, t) , yS(t0) = ρT (y0 − ȳ) . (3)

From the above, it is easy to see that the approximate solution ŷ is the solution of the ODE IVP:

dŷ

dt
= Pf(ŷ, t) , ŷ(t0) = P (y0 − ȳ) + ȳ . (4)

2.2 Small sample statistical method for condition estimation

The small sample statistical condition estimation (SCE) method, originally proposed in [11], offers
an efficient means for condition estimation for general matrix functions, at the cost of allowing
moderate relative errors in the estimate. The basic idea is described below (for complete details, see
[11, 8]).

For any vector v ∈ R
n, if z is selected uniformly and randomly from the unit sphere Sn−1, the

expected value of zT v is proportional to the norm of v:

E(|zT v|) = Wn||v||

The proportionality factor, called the Wallis factor, depends only on n. It is defined as W1 = 1 and

Wn =















1 · 3 · · · (n − 2)

2 · 4 · · · (n − 1)
for n odd

2

π

2 · 4 · · · (n − 1)

1 · 3 · · · (n − 2)
for n even

and can be approximated by Wn ≈
√

2

π(n − 1

2
)
.

Thus, we use the expression ξ =
|zT v|
Wn

to estimate the norm ||v||. This estimate is first order in

the sense that the probability of a relative error in the estimate is inversely proportional to the size
of the error. That is, for γ > 1, we have

Pr

( ||v||
γ

≤ ξ ≤ γ||v||
)

≥ 1 − 2

πγ
+ O

(

1

γ2

)

.

Additional function evaluations can improve the estimation procedure.
Suppose that we obtain estimates ξ1, ξ2, . . . , ξp corresponding to orthogonal vectors z1, z2, . . . , zq

selected uniformly and randomly from the unit sphere Sn−1. The expected value of the norm of the
projection of v onto the span Z generated by z1, z2, . . . , zq is

E

(

√

|zT
1 v|2 + |zT

2 v|2 + · · · + |zT
q v|2

)

=
Wn

Wq
||v|| .
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Table 1: Comparison of two methods for estimation of vector norms withs SCE.
Method A uses z ∈ Sn−1. Method B uses z ∈ Sn′−1.

Pr(‖v‖/γ ≤ ν(k) ≤ γ‖v‖)
w q = 1 q = 2 q = 3

A B A B A B

2 0.5613 0.5800 0.7790 0.8431 0.8747 0.9168
3 0.7757 0.8030 0.9186 0.9324 0.9648 0.9740
5 0.8851 0.8929 0.9711 0.9751 0.9920 0.9942
10 0.9422 0.9472 0.9930 0.9935 0.9990 0.9993
100 0.9942 0.9946 0.9999 0.9999 1.0000 1.0000
1000 0.9994 0.9995 1.0000 1.0000 1.0000 1.0000

The estimate ν(p) =
Wq

Wn

√

|zT
1 v|2 + |zT

2 v|2 + · · · + |zT
q v|2 has qth order accuracy, i.e., a relative error

of size γ in the estimate occurs with probability proportional to γ−q:

Pr

( ||v||
γ

≤ ν(q) ≤ γ||v||
)

≥ 1 − 1

p!

(

2

πγ

)q

+ O

(

1

γq+1

)

.

Usually at most four random vectors are required in practice. The corresponding probabilities satisfy
[11]:

Pr

( ||v||
γ

≤ ν(2) ≤ γ||v||
)

≈ 1 − π

4γ2
,

Pr

( ||v||
γ

≤ ν(3) ≤ γ||v||
)

≈ 1 − 32

3π2γ3
,

Pr

( ||v||
γ

≤ ν(4) ≤ γ||v||
)

≈ 1 − 81π2

512γ4
.

Note. We conclude this section with an observation that will help improve the efficiency of some
subsequent computations. Consider estimating the norm of an n-dimensional vector v ∈ R

n using
SCE. This can be achieved by evaluating scalar products of the form zT v, with z randomly and
uniformly selected from the sphere Sn−1. However, if it is known that v ∈ M , with M an n′-
dimensional subspace of R

n, a more accurate estimate is obtained if we select vectors from the unit
sphere Sn′−1 in M and use their representation z′ in R

n. The data in Table 1 shows the probability
that the vector norm estimate lies within a factor γ ∈ {2, 3, 5, 10, 100, 1000} of the true norm ‖v‖.
Method A uses z ∈ Sn−1, while method B uses z ∈ Sn′−1. For this numerical example we have used
n = 1000 and n′ = 10. Results are given for q = 1, 2, 3, where q is the number of unit vectors used
in the SCE estimate (5). The probabilities in Table 1 were computed from 100, 000 tests each.

2.3 SCE for estimation of approximation errors in model reduction

All error estimates derived in this paper start from linearizations of one of the ODEs (1), (3), (4),
or perturbations of these. As a consequence, the error estimates are based on solutions of linear
error equations. To estimate the norm ‖e(tf )‖ of an error vector e(t) ∈ R

n at t = tf , we need to
evaluate quantities zT

j e(tf ) for some random vector zj selected uniformly from the unit sphere Sn−1.
An estimate of the norm of the error can be obtained as

||e(tf )|| ≈ Wq

Wn

√

√

√

√

q
∑

j=1

|zT
j e(tf )|2 . (5)
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The scalar products zT
j e(tf ) can be computed efficiently using an adjoint model (to the corresponding

linear error equation) with final conditions at tf based on the vector zj .
However, this approach naturally raises the question: “What is the advantage of using (typically

more than one) solution of adjoint systems to estimate the norm of a quantity that can be otherwise
obtained with only one forward ODE solution (of the error equation)?” Our proposed approach
is motivated by the fact that we are interested not only in finding the errors for one given ODE
system, but rather in estimating (as efficiently as possible) the behavior of such errors for families

of related ODE systems. In Section 4 we are concerned with evaluating regions of validity of reduced

models or, in other words, evaluating the range of perturbations in the original ODE (1) over which
the reduced model (3) is still appropriate. An approach based on forward error equations involves
repeated solutions of such error equations (for each value of interest of the perturbation). On the
other hand, an approach combining SCE estimates and adjoint models (as described in the next
sections) can be used to define what we term “condition numbers” for these error equations. While
these condition numbers can provide only approximate upper bounds for the norms of the errors
under investigation, they have the undeniable advantage of allowing a-priori estimates of the errors
induced by perturbations, i.e., before having to solve such a perturbed system (or even a reduced
perturbed system).

In the context of ODE integration, the SCE method, combined with adjoint models, has been
used in [4] for estimation and control of the global integration error.

3 Estimation of the approximation error

We begin by obtaining estimates for the difference between the solution of the POD-reduced model
(4) and the solution for the original equation (1). Let ỹ(t) be the projection onto S of the solution
y(t). Then the total approximation error e(t) = ŷ(t) − y(t) can be split into the subspace approx-
imation error e⊥(t) = ỹ(t) − y(t) and the error introduced by the integration in the subspace S,
ei(t) = ŷ(t) − ỹ(t):

e(t) = ŷ(t) − y(t) = (ŷ(t) − ỹ(t)) + (ỹ(t) − y(t)) = ei(t) + e⊥(t) . (6)

The error component e⊥ is orthogonal to S, while the component ei is parallel to S (see Fig. 1).
Algebraically, this is expressed as Pe⊥(t) = 0 and Pei(t) = ei(t).

3.1 Total approximation error

First we derive an estimate for the total error e. Subtracting (1) from (4), the error function satisfies

de

dt
= Pf(ŷ, t)−f(y, t) = Pf(ŷ, t)−f(ŷ, t)+f(ŷ, t)−f(y, t) = (P−I)f(ŷ, t)−J(ŷ, t)(y−ŷ)+O(||e||2) ,

where J is the Jacobian of the function f , i.e., J = ∂f/∂y. Thus, to a first order approximation,
the error function satisfies

de

dt
= J(ŷ, t)e(t) − (I − P )f(ŷ, t) , e(t0) = −(I − P )(y0 − ȳ) . (7)

Let the matrix function Φŷ(t) ∈ R
n×n satisfy

dΦŷ

dt
= J(ŷ, t)Φŷ , Φŷ(t0) = In , (8)

where the subscript ŷ for Φŷ indicates that the Jacobian is evaluated at ŷ. Then

e(tf ) = −
∫ tf

t0

Φŷ(tf )Φ−1

ŷ (s)(I − P )f(ŷ(s), s) ds − Φŷ(tf )(I − P )(y0 − ȳ) .

7



e iy~

ŷ

e

y

S

Figure 1: Solution and error components for POD-reduced models. y is the solution of the original
ODE, ỹ is its projection on the affine subspace S, and ŷ is the solution of the reduced model. The
error component e⊥ lies in S⊥, while the subspace integration error component lies in S.

For a random vector z uniformly selected from the unit sphere Sn−1 we have:

zT e(tf ) = −
∫ tf

t0

zT Φŷ(tf )Φ−1

ŷ (s)(I − P )f(ŷ(s), s) ds − zT Φŷ(tf )(I − P )(y0 − ȳ) .

It is straightforward to verify that the solution λŷ ∈ R
n of the adjoint system

dλŷ

dt
= −JT (ŷ, t)λŷ , λŷ(tf ) = z (9)

satisfies

λT
ŷ (s) = zT Φ(tf )Φ−1(s)

λT
ŷ (t0) = zT Φ(tf ) .

As before, the subscript ŷ indicates that the Jacobian in the adjoint system (9) is evaluated at ŷ.
Therefore, the quantity zT e(tf ) is simply

zT e(tf ) = −
∫ tf

t0

λT
ŷ (s)(I − P )f(ŷ(s), s) ds − λT

ŷ (t0)(I − P )(y0 − ȳ) ,

and the SCE estimate for the norm of e(tf ) is given by

||e(tf )|| ≈ Wq

Wn





q
∑

j=1

|zT
j e(tf )|2





1/2

=

Wq

Wn





q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

λT
ŷ (s)(I − P )f(ŷ(s), s) ds + λT

ŷ (t0)
T (I − P )(y0 − ȳ)

∣

∣

∣

∣

2





1/2

. (10)

The integral in the above equation can be evaluated during the solution of (9) by appending the
quadrature equation

dψ

dt
= −λT

ŷ (t)(I − P )f(ŷ(t), t) , ψ(tf ) = 0 , (11)

so that the value of the integral is ψ(t0).
Algorithm 1 summarizes the computation of an SCE estimate of the norm of the total error.
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Algorithm 1 Estimate for the total approximation error

provide the matrix of measurement data Y
set the POD dimension k
compute mean value of data ȳ and construct POD projection matrices ρ and P
construct q orthogonal vectors selected uniformly and randomly from the unit sphere Sn−1

solve (3) for yS

ŷ(t) = ρyS(t) + ȳ
initialize s = 0
for i = 1 to q do

set λŷ(tf ) ← zi

solve (9)+(11) for λŷ and ψ

update s ← s +
[

ψ(t0) + λT
ŷ (t0)

T (I − P )(y0 − ȳ)
]2

end for

compute Wallis factors Wq and Wn

compute the SCE norm estimate e = (Wq/Wn) ×√
s

Note. One may be tempted to try to compute the SCE norm estimate more efficiently by using a
POD-reduced adjoint system to evaluate λŷ in (10). Although the same projection can be used to
model-reduce the adjoint system, this approach still requires knowledge of the mean of the adjoint
solution which is unavailable without a solution of the adjoint system (9). In other words, the
approximation subspace Sλ is parallel to S but not identical to it.

This issue can be circumvented if we are not considering error components outside the subspace
S. This approach is presented next.

3.2 Subspace integration error

We start from the definition of the total POD approximation error of (6). Differentiating e⊥(t) +
ei(t) = ŷ(t) − y(t) and substituting the ODEs for y and ŷ, we get

de⊥
dt

+
dei

dt
= Pf(ŷ, t) − f(y, t) .

Projecting the above equation onto S (by multiplying on the left by P ) and taking advantage of the
fact that Pe⊥ = 0, yields the following IVP for the subspace integration error:

dei

dt
= P (f(ŷ, t) − f(y, t)) , ei(t0) = 0 , (12)

where we have used that P 2 = P . The initial condition is due to the fact that the starting point ŷ(t0)
is the projection ỹ(t0) of y(t0) onto S. Thus the subspace integration error is governed by an ODE
with the subspace approximation error e⊥(t) as forcing term. Linearizing around the trajectory ŷ(t)
gives the following approximation to (12):

dei

dt
= PJ(ŷ, t)ei + PJ(ŷ, t)e⊥ , ei(t0) = 0 . (13)

In the S coordinate system defined by the coordinate transformation:

eS
i = ρT ei ∈ R

k

ei ≡ êi = ρeS
i ,

the above equation can be written as

deS
i

dt
= ρT PJ(ŷ, t)

(

ρeS
i + e⊥

)

= ρT J(ŷ, t)ρeS
i + ρT J(ŷ, t)e⊥ ,

9



where the identity ρT ρ = Ik was used. Therefore, eS
i satisfies

deS
i

dt
= ρT J(ŷ, t)ρeS

i + ρT J(ŷ, t)e⊥ , eS
i (t0) = 0 . (14)

If φŷ ∈ R
k×k is the fundamental matrix, solution of

dφŷ

dt
= ρT J(ŷ, t)ρφŷ , φŷ(t0) = Ik ,

then, for a random vector zS uniformly selected from the unit sphere Sk−1, we have

(zS)T eS
i (tf ) =

∫ tf

t0

(zS)T φŷ(tf )φ−1

ŷ (s)ρT J(ŷ(s), s)e⊥(s) ds .

Consider next the adjoint system

dµŷ

dt
= −ρT JT (ŷ, t)ρµŷ , µŷ(tf ) = zS , (15)

the solution of which satisfies µT
ŷ (s) = (zS)T φŷ(tf )φ−1

ŷ (s). Then,

(zS)T eS
i (tf ) =

∫ tf

t0

µT
ŷ (s)ρT J(ŷ(s), s)e⊥(s) ds .

The SCE approximation for the norm of the subspace integration error at the final time is

||ei(tf )|| ≈ Wq

Wn

√

√

√

√

q
∑

j=1

|(zS
j )T eS

i (tf )|2 =
Wq

Wn

√

√

√

√

q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

µT
ŷ (s)ρT J(ŷ(s), s)e⊥(s) ds

∣

∣

∣

∣

2

. (16)

Although the SCE approach only provides an approximation of the subspace integration error (more-
over, at the cost of additional backward integration of adjoint systems) and is therefore not a useful
alternative to integrating the forward error equation (12), it appears here only as an intermediate
step towards obtaining a bound on this error. Indeed, let

θj(s) = JT (ŷ(s), s)ρkµŷ(s) , θj(s) ∈ R
Ny and wj =

∫ tf

t0

(θj)T (s)e⊥(s) ds ,

where j denotes correspondence to some unit vector zS
j in (15). Then

|wj | ≤
∫ tf

t0

|(θj)T (s)e⊥(s)| ds ≤





∫ tf

t0

Ny
∑

i=1

|θj
i (s)| ds



 ||e⊥||L∞
. (17)

Therefore, defining κj(ei) , ||θj ||L1
=

∫ tf

t0

∑Ny

i=1 |θ
j
i (s)| ds, we have

||ei(tf )|| ≤ κ(ei) · ||e⊥||L∞
, (18)

where

κ(ei) =
Wq

Wn

√

√

√

√

q
∑

j=1

κ2
j (ei)

can be interpreted as a “condition number” for the subspace integration error.

10



The expressions derived above require knwledge of the projection error e⊥ at all times in [t0, tf ]
(for the integration of the forward error equation (12) or for the quadrature in (16)) or of its L∞

norm, ||e⊥||L∞

, in (18). While the expression of the projection error may not be readily available,
its norm can be easily related to the error associated with the choice of the POD subspace. For
this, a more convenient definition of the POD approximation is to find a subspace S ∈ R

n which
minimizes the total square distance d2 defined as

d2 = ‖ (y − ȳ) − P (y − ȳ) ‖2
L2

=

∫ tf

t0

‖ (y(s) − ȳ) − P (y(s) − ȳ) ‖2
2 ds .

The solution to this problem requires the construction of the correlation matrix

R =

∫ tf

t0

(y(s) − ȳ) (y(s) − ȳ)
T

ds .

If λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 are the ordered eigenvalues of the symmetric positive semidefinite matrix
R, then the minimum value of d2 over all k-dimensional affine subspaces S passing through ȳ is
given by

∑n
j=k+1

λj . As before, the minimizing S is the invariant subspace corresponding to the
eigenvalues λ1, . . . , λk, while the projection matrix ρ consistes of the unit eigenvectors corresponding
to these k largest eigenvalues.

Since the square distance d2 is nothing but the L2 norm of the projection error, we can readily
obtain the following bound on ||e⊥||L∞

:

||e⊥||L∞
≤ ||e⊥||L2

≡

√

√

√

√

n
∑

j=k+1

λj .

In practice, of course, the above integrals are approximated from data at discrete times. It is easy
to see that using a trapezoidal approximation on a regular grid will lead to the same subspace S
as the one obtained with the POD definition in §2.1, while the corresponding optimal total square
distances will be proportional.

Note. We use the following definition for the Lp norm (p ≥ 1) of a vector-valued function f :
[t0, tf ] → R

N :

||f ||Lp
=

(∫ tf

t0

||f(s)||pp ds

)1/p

,

where ||f(s)||p =

(

N
∑

i=1

|fi(s)|p
)1/p

.

In particular,

||f ||L1
=

∫ tf

t0

N
∑

i=1

|fi(s)| ds ,

||f ||L∞
= ess sup

(

max
i

|fi(s)|
)

.

With the above norm definitions, the inequality in (17) is nothing but Hölder’s inequality

||fT g||L1
≤ ||f ||Lp

· ||g||Lq
, if

1

p
+

1

q
= 1 , (19)

extended to vector-valued functions f and g, for p = 1 and q = ∞.
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4 Regions of validity for POD-reduced models

Typically, once a reduced model is constructed, we wish to apply it to simulate systems that are
close in some sense to the system that was used for generating the reduced model. This raises the
issue of estimating approximation errors to help define the range over which the reduced model can
be used with acceptable accuracy.

Let Y ∈ R
n be the solution of an ODE obtained by applying some perturbation to (1), either in

the initial conditions (in which case we use the notation Y ic) or in the right-hand side (in which case
we use the notation Y rhs). The goal here is to estimate the errors introduced by this perturbation,
in addition to the model reduction error e(t). There are two perspectives from which this problem
can be addressed:

• First, assume we are given a POD projection matrix, built using the solution of the unperturbed
ODE (1), and suppose we are interested in using a reduced model to approximate the perturbed
solution Y . Then we want to estimate the error E1 = Ŷ − Y , where Ŷ is the solution of an
ODE of the form (4) for Y , with P based on y.

• Alternatively, we may want estimates for the cummulative error (due to the POD model-
reduction and the perturbation in the original ODE); i.e., E2 = Ŷ −y, where Ŷ is the solution
of a POD reduced-model based on the solution Y of the perturbed ODE. To avoid introducing
new POD projection matrices and unnecessarily complicate the notation, we will look at the
completely equivalent problem of estimating E2 = ŷ − Y (in other words we consider y as
being a perturbation to Y ).

In the rest of this section we derive estimates for E1 and E2 considering first a perturbation to the
initial condition of the original ODE and then a perturbation to its right-hand side, through some
model parameters p.

First, let us define the perturbed ODE systems under consideration. Let Y ic ∈ R
n satisfy the

evolution equation (1), but with a perturbed initial condition

dY ic

dt
= f(Y ic, t) , Y ic(t0) = Y ic

0 = y0 + δy0 . (20)

Using the same POD projection matrix P as before, a reduced model corresponding to (20), expressed
in the full coordinate system, is given by

dŶ ic

dt
= Pf(Ŷ ic, t) , Ŷ ic(t0) = P (Y ic

0 − ȳ) + ȳ . (21)

The solutions of the original and perturbed ODEs, as well as the errors e, E1 and E2, for this
situation are illustrated in Fig. 2(a).

If the original evolution equation depends, through its defining function f , on some model pa-
rameters p ∈ R

Np :
dy

dt
= f(y, t, p) , y(t0) = y0 . (22)

then the solution Y rhs corresponding to a perturbation δp in p satisfies

dY rhs

dt
= f(Y rhs, t, p + δp) , Y rhs(t0) = y0 . (23)

Let Ŷ rhs be the solution of the POD-reduced model

dŶ rhs

dt
= Pf(Ŷ rhs, t, p + δp) , Ŷ rhs(t0) = P (y0 − ȳ) + ȳ ,

where P is the POD projection matrix constructed with data obtained from (22), i.e., with δp = 0.
The error components for this situation are illustrated in Fig. 2(b).
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Figure 2: Error components in model-reduction of perturbed systems. The solution of the perturbed
system, its projection onto S, and the solution of the reduced perturbed system are denoted with
Y , Ỹ , and Ŷ , respectively. The error E1 represents the error commited in reducing the perturbed
model, while E2 is the cummulative error (perturbation + model-reduction)

Note. Useful estimates should not rely on the solution Y (or Ŷ ) of the perturbed system (or its
POD-reduction). Indeed, such error estimates are desired with the sole objective of deciding whether
or not to solve these systems.

4.1 Perturbation in initial conditions

4.1.1 Estimation of E1 = Ŷ ic − Y ic

In this case, we are interested in expressing the relationship between E1(t) = Ŷ ic(t) − Y ic(t) and
δy0. It is obvious that an SCE estimate like (10) is not useful in the sense described above, as it
would be based on the error equation

dE1

dt
= J(Ŷ ic, t)E1 − (I − P )f(Ŷ ic, t) , E1(t0) = −(I − P )(y0 + δy0 − ȳ) , (24)

which is a linearization around the (unknown) trajectory Ŷ ic(t).

Instead, let us define ∆ic(t) = E1(t) − e(t). The norm ‖E1(tf )‖ can be bounded by

∣

∣‖e(tf )‖ − ‖∆ic(tf )‖
∣

∣ ≤ ‖E1(tf )‖ ≤ ‖e(tf )‖ + ‖∆ic(tf )‖ .

Any estimates of ‖∆ic(tf )‖ would again require first solving the POD-reduced perturbed system
(21). However, following the same idea as in §3.2, this problem can be circumvented by splitting the
error ∆ic into two components: ∆ic

⊥ orthogonal to S and ∆ic
i parallel to S, as follows

∆ic = ∆ic
⊥ + ∆ic

i ,

where
∆ic

⊥ = E1
⊥ − e⊥ = (Ỹ ic − Y ic) − (ỹ − y) = −(I − P )(Y ic − y)

∆ic
i = E1

i − ei = (Ŷ ic − Ỹ ic) − (ŷ − ỹ) = (Ŷ ic − ŷ) − P (Y ic − y)

(25)

Next we evaluate the influence of δy0 on each component separately.

Expanding ∆ic
⊥ in a Taylor series around δy0 = 0 and retaining only the first order term, we get

∆ic
⊥ = −(I − P )

dY ic

dδy0

∣

∣

∣

∣

δy0=0

δy0 ,
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where we have used the fact that ∆ic
⊥ = 0 for δy0 = 0. Let Ψic denote the sensitivity matrix dY ic/dy0.

Direct differentiation of (20) with respect to δy0 leads to the following sensitivity equation for Ψic:

dΨic

dt
= J(y, t)Ψic , Ψic(t0) = I .

In the above equation, the Jacobian must be evaluated at δy0 = 0, in which case Y ic ≡ y. The
sensitivity matrix Ψic is therefore nothing but the fundamental matrix corresponding to the ODE
(1), i.e., Φy. Therefore, if λy is solution of the adjoint system

dλy

dt
= −JT (y, t)λy , λy(tf ) = (I − P )z , (26)

for a uniformly selected random vector z ∈ Sn−1, it is easy to see that

zT ∆ic
⊥(tf ) = zT

[

−(I − P )Ψic(tf )δy0

]

= −λT
y (t0) · δy0 , (27)

where we have used that (I − P )T = (I − P ).
Equations (26) and (27) can be used with the SCE method by uniformly and randomly selecting

z from the sphere Sn−1 and then projecting them onto S⊥, the orthogonal complement of S, to
initialize the adjoint system (26). However, this does not take into account the fact that ∆ic

⊥ is
orthogonal to S. A more accurate estimate can be obtained by using vectors from the sphere
Sn−k−1 embeded in S⊥. If z′ is the representation in R

n of such a vector, then (I − P )z′ = z′. The
same adjoint system (26) and formula (27) can be used, but the probability that the estimate lies
within a given factor w of the true norm ‖∆ic

⊥(tf )‖ is now higher (see the note in §2.2 for a numerical
illustration). For a more efficient estimate, in practice we use the approximation y ≈ ŷ in evaluating
the Jacobian in (26), with ŷ computed from the solution yS of the k-dimensional ODE (3).

Therefore, an SCE estimate of the norm of ∆ic
⊥(tf ) is

||∆ic
⊥(tf )|| ≈ Wq

Wn





q
∑

j=1

|z′Tj ∆ic
⊥(tf )|2





1/2

=
Wq

Wn





q
∑

j=1

|λT
ŷ (t0)δy0|2





1/2

, (28)

where λŷ is the solution of

dλŷ

dt
= −JT (ŷ, t)λŷ , λŷ(tf ) = (I − P )z′j .

A direct application of Hölder’s inequality (with p = q = 2) gives

|λT
ŷ (t0)δy0| ≤ ||λŷ(t0)||2 · ||δy0||2

and therefore
||∆ic

⊥(tf )|| ≤ κ(∆ic
⊥) · ||δy0|| ,

where the “condition number” for the orthogonal component of ∆ic is defined as

κ(∆ic
⊥) =

Wq

Wn





q
∑

j=1

κ2
j (∆

ic
⊥)





1/2

, κj(∆
ic
⊥) = ||λŷ(t0)||2 .

Differentiating with respect to time the expression of ∆ic
i in (25) and substituting the appropriate

ODE right hand sides, we get

d∆ic
i

dt
=

(

Pf(Ŷ ic, t) − Pf(ŷ, t)
)

− P
(

f(Y ic, t) − f(y, t)
)

≈ PJ(ŷ, t)(Ŷ ic − ŷ) − PJ(y, t)(Y ic − y) ,
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where we have used first order approximations, around ŷ for the first half and around y for the
second half. Approximating the Jacobian at y by its value evaluated at ŷ, i.e., J(y, t) ≈ J(ŷ, t), we
get

d∆ic
i

dt
= PJ(ŷ, t)∆ic

i .

Since at the initial time E1
i(t0) = ei(t0) = 0, we have that ∆ic

i (t0) = 0 and therefore, in a first order
approximation, ∆ic

i (t) = 0, for any t ≥ 0. In other words, a perturbation to the initial conditions of
the original ODE does not introduce additional subspace integration errors.

From the above derivation it follows that ∆ic(tf ) ≈ ∆ic
⊥(tf ) and therefore

∣

∣‖e(tf )‖ − ‖∆ic
⊥(tf )‖

∣

∣ ≤ ‖E1(tf )‖ ≤ ‖e(tf )‖ + ‖∆ic
⊥(tf )‖ ≤ ‖e(tf )‖ + κ(∆ic

⊥) · ||δy0|| . (29)

Note. When using SCE estimates for the norms involved in the above bounds, the true value of
‖E1(tf )‖ may not be bracketed by these bounds.

4.1.2 Estimation of E2 = ŷ − Y ic

Following the same reasoning as in §3.1, we first derive an ODE satisfied by the error E2 = ŷ − Y ic.
Subtracting the ODEs satisfied by ŷ and Y ic, we have

dE2

dt
= Pf(ŷ, t) − f(Y ic, t) = Pf(ŷ, t) − f(ŷ, t) + f(ŷ, t) − f(Y ic, t) ≈ J(ŷ, t)E2 − (I − P )f(ŷ, t) ,

where the initial condition for E2 is given by

E2(t0) = ŷ(t0) − Y ic(t0) = (P (y0 − ȳ) + ȳ) − (y0 + δy0) = −(I − P )(y0 − ȳ) − δy0 .

Therefore to a first order approximation, E2 satisfies

dE2

dt
= J(ŷ, t)E2 − (I − P )f(ŷ, t) , E2(t0) = −(I − P )(y0 − ȳ) − δy0 . (30)

With λŷ the solution of the adjoint system (9) and for some random vector z uniformly selected
from the unit sphere Sn−1 we have

zT E2(tf ) = −
∫ tf

t0

λT
ŷ (s)(I − P )f(ŷ(s), s) ds − λT

ŷ (t0) ((I − P )(y0 − ȳ) + δy0)

= zT e(tf ) − λT
ŷ (t0)δy0 ,

(31)

where e(tf ) is the approximation error for the original system, defined by (6). Comparing the above
equation with (27), we conclude that

zT E2(tf ) = zT
[

e(tf ) + Γic(tf )
]

, (32)

where Γic(t) , Ψic
ŷ (t)δy0, and the matrix Ψic

ŷ is the solution of

dΨic
ŷ

dt
= J(ŷ, t)Ψic

ŷ , Ψic
ŷ (t0) = In .

Thus, the following inequalities hold:
∣

∣‖e(tf )‖ − ‖Γic(tf )‖
∣

∣ ≤ ‖E2(tf )‖ ≤ ‖e(tf )‖ + ‖Γic(tf )‖ ≤ ‖e(tf )‖ + κ(Γic) · ||δy0|| , (33)

where

||Γic(tf )|| ≈ Wq

Wn





q
∑

j=1

|λT
ŷ (t0)δy0|2





1/2

and κ(Γic) =
Wq

Wn





q
∑

j=1

‖λŷ(t0)‖2
2





1/2

,

with λŷ the solution of (9).
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Note. Since the equality (32) holds for any vector z and for any final time tf , we conclude that
E2 = e+Γic, for any t. This is a strict equality, unlike E1 ≈ e+∆ic

⊥ which is only an approximation
(ignoring ∆ic

i and using y ≈ ŷ in the adjoint system). As a consequence, the above SCE bound
estimates for the norm of E2(tf ) are more accurate than those derived in §4.1.1 for the norm of
E1(tf ). Furthermore, starting from (31), an SCE estimate for ‖E2(tf )‖ can be computed without

need for Y ic or Ŷ ic.

4.2 Perturbation in the right hand side

4.2.1 Estimation of E1 = Ŷ rhs − Y rhs

Following the same arguments as in §4.1.1, we treat directly the case in which we decompose the
error ∆rhs = E1 − e into its components ∆rhs

⊥ ∈ S⊥ and ∆rhs
i ∈ S.

As before, we start with a Taylor expansion of ∆rhs
⊥ around δp = 0 and retain only the first order

term:

∆rhs
⊥ = −(I − P )

dY rhs

dδp

∣

∣

∣

∣

δp=0

δp .

With Ψrhs the sensitivity matrix dY rhs/dp, we have

dΨrhs

dt
= J(y, t, p)Ψrhs + K(y, t, p) , Ψrhs(t0) = 0 ,

where K = ∂f/∂p. The solution Ψrhs of this matrix sensitivity system can be written in terms of
the fundamental matrix Φy as

Ψrhs(tf ) =

∫ tf

t0

Φy(tf )(Φy(s))−1K(y(s), s, p) ds .

For an arbitrary z ∈ R
n, the product zT ∆rhs

⊥ (tf ) can then be obtained from the solution λy of the
adjoint system (26) as

zT ∆rhs
⊥ (tf ) = −

(∫ tf

t0

λT
y (s)K(y(s), s, p) ds

)

· δp . (34)

The same observations as before apply here too: (1) a more accurate SCE error norm estimate
can be obtained if using vectors z′ from the Sn−k−1 sphere embedded in S⊥; and (b) a more efficient
adjoint solution can be obtained by approximation y ≈ ŷ for the evaluation of J(y, t, p) and K(y, t, p).
Therefore, the norm of ∆rhs

⊥ can be estimated by

||∆rhs
⊥ (tf )|| ≈ Wq

Wn





q
∑

j=1

|z′Tj ∆rhs
⊥ (tf )|2





1/2

=
Wq

Wn





q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

λT
ŷ (s)K(ŷ(s), s, p) δp ds

∣

∣

∣

∣

2





1/2

, (35)

or bounded by

||∆rhs
⊥ (tf )|| ≤ κ(∆rhs

⊥ ) · ||δp||∞ ,

where the “condition number” κ(∆rhs
⊥ ) is defined as

κ(∆rhs
⊥ ) =

Wq

Wn





q
∑

j=1

κ2
j (∆

rhs
⊥ )



 , κj(∆
rhs
⊥ ) = ||λT

ŷ K||L1
.
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The differential equation satisfied by the component ∆rhs
i parallel to S is given by

d∆rhs
i

dt
=

(

Pf(Ŷ rhs, t, p + δp) − Pf(ŷ, t, p)
)

− P
(

f(Y rhs, t, p + δp) − f(y, t, p)
)

≈ P
(

J(ŷ, t, p)(Ŷ rhs − ŷ) + K(ŷ, t, p) δp
)

− P
(

J(y, t)(Y rhs − y) + K(y, t, p) δp
)

,

with K defined as above. With the approximations J(y, t, p) ≈ J(ŷ, t, p) and K(y, t, p) ≈ K(ŷ, t, p),
we obtain

d∆rhs
i

dt
= PJ(ŷ, t, p)∆rhs

i .

As before, ∆rhs
i (t0) = 0 and therefore, in a first order approximation, ∆rhs

i (t) = 0, for any t ≥ 0.
From the above derivation it follows that ∆rhs(tf ) ≈ ∆rhs

⊥ (tf ) and therefore
∣

∣‖e(tf )‖ − ‖∆rhs
⊥ (tf )‖

∣

∣ ≤ ‖E1(tf )‖ ≤ ‖e(tf )‖ + ‖∆rhs
⊥ (tf )‖ ≤ ‖e(tf )‖ + κ(∆rhs

⊥ ) · ||δp||∞ . (36)

with ‖∆rhs
⊥ (tf )‖ given by (35).

4.2.2 Estimation of E2 = ŷ − Y rhs

An ODE satisfied by the error E2 = ŷ − Y rhs can be obtained as in §4.1.2. Substituting the right
hand sides of the ODEs satisfied by ŷ and Y rhs, and explicitely taking into account the dependence
of f on the model parameters p, we have

dE2

dt
= Pf(ŷ, t, p) − f(Y rhs, t, p + δp) = Pf(ŷ, t, p) − f(ŷ, t, p) + f(ŷ, t, p) − f(Y rhs, t, p + δp)

≈ J(ŷ, t, p)E2 − (I − P )f(ŷ, t, p) − K(ŷ, t, p) δp ,

and
E2(t0) = ŷ(t0) − Y rhs(t0) = (P (y0 − ȳ) + ȳ) − y0 = −(I − P )(y0 − ȳ) .

Therefore, to a first order approximation, E2 satisfies

dE2

dt
= J(ŷ, t, p)E2 − (I − P )f(ŷ, t, p) − K(ŷ, t, p) δp , E2(t0) = −(I − P )(y0 − ȳ) . (37)

For λŷ the solution of the adjoint system (9) and some random vector z uniformly selected from
the unit sphere Sn−1, we have

zT E2(tf ) = −
∫ tf

t0

λT
ŷ (s) [(I − P )f(ŷ(s), s, p) + K(ŷ(s), s, p) δp] ds − λT

ŷ (t0)(I − P )(y0 − ȳ)

= zT e(tf ) −
∫ tf

t0

λT
ŷ (s)K(ŷ(s), s, p) δp ds ,

(38)

where e(tf ) is the approximation error for the original system, defined by (6).

As in §4.1.2, we can write E2 = e + Γrhs, with Γrhs(t) , Ψrhs
ŷ (t) δp and

dΨrhs
ŷ

dt
= J(ŷ, t, p)Ψrhs

ŷ + K(ŷ, t, p) , Ψrhs
ŷ (t0) = 0 .

Therefore, the following inequalities hold:
∣

∣‖e(tf )‖ − ‖Γrhs(tf )‖
∣

∣ ≤ ‖E2(tf )‖ ≤ ‖e(tf )‖ + ‖Γrhs(tf )‖ ≤ ‖e(tf )‖ + κ(Γrhs) · ‖δp‖∞ , (39)

where

||Γrhs(tf )|| ≈ Wq

Wn





q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

λT
ŷ (s)K(ŷ(s), s, p) δp ds

∣

∣

∣

∣

2





1/2

and κ(Γrhs) =
Wq

Wn





q
∑

j=1

‖λT
ŷ K‖2

L1





1/2

,

with λŷ the solution of (9).
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Note. The above SCE bound estimates for the norm of E2(tf ) are more accurate than those
derived in §4.2.1 for the norm of E1(tf ). Furthermore, starting from (38), an SCE estimate for

‖E2(tf )‖ can be computed without need for Y rhs or Ŷ rhs.

5 Examples

To illustrate the norm estimates and bounds derived in the previous sections, we consider the
following five example problems (described in more detail below): (a) linear advection-diffusion
PDE; (b) Burgers’ PDE; (c) Brusselator PDE; (d) HIRES (High Irradiance Response) problem; and
(e) a pollution model.

Numerical Results. For each example considered, we provide numerical results grouped in three
figures:

1. Estimation of the POD approximation error as a function of the dimension of the subspace S.

(a) ‖e(tf )‖, the norm of the total approximation error at the final time, e(tf ) = ŷ(tf )−y(tf ).
The solid (black) line represents the norm computed by the forward integration of the
error equation (7). The dotted (colored) lines represent SCE estimates (10) for different
values of q, the number of unit vectors zj used.

(b) ‖eS
i (tf )‖, the norm of the subspace integration error at the final time, computed in the

subspace S. The solid (black) line represents the norm computed by the forward inte-
gration of the error equation (14). The dotted (colored) lines represent SCE estimates
(16) for different values of q. The dashed (colored) lines represent the bounds of (18) for
different values of q used in the estimation of the condition number κ(ei).

2. Estimation of errors induced by a perturbation δy0 in the initial conditions.

(a) ‖E1(tf )‖, the norm of the total approximation error of the perturbed system at the final

time, E1(tf ) = Ŷ ic(tf ) − Y ic(tf ), as a function of the subspace dimension Nk. The
solid (black) line represents the norm computed by the forward integration of the error
equation (24). The dashed (colored) lines represent SCE estimates of the upper bound of
(29) for different values of q used in the estimation of the condition number κ(∆ic

⊥). Note
that we have also used an SCE estimate for the norm ‖e(tf )‖.

(b) ‖E2(tf )‖, the norm of the cumulative error of the perturbed system at the final time,
E2(tf ) = ŷ(tf ) − Y ic(tf ), as a function of the subspace dimension Nk. The solid (black)
line represents the norm computed by the forward integration of the error equation (30).
The dotted (colored) lines represent SCE estimates for the norm ‖E2(tf )‖ for different
values of q. The dashed (colored) lines represent SCE estimates of the upper bound of
(33) for different values of q used in the estimation of the condition number κ(Γic). Note
that we have also used an SCE estimate for the norm ‖e(tf )‖.

(c) Analysis of the error bounds for ‖E1(tf )‖ predicted by the condition number κ(∆ic
⊥) over

a range of initial condition perturbations δy0, for a given dimension Nk of the subspace
S. The solid (black) line represents the norm computed by the forward integration of the
error equation (24), while the dashed (colored) lines represent the upper bounds of (29).

(d) Analysis of the error bounds for ‖E2(tf )‖ predicted by the condition number κ(Γic) over
a range of initial condition perturbations δy0, for a given dimension Nk of the subspace
S. The solid (black) line represents the norm computed by the forward integration of the
error equation (30), while the dashed (colored) lines represent the upper bounds of (33).
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3. Estimation of errors induced by a perturbation in the ODE right hand side (through a pertur-
bation δp in the model parameters).

(a) ‖E1(tf )‖, the norm of the total approximation error of the perturbed system at the final

time, E1(tf ) = Ŷ rhs(tf ) − Y rhs(tf ), as a function of the subspace dimension Nk. The
solid (black) line represents the norm computed by the forward integration of the error
equation. The dashed (colored) lines represent SCE estimates of the upper bound of (36)
for different values of q used in the estimation of the condition number κ(∆rhs

⊥ ). Note
that we have also used an SCE estimate for the norm ‖e(tf )‖.

(b) ‖E2(tf )‖, the norm of the cumulative error of the perturbed system at the final time,
E2(tf ) = ŷ(tf )−Y rhs(tf ), as a function of the subspace dimension Nk. The solid (black)
line represents the norm computed by the forward integration of the error equation (37).
The dotted (colored) lines represent SCE estimates for the norm ‖E2(tf )‖ for different
values of q. The dashed (colored) lines represent SCE estimates of the upper bound of
(39) for different values of q used in the estimation of the condition number κ(Γrhs). Note
that we have also used an SCE estimate for the norm ‖e(tf )‖.

(c) Analysis of the error bounds for ‖E1(tf )‖ predicted by the condition number κ(∆rhs
⊥ )

over a range of perturbations δp in the model parameters, for a given dimension Nk of
the subspace S. The solid (black) line represents the norm computed by the forward
integration of the error equation, while the dashed (colored) lines represent the upper
bounds of (36).

(d) Analysis of the error bounds for ‖E2(tf )‖ predicted by the condition number κ(Γrhs) over
a range of parameter perturbations δp, for a given dimension Nk of the subspace S. The
solid (black) line represents the norm computed by the forward integration of the error
equation, while the dashed (colored) lines represent the upper bounds of (39).

The dimension of the POD subspace. Let us denote by Λk the sum of eigenvalues ignored in
the construction of the POD reduced model

Λk =
∑

i=k+1

λi

and by Λ its relative size compared to the sum of all eigenvalues

Λ = Λk/
∑

i=1

λi

The POD subspace dimension k is selected such that the relative error is very close to one, yet k
is sufficiently small. A relative error near one means that a very high percentage of the energy for
the full model was captured by the reduced order model.

An interesting phenomenon can be observed in some of the numerical experiments. Some of the
estimates computed for a certain number of POD vectors are not as good as estimates corresponding
to a smaller POD subspace dimension. At a first glance this would contradict the theoretical
description of the POD method, which implies that the original model would be better approximated
as the POD dimension increases. In fact there is no contradiction. If one considers the entire time
interval, one can notice that the reduced model captures a larger percentage of the original problem
as we add more POD vectors. But our figures show the behavior of the reduced model only at the
final time, not over the entire time interval. Therefore we may have that, at certain time points
(e.g., the final time) the estimate for a smaller POD dimension is better while also having that the
larger POD number would provide a “closer” estimate (in the norm over the entire time interval).
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Figure 3: 1D advection-diffusion example. Behavior of the solution over the integration interval.

The number of orthogonal vectors for the SCE estimate. We considered one, two, and
three SCE vectors for our numerical examples. As expected, having just one SCE vector yielded
the worst estimate in most of the cases. Nevertheless, even that estimate was, in many cases, “close
enough” to warrant its inclusion in our results.

5.1 Linear advection-diffusion

Consider the 1-D advection-diffusion equation:

ut = p1uxx + p2ux

with B.C. u(0, t) = u(2, t) = 0

and I.C. u(x, 0) = u0(x) = x(2 − x)e2x .

The PDE is discretized on a uniform grid of size N +2 with central differencing. If boundary values
are eliminated, that leaves an ODE system of size N

dyi

dt
= p1

yi+1 − 2yi + yi−1

∆x2
+ p2

yi+1 − yi−1

2∆x
yi(0) = u0(xi)

where yi(t) = u(xi, t) and xi = i ∗ ∆x.

A plot showing the solution behavior over the integration domain is presented in Fig. 3. The
problem parameters were p1 = 0.5 and p2 = 1.0, while the spatial grid parameter was N = 100.
Numerical results at t = 0.3 are given in Figs. 8, 9, and 10. The POD projection matrices were
based on m = 100 data points equally spaced in the interval [t0, tf ] = [0.00.3]. The POD errors
(Λk =

∑

i=k λi, the sum of ignored eigenvalues) and their relative size compared to the sum of all
eigenvalues (Λ = Λk/

∑

λi), for all subspace dimensions considered were:
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Figure 4: Burger’s equation example. Behavior of the solution over the integration interval.

Nk Λk Λ
5 1.803561e-01 5.890413e-06
6 2.831234e-02 9.246781e-07
7 4.193422e-03 1.369567e-07
8 5.662276e-04 1.849294e-08
9 6.944298e-05 2.268001e-09
10 7.716002e-06 2.520038e-10

The estimate of the total error is consistently “close” to the exact value. Moreover the estimates
corresponding to Nz = 2, 3 are almost identical to the subspace integration error.

The bounds are within an order of magnitude for both IC and RHS perturbation. The RHS
perturbation increases the distance between the bounds and the forward error. That was expected,
since the RHS perturbation would change the advection coefficient p2, which is dominant for the
time window considered.

5.2 Burgers’ equation

This PDE has the form

ut + uux = µuxx

with B.C. u(0, t) = u(1, t) = 0

and I.C. u(x, 0) = u0(x) =

{

0.5(1 − cos 4πx) if 0 ≤ x ≤ 0.5;
0 if 0.5 < x ≤ 1.

The PDE is discretized on a uniform grid of size 2N + 3 using central differencing. We eliminate
the boundary values to obtain an ODE system of size 2N + 1

dyi

dt
= µ

yi+1 − 2yi + yi−1

∆x2
− yi

yi+1 − yi−1

2∆x
yi(0) = u0(xi)
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where yi(t) = u(xi, t) and xi = i ∗ ∆x.
A plot showing the solution behavior over the integration domain is presented in Fig. 4. The

problem parameter was µ = 0.005, while the spatial grid parameter was N = 100. Numerical results
at t = 1.0 are given in Figs. 11, 12, and 13. The POD projection matrix were based on m = 100 data
points equally spaced in the interval [t0, tf ] = [0.01.0]. The POD errors (Λk =

∑

i=k+1
λi, the sum of

ignored eigenvalues) and their relative size compared to the sum of all eigenvalues (Λ = Λk/
∑

λi),
for all subspace dimensions considered were:

Nk Λk Λ
5 1.516695e+01 2.186474e-02
10 8.618580e-01 1.242458e-03
15 5.403372e-02 7.789523e-05
20 3.452479e-03 4.977107e-06

The estimates corresponding to Nz = 2, 3 are almost identical to the forward errors. What is
surprising is that estimate corresponding to Nz = 1 is consistently “close” to the exact error.

As size of the perturbations increases, the behavior of the bounds mimic the behavior of the
forward errors, while remaining within an order of magnitude of them.

We note that the forward error is of order 10−1 − 100. This implies that the truncation errors
corresponding to O(|e||2) are rather large in the POD error equations. Therefore one might expect
that the first order approximation employed for the error equations would not yield very accurate
estimates and bounds. But the numerical results proved to be better than the expectations. We
believe that this is due to the fact that the POD model captures very well the behavior of the original
model, as suggested by the data in the above table, showing the relative energy and the total energy.

5.3 Brusselator

The following 1D time-dependent PDE models a chemically reacting system [9]:

∂u

∂t
= A + u2v − (B + 1)u + α

∂2u

∂x2

∂v

∂t
= Bu − u2v + α

∂2v

∂x2
,

with B.C. u(0, t) = u(1, t) = Ā

v(0, t) = v(1, t) = B̄

and I.C. u(x, 0) = Ā + sin(2πx)

v(x, 0) = B̄ ,

where 0 ≤ x ≤ 1, Ā = 1.0, and B̄ = 3.0. Using the method of lines, we convert this PDE to an
ODE IVP using central finite differences to approximate the space derivatives on a grid of N interior
points

u̇i = A + u2
i vi − (B + 1)ui +

α

∆x2
(ui−1 − 2ui + ui+1)

v̇i = Bui + u2
i vi +

α

∆x2
(vi−1 − 2vi + vi+1)

ui(0) = A + sin(2πxi)

vi(0) = B ,

where ui(t) = u(xi, t) and vi(t) = v(xi, t), for i = 1, . . . , N and xi = i∆x with ∆x = 1/(N + 1).
The boundary conditions are explicitly used to define u0(t) = u(0, t), uN+1(t) = u(1, t) and v0(t) =
v(0, t), vN+1(t) = v(1, t).
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Figure 5: Brusselator example. Behavior of the solution over the integration interval.

A plot showing the solution behavior over the integration domain is presented in Fig. 5. The
problem parameters were A = 1.0, B = 3.0, and α = 0.1, while the spatial grid parameter was
N = 50. Numerical results at t = 1.0 are given in Figs. 14, 15, and 16. The POD projection matrix
was based on m = 100 data points equally spaced in the interval [t0, tf ] = [0.01.0]. The POD errors
(Λk =

∑

i=k+1
λi, the sum of ignored eigenvalues) and their relative size compared to the sum of all

eigenvalues (Λ = Λk/
∑

λi), for all subspace dimensions considered were:

Nk Λk Λ
5 2.421481e-03 2.105985e-06
6 3.394275e-04 2.952033e-07
7 2.932653e-05 2.550556e-08
8 3.970401e-06 3.453096e-09

The total error and the subspace approximation error are well approximated by the estimates
corresponding to Nz = 2, 3. As Nk increases, the forward error decreases as expected. Moreover the
estimates follow it closely, being almost identical at Nk = 8.

The bounds for both IC and RHS perturbations are within an order of magnitude of the forward
error.

5.4 HIRES problem

HIRES is a stiff system of 8 ODEs described in [9]. It originates from plant physiology and de-
scribes how light is involved in morphogenesis. To be more precise, it explains the “High Irradiance
Responses’ (HIRES) of photomorphogenesis on the basis of phytochrome, by means of a chemical
reaction involving eight reactants. The problem is of the form

dy

dt
= f(y) , y(0) = y0
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Table 2: Model parameters for the HIRES model

Model parameters
k1 = 1.71 k3 = 8.32 k5 = 0.035 k+ = 280 k∗ = 0.69
k2 = 0.43 k4 = 0.69 k6 = 8.32 k− = 0.69 oks

= 0.0007

with y ∈ R
8 and the function f(y) defined by

f(y) =

























−k1y1 + k2y2 + k6y3 + oks

k1y1 − (k2 + k3)y2

−(k1 + k6)y3 + k2y4 + k5y5

k3y2 + k1y3 − (k2 + k4)y4

−(k1 + k5)y5 + k2y6 + k2y7

−k+y6y8 + k4y4 + k1y5 − k2y6 + k−y7

k+y6y8 − (k2 + k∗ + k−)y7

−k+y6y8 + (k2 + k∗ + k−)y7

























.

Values of the model parameters are given in Table 2. The initial vector is

y0 = [1, 0, 0, 0, 0, 0, 0, 0.0057]T .

A plot showing the solution behavior over the integration domain is presented in Fig. 6. Numerical
results at t = 30.0 are given in Figs. 17, 18, and 19. We considered a time interval, namely [0,30],
that captures the main behavior of the solution (the solution changes at a much slower rate after
t = 30).

The POD projection matrix was based on m = 100 data points equally spaced in the interval
[t0, tf ] = [0.030.0]. The POD errors (Λk =

∑

i=k+1
λi, the sum of ignored eigenvalues) and their

relative size compared to the sum of all eigenvalues (Λ = Λk/
∑

λi), for all subspace dimensions
considered were:

Nk Λk Λ
3 6.533327e-03 1.245353e-03
4 1.830350e-04 3.488931e-05
5 8.450097e-07 1.610719e-07

Since this problem is well known in the literature as a good test for stiff systems, our intent (in
choosing it) was to verify that our approach can be employed for those type of problems as well.

We note that the total error and the subspace integration error are captured very well by the
estimates corresponding to Nz = 2, 3. Moreover, as Nk increases, the POD error decreases and the
estimates are very closely mirroring that behavior. The problem is very sensitive to perturbations
(to both the initial conditions and the RHS). Nevertheless, all the bounds are within an order of
magnitude of the forward errors. We did not consider all 10 parameters (Table 2) for the RHS
perturbation. We chose a subset {k3, k4, k5, k6} that we considered to contain the most impor-
tant parameters (one can also consider them as representative for the range of the values for all
parameters, namely 10−2 − 102).

5.5 Pollution model

Next we consider the chemical reaction part of the air pollution, model developed at the Dutch
National Institute of Public Health and Environmental Protection and described by Verwer [28]. It
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Figure 6: HIRES example. Behavior of the solution over the integration interval.
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is a very stiff ODE system consisting of 25 reactions and 20 reacting compounds. The problem is of
the form

dy

dt
= f(y) , y(0) = y0

with y ∈ R
20 and the function f(y) defined by

f =













































































−
∑

j∈{1,10.14,23,24}

rj +
∑

j∈{2,3,9,11,12,22,25}

rj

−r2 − r3 − r9 − r12 + r1 + r21

−r15 + r1 + r17 + r19 + r22

−r2 − r16 − r17 − r23 + r15

−r3 + r4 + r4 + r6 + r7 + r13 + r20

−r6 − r8 − r14 − r20 + r3 + 2r18

−r4 − r5 − r6 + r13

r4 + r5 + r6 + r7

−r7 − r8

−r12 + r7 + r9

−r9 − r10 + r8 + r11

r9

−r11 + r10

−r13 + r12

r14

−r18 − r19 + r16

−r20

r20

−r21 − r22 − r24 + r23 + r25

−r25 + r24










































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





























The values of the auxiliary variables rj and of the model parameters kj are given in Table 3. The
initial vector is

y0 = [0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0.0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0]T .

A plot showing the solution behavior over the integration domain is presented in Fig. 7. Numerical
results at t = 1.0 are given in Figs. 20, 21, and 22. The POD projection matrix was based on m =
1000 data points equally spaced in the interval [t0, tf ] = [0.01.0]. The POD errors (Λk =

∑

i=k+1
λi,

the sum of ignored eigenvalues) and their relative size compared to the sum of all eigenvalues
(Λ = Λk/

∑

λi), for all subspace dimensions considered were

Nk Λk Λ
5 6.341930e-13 2.652438e-12
6 6.971282e-14 2.915657e-13
7 1.139176e-15 4.764470e-15
8 1.175776e-16 4.917547e-16
9 4.938977e-17 2.065669e-16
10 9.158667e-18 3.830506e-17

For Nk = 5, 6, 7 the total error and the subspace integration error are very well approximated by
estimates corresponding to Nz = 2 or 3. For Nk = 8, 9, 10 the estimates are not as good, although
they remain within an order of magnitude. In our opinion this behavior is related to the fact that
the POD error (either absolute or relative) is smaller than 10−14, the tolerance for double precision.
Thus, rounding errors have a significant contribution in the final result. Nevertheless, even for this
case the estimate (of order 10−6) describes well the forward error (which has an order of 10−7).
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Figure 7: Pollution example. Behavior of the solution over the integration interval.
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Table 3: Auxiliary variables and model parameters for the pollution model

Auxiliary variables rj

r1 = k1y1 r6 = k6y7y6 r11 = k11y13 r16 = k16y4 r21 = k21y19

r2 = k2y2y4 r7 = k7y9 r12 = k12y10y2 r17 = k17y4 r22 = k22y19

r3 = k3y5y2 r8 = k8y9y6 r13 = k13y14 r18 = k18y16 r23 = k23y1y4

r4 = k4y7 r9 = k9y11y2 r14 = k14y1y6 r19 = k19y16 r24 = k24y19y1

r5 = k5y7 r10 = k10y11y1 r15 = k15y3 r20 = k20y17y6 r25 = k25y20

Model parameters
k1 = 0.350 · 100 k6 = .150 · 105 k11 = .220 · 10−1 k16 = .350 · 10−3 k21 = .210 · 101

k2 = 0.266 · 102 k7 = .130 · 10−3 k12 = .120 · 105 k17 = .175 · 10−1 k22 = .578 · 101

k3 = .123 · 105 k8 = .240 · 105 k13 = .188 · 101 k18 = .100 · 109 k23 = .474 · 10−1

k4 = .860 · 10−3 k9 = .165 · 105 k14 = .163 · 105 k19 = .444 · 1012 k24 = .178 · 104

k5 = .820 · 10−3 k10 = .900 · 104 k15 = .480 · 107 k20 = .124 · 104 k25 = .312 · 101

Similar reasoning can be employed for the results obtained for IC and RHS perturbations. Moreover
one should take into account the fact that the problem is very stiff, such that the integration
tolerances had to be given relatively high values of rtol = 10−4 and atol = 10−7.

Taking that into account, one can expect a less uniform behavior if the results are in the neigh-
borhood of 10−7. And that is indeed observed for the RHS perturbation. But one should notice
that, even for that case, the bounds are within an order of magnitude of the forward error.

An additional explanation is necessary for a better understanding of the RHS perturbation results.
Since the 25 problem parameters presented in Table 3 have order of magnitudes ranging from 10−3

to 1012, not all parameters were considered in the RHS perturbation (our results were obtained using
3 parameters, namely the fourth, the fifth and the seventh).

6 Conclusions and Future Work

We have presented effective methods for estimating approximation errors due to model reduction
and regions of validity of such reduced models. The bounds defining these regions of validity are
a-priori, in the sense that they do not rely on the solution of the perturbed system. The proposed
approach, based on SCE norm estimates combined with adjoint models, allows the definition and
construction of so-called “error condition numbers” which can be used to assess the size of errors
induced by perturbations (in initial conditions or in the model itself) without having to solve the
perturbed system.

The performance of the proposed methods was exemplified on several test problems arising from
semi-discretizations of time-dependent PDEs, chemical reaction mechanisms, and plant physiology.

We plan to continue this research by first studying the influence of the data set used in constructing
the POD basis on the approximation errors and on the regions of validity of the resulting reduced
model. In some cases, using data at equally-spaced time points may be inappropriate (or, if using
data from measurments, not available). In the case of stiff systems for example, we think that data
from the initial fast transient phase should not be included in the construction of the POD basis.
Many dynamical systems of interest exhibit both rapidly varying transients (where the solution
changes rapidly over a small time scale) and slowly varying transients (where the solution changes
slowly over a large time scale). If the rapidly varying transient is represented by very few snapshots,
weighted POD decomposition may be considered. The new basis obtained with weighted snapshots
will be able to represent the system behaviour much better compared to the basis functions obtained
with the classical POD decomposition technique [21]. The methodology that we have developed in
this research can be easily extended to errors for weighted POD-reduced models.
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Secondly, we wish to investigate methods for incremental update of the POD basis from simulation
data during the forward integration of the original ODE. For large-scale models, it is inefficient
(sometimes even untractable) to build and apply an SVD on the data matrix Y.
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Figure 8: 1D advection-diffusion example. POD approximation error.
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Figure 9: 1D advection-diffusion example. IC perturbation.

32



5 6 7 8
10

−3

10
−2

10
−1

10
0

N
k

 exact
fwd
adj + SCE (N

z
=1)

adj + SCE (N
z
=2)

adj + SCE (N
z
=3)

(a) Approximation error E1 as function of the sub-

space dimension (δp = 1.0%)

5 6 7 8
10

−1

10
0

10
1

N
k

 exact
fwd
adj + SCE (N

z
=1)

adj + SCE (N
z
=2)

adj + SCE (N
z
=3)

(b) Cumulative error E2 as function of the sub-

space dimension (δp = 1.0%)

0 1 2 3 4 5
10

−2

10
−1

10
0

10
1

δ p (%)

(c) Approximation error E1 as function of the RHS

perturbation (Nk = 5)

0 1 2 3 4 5
10

−1

10
0

10
1

δ p (%)

(d) Cumulative error E2 as function of the RHS

perturbation (Nk = 5)

Figure 10: 1D advection-diffusion example. RHS perturbation.
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Figure 11: Burger’s equation example. POD approximation error.
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Figure 12: Burger’s equation example. IC perturbation.
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Figure 13: Burger’s equation example. RHS perturbation.

36



5 6 7 8
10

−4

10
−3

10
−2

10
−1

N
k

 exact
fwd
adj + SCE (N

z
=1)

adj + SCE (N
z
=2)

adj + SCE (N
z
=3)

(a) Total error

5 6 7 8
10

−6

10
−4

10
−2

10
0

10
2

N
k

 exact
fwd
adj + SCE (N

z
=1)

adj + SCE (N
z
=2)

adj + SCE (N
z
=3)

(b) Subspace integration error

Figure 14: Brusselator example. POD approximation error.
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Figure 15: Brusselator example. IC perturbation.
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Figure 16: Brusselator example. RHS perturbation.
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Figure 17: HIRES example. POD approximation error.
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Figure 18: HIRES example. IC perturbation.
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Figure 19: HIRES example. RHS perturbation (perturbed parameters were [k3, k4, k5, k6]).
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Figure 20: Pollution example. POD approximation error.
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Figure 21: Pollution example. IC perturbation.
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Figure 22: Pollution example. RHS perturbation (perturbed parameters were [k4, k5, k7]).
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