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ERROR ESTIMATION OF HERMITE SPECTRAL METHOD
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

GUO BEN-YU

Abstract. Hermite approximation is investigated. Some inverse inequalities,
imbedding inequalities and approximation results are obtained. A Hermite
spectral scheme is constructed for Burgers equation. The stability and conver-
gence of the proposed scheme are proved strictly. The techniques used in this
paper are also applicable to other nonlinear problems in unbounded domains.

1. Introduction

A number of physical problems are set in unbounded domains. Some conditions
at infinity are given by certain asymptotic behaviors for solutions. When we use the
finite difference method or the finite element method to solve such problems numer-
ically, we often restrict calculations to some bounded domains, and impose certain
conditions on artificial boundaries. They cause numerical errors usually. If we use
spectral methods associated with some orthogonal systems in unbounded domains,
then the above troubles could be avoided. While the spectral methods provide
numerical solutions with high accuracies. Maday, Pernaud-Thomas and Vandeven
[1], Coulaud, Funaro and Kavian [2], and Funaro [3] used the Laguerre spectral
method for several linear partial differential equations. Iranzo and Falquès [4] pro-
vided some Laguerre pseudospectral schemes and Laguerre tau schemes. Mavriplis
[5] and Black [6] developed the Laguerre spectral element method. Also, Funaro
and Kavian [7], and Weideman [8] considered the Hermite spectral method and
the Hermite pseudospectral method. In particular, Funaro and Kavian [7] proved
the convergence of a spectral scheme using the Hermite functions for some linear
problems. But so far, there is no paper concerning error estimates of the Hermite
spectral method using Hermite polynomials. Another spectral method for partial
differential equations in unbounded domains is based on the rational basis func-
tions, see Christov [9], Boyd [10], Iranzo and Falquès [4], and Weideman [8]. The
purpose of this paper is to study spectral approximation using Hermite polynomials
and their applications to nonlinear problems. Some inverse inequalities, imbedding
inequalities and approximation results are given, which play important roles in
analysis of the Hermite spectral method. We use the Burgers equation as an ex-
ample showing how to construct Hermite spectral schemes for nonlinear problems.
The generalized stability and the convergence of the proposed scheme are proved
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strictly. The main idea and techniques used in this paper are also applicable to var-
ious nonlinear problems arising in fluid dynamics, quantum mechanics and other
fields.

2. Hermite approximation

Let Λ = {x| −∞ < x < ∞} and ω(x) = e−x2
. For 1 ≤ p ≤ ∞, set

Lp
ω(Λ) = {v|v is measurable and ‖ v ‖Lp

ω(Λ)< ∞},
where

‖ v ‖Lp
ω(Λ)=


(
∫

Λ

|v(x)|pω(x)dx)
1
p , 1 ≤ p < ∞,

ess sup
x∈Λ

|v(x)|, p = ∞.

In particular, L2
ω(Λ) is a Hilbert space with the inner product

(u, v)L2
ω(Λ) =

∫
Λ

u(x)v(x)w(x)dx.

Further, let ∂xv = ∂v
∂x , and for any non-negative integer m,

Hm
ω (Λ) = {v|∂k

xv ∈ L2
ω(Λ), 0 ≤ k ≤ m}.

The semi-norm and the norm of Hm
ω (Λ) are given by

|v|Hm
ω (Λ) =‖ ∂m

x v ‖L2
ω(Λ), ‖ v ‖Hm

ω (Λ)= (
m∑

k=0

|v|2Hk
ω(Λ))

1
2 .

For any real r ≥ 0, we define the space Hr
ω(Λ) with the norm ‖ v ‖Hr

ω(Λ) by the
space interpolation as in Adams [11]. For simplicity, we denote the inner product
(u, v)L2

ω(Λ), the semi-norm |v|Hr
ω(Λ), the norms ‖ v ‖Hr

ω(Λ) and ‖ v ‖Lp
ω(Λ), by

(u, v)ω, |v|r,ω, ‖ v ‖r,ω and ‖ v ‖Lp
ω
, respectively. In particular, ‖ v ‖ω=‖ v ‖0,ω.

Besides, let c denote a generic positive constant in this paper.
The Hermite polynomial of degree l is defined by

Hl(x) = (−1)lex2
∂l

x(e−x2
).

It is the l-th eigenfunction of a singular Liouville problem

∂x(e−x2
∂xv(x)) + λe−x2

v(x) = 0, x ∈ Λ.(2.1)

The corresponding eigenvalue λl = 2l. Clearly H0(x) = 1 and H1(x) = 2x. The
Hermite polynomials satisfy the recurrence relations

Hl+1(x) − 2xHl(x) + 2lHl−1(x) = 0, l ≥ 1,(2.2)

and

∂xHl(x) = 2lHl−1(x), l ≥ 1.(2.3)

The set of Hermite polynomials is an orthogonal system with the weight function
ω(x) on the whole line Λ, namely,∫

Λ

Hl(x)Hm(x)ω(x)dx = 2ll!
√

πδl,m.(2.4)

By (2.3), the set of ∂xHl(x) is also an orthogonal system with the same weight, i,e.,∫
Λ

∂xHl(x)∂xHm(x)ω(x)dx = 2l+1ll!
√

πδl,m.(2.5)
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For any function v ∈ L2
ω(Λ),

v(x) =
∞∑
l=0

v̂lHl(x),

where v̂l is the Hermite coefficient,

v̂l(x) =
1

2ll!
√

π

∫
Λ

v(x)Hl(x)ω(x)dx, l ≥ 0.

We now consider the Hermite approximation. Let N be any positive integer and
PN be the set of polynomials of degree at most N . In numerical analysis of the
Hermite spectral method, we need some inverse inequalities. The first is due to
Nessel and Wilmes [12], stated in the following lemma.

Lemma 2.1. For any φ ∈ PN and 1 ≤ p ≤ q ≤ ∞,

‖ φ ‖Lq
ω
≤ cN

5
6 ( 1

p− 1
q ) ‖ φ ‖Lp

ω
.

The next lemma gives another inverse inequality.

Lemma 2.2. For any φ ∈ PN ,

|φ|1,ω ≤
√

2N ‖ φ ‖ω .

Proof. By (2.3),

∂xφ(x) = 2
N∑

l=1

lφ̂lHl−1(x).

Thus (2.4) leads to

|φ|21,ω ≤ 4
N−1∑
l=0

2l(l + 1)2l!
√

πφ̂2
l+1 ≤ 2N ‖ φ ‖2

ω .

Some imbedding inequalities are useful in numerical analysis of the Hermite
spectral method. We list two of them.

Lemma 2.3. For any v ∈ H1
ω(Λ),

‖ xv ‖ω≤‖ v ‖1,ω .

Proof. Integrating by parts, we obtain that∫
Λ

xv2(x)ω(x)dx =
∫

Λ

v(x)∂xv(x)ω(x)dx ≤‖ v ‖ω |v|1,ω.

Thus xv2(x)ω(x) → 0 as |x| → ∞. By integrating by parts and the Cauchy
inequality,

‖ xv ‖2
ω =

1
2

∫
Λ

v2(x)ω(x)dx +
∫

Λ

xv(x)∂xv(x)ω(x)dx

≤ 1
2
‖ v ‖2

ω +
1
2
‖ xv ‖2

ω +
1
2
|v|21,ω

=
1
2
‖ v ‖2

1,ω +
1
2
‖ xv ‖2

ω .

So the desired result follows.
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Lemma 2.4. If v ∈ H1
ω(Λ), then for any x ∈ Λ,

|v(x)| ≤ e
x2
2 ‖ v ‖ 1

2
ω (|v|1,ω+ ‖ v ‖1,ω)

1
2 .

Moreover,

‖ e−
x2
2 v ‖4

L4
ω
≤ 16

√
π ‖ v ‖2

ω‖ v ‖2
1,ω .

Proof. We have

e−x2
v2(x) =

∫ x

−∞
∂y(e−y2

v2(y))dy

= 2
∫ x

−∞
v(y)∂yv(y)ω(y)dy − 2

∫ x

−∞
yv2(y)ω(y)dy.

By Lemma 2.3 and the Cauchy inequality,

e−x2
v2(x) ≤ 2 ‖ v ‖ω (|v|1,ω+ ‖ v ‖1,ω).

This leads to the first conclusion. Moreover,

‖ e−
x2
2 v ‖4

L4
ω
≤ 16 ‖ v ‖2

ω‖ v ‖2
1,ω

∫
Λ

ω(x)dx = 16
√

π ‖ v ‖2
ω‖ v ‖2

1,ω .

The proof is completed.

The L2
ω(Λ)-orthogonal projection PN : L2

ω(Λ) → PN is such a mapping that for
any v ∈ L2

ω(Λ),
(v − PNv, φ)ω = 0, ∀φ ∈ PN ,

or equivalently,

PNv(x) =
N∑

l=0

v̂lHl(x).

Lemma 2.5. For any v ∈ Hr
ω(Λ) and r ≥ 0,

‖ v − PNv ‖ω≤ cN− r
2 ‖ v ‖r,ω .

Proof. We have from (2.4) that

‖ v − PNv ‖2
ω=

√
π

∞∑
l=N+1

2ll!v̂2
l .

According to (2.1), we define the operator A by

Av(x) = −ex2
∂x(e−x2

∂xv(x)) = −∂2
xv(x) + 2x∂xv(x).

By Lemma 2.3, A is a continuous mapping from Hβ+2
ω (Λ) into Hβ

ω(Λ), where β
is any non-negative integer. When r is an even integer, we have from (2.1) and
integrating by parts that∫

Λ

v(x)Hl(x)ω(x)dx

=
1
2l

∫
Λ

Av(x)Hl(x)ω(x)dx = · · · = (2l)−
r
2

∫
Λ

A
r
2 v(x)Hl(x)ω(x)dx.

Thus

|v̂l| = (2l)−
r
2 ‖ Hl ‖−2

ω |
∫

Λ

A
r
2 v(x)Hl(x)ω(x)dx|.(2.6)
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Hence

‖ v − PNv ‖2
ω ≤ (2N)−r

∞∑
l=N+1

‖ Hl ‖−2
ω |

∫
Λ

A
r
2 v(x)Hl(x)ω(x)dx|2

= (2N)−r ‖ A
r
2 v ‖2

ω≤ cN−r ‖ v ‖2
r,ω .

When r is an odd integer, we obtain that∫
Λ

v(x)Hl(x)ω(x)dx = (2l)−
r−1
2

∫
Λ

A
r−1
2 v(x)Hl(x)ω(x)dx

= (2l)−
r+1
2

∫
Λ

∂x(A
r−1
2 v(x))∂xHl(x)ω(x)dx.

Finally, we derive from (2.4) and (2.5) that

‖ v − PNv ‖2
ω ≤

1√
π

∞∑
l=N+1

(2l+r+1lr+1l!)−1(
∫

Λ

∂x(A
r−1
2 v(x))∂xHl(x)ω(x)dx)2

≤ (2N)−r ‖ ∂x(A
r−1
2 v) ‖2

ω≤ cN−r ‖ v ‖2
r,ω .

Theorem 2.1. For any v ∈ Hr
ω(x) and 0 ≤ µ ≤ r,

‖ v − PNv ‖µ,ω≤ cN
µ
2− r

2 ‖ v ‖r,ω .

Proof. We first consider the case with integer µ. We shall use the induction. Ob-
viously Lemma 2.5 implies the desired result for µ = 0. Assume that it is true for
µ− 1. Then

‖ v−PNv ‖µ,ω≤‖ v−PNv ‖ω + ‖ ∂xv−PN∂xv ‖µ−1,ω + ‖ PN∂xv−∂xPNv ‖µ−1,ω .

We know from Lemma 2.5 that

‖ ∂xv − PN∂xv ‖µ−1,ω≤ cN
µ−r

2 ‖ ∂xv ‖r−1,ω≤ cN
µ−r

2 ‖ v ‖r,ω .

On the other hand, (2.3) leads to

PN∂xv − ∂xPNv = 2(N + 1)v̂N+1HN (x).

Using Lemma 2.2 and (2.4), we get that

‖ HN ‖2
µ−1,ω≤ c2NNµ−1N !.

Moreover by (2.6),

|v̂N+1|2 ≤ c(2N+1N r(N + 1)!)−1 ‖ v ‖2
r,ω .

Therefore
‖ PN∂xv − ∂xPNv ‖2

µ−1,ω≤ cNµ−r ‖ v ‖2
r,ω .

So the induction is completed. The previous results with space interpolation lead
to the conclusion for any r ≥ 0.

In order to obtain the optimal error estimation in the Hermite spectral method
for partial differential equations, we need the H1

ω(Λ)-orthogonal projection P 1
N :

H1
ω(Λ) → PN . It means that for any v ∈ H1

ω(Λ),

(∂x(v − P 1
Nv), ∂xφ)ω = 0, ∀φ ∈ PN .(2.7)

Let v̂l be the coefficients of the Hermite expansion for v(x), and

P 1
Nv(x) =

N∑
l=0

âlHl(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1072 GUO BEN-YU

By (2.3),

∂xP 1
Nv(x) = 2

N−1∑
l=0

(l + 1)âl+1Hl(x).

Similarly

∂xv(x) = 2
∞∑

l=0

(l + 1)v̂l+1Hl(x).

By (2.3) and (2.7), we know that âl = v̂l for 0 ≤ l ≤ N . Thus the projection P 1
N is

exactly the same as PN .

3. Application to Burgers equation on the whole line

In this section, we consider the Hermite spectral method for Burgers equation
on the whole line. We first change it to a new representation by the similarity
transformation, which is suitable for the Hermite approximation. We shall prove
the stability and the convergence of the designed scheme strictly.

Let Λ̃ = {y| −∞ < y < ∞} and µ > 0 be the kinetic viscosity, while g(y, s) and
V0(y, s) are the source term and the initial value, respectively. T is a fixed positive
number. We consider the following problem{

∂sV +
1
2
∂y(V 2)− µ∂2

yV = g, y ∈ Λ̃, 0 < s ≤ T,

V (y, 0) = V0(s), y ∈ Λ̃.
(3.1)

In addition, V and ∂yV satisfy certain conditions at infinity. Let

aω(u, v) =
∫

Λ̃

∂yu(y)∂y(v(y)ω(y))dy.

A weak formulation of (3.1) is to find v ∈ L2(0, T ; H1
ω(Λ̃)) ∩ L∞(0, T ; L2

ω(Λ̃)) such
that

(∂sV (s), v)L2
ω(Λ̃) −

1
2
(V 2(s), ∂y(v(s)ω))L2(Λ̃)

+µaω(V (s), v) = (g, v)L2
ω(Λ̃), ∀v ∈ H1

ω(Λ̃), 0 < s ≤ T,

V = V0, s = 0.

It can be checked that

aω(v, v) = ‖ ∂yv ‖2
L2

ω(Λ̃)
−2

∫
Λ

yv(y)∂yv(y)ω(y)dy

= ‖ ∂yv ‖2
L2

ω(Λ̃)
+ ‖ v ‖2

L2
ω(Λ̃)

−2
∫

Λ̃

y2v2(y)ω(y)dy.

It is not clear whether the bilinear form aω(v, v) is non-negative or not. Thus the
above weak formulation is not suitable for the Hermite spectral method. To remedy
this trouble, we try to reform it. Let W (x, t) = V (y, s), g̃(x, t) = g(y, s) and make
the similarity transformation

x =
y

2
√

µ(1 + s)
, t = ln(1 + s).(3.2)
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Then (3.1) becomes

 ∂tW − 1
2
x∂xW +

1
4
√

µ
e

t
2 ∂x(W 2)− 1

4
∂2

xW = etg̃, x ∈ Λ, 0 < t ≤ ln(1 + T ),

W = W0, t = 0.

(3.3)

Further let U = ex2
W and f = ex2+tg̃. Then we obtain the following problem


∂tU +

1
2
U +

1
2
x∂xU

+
1

4
√

µ
ex2+ t

2 ∂x(e−2x2
U2)− 1

4
∂2

xU = f, x ∈ Λ, 0 < t ≤ ln(1 + T ),

U = U0, t = 0.

(3.4)

In addition, U and ∂xU satisfy some conditions as |x| → ∞. Let

B(u, z, v) = − 1
4
√

µ
e

t
2 (e−x2

uz, ∂xv)ω .

The weak formulation of (3.4) is to find U ∈ L2(0, ln(1 + T ); H1
ω(Λ)) ∩

L∞(0, ln(1 + T ); L2
ω(Λ)) such that


(∂tU(t), v)ω +

1
2
(U(t), v)ω + B(U(t), U(t), v)

+
1
4
(∂xU(t), ∂xv)ω = (f(t), v)ω , ∀v ∈ H1

ω(Λ), 0 < t ≤ ln(1 + T ),
U = U0, t = 0.

(3.5)

As in Maday, Pernaud-Thomas and Vandeven [1], we suppose that V0 and g fulfill
some conditions such that for certain α ≥ 0,

lim
|y|→∞

eαy2
(|V (y, s)|+ |∂yV (y, s)|) = 0, 0 ≤ s ≤ T.

Then
lim
|x|→∞

e4αµetx2
(|W (x, t)|+ |∂xW (x, t)|) = 0, 0 ≤ t ≤ ln(1 + T )

and so

lim
|x|→∞

e(4αµet−1)x2
(|U(x, t)|+ |∂xU(x, t)|) = 0, 0 ≤ t ≤ ln(1 + T ).

If α > 1
8µ , then we have that for all t ≥ 0, 4αµet − 1 > − 1

2 . By Lemma 2.3,
U ∈ H1

ω(Λ) and so we can use the Hermite approximation for (3.5).
The Hermite spectral scheme for (3.5) is to find uN (t) ∈ PN for 0 ≤ t ≤ ln(1+T ),

such that
(∂tuN(t), φ)ω +

1
2
(uN (t), φ)ω + B(uN (t), uN (t), φ)

+
1
4
(∂xuN (t), ∂xφ)ω = (f(t), φ)ω , ∀φ ∈ PN , 0 < t ≤ ln(1 + T ),

uN = uN,0 = PNU0, t = 0.

(3.6)

We now consider the stability of (3.6). Since (3.6) is nonlinear, it is not possible
to prove the stability in the sense of Courant, Friedrichs and Lewy [13]. But it
will be shown that it is still stable in the sense of Guo [14, 15] and Stetter [16].
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To do this, we assume that f and uN,0 have the errors f̃ and ũN,0, respectively.
They induce the error of numerical solution uN , denoted by ũN . Then we get the
following equation:


(∂tũN(t), φ)ω +

1
2
(ũN(t), φ)ω + B(ũN (t), ũN (t), φ) + 2B(ũN(t), uN (t), φ)

+
1
4
(∂xũN (t), ∂xφ)ω = (f̃(t), φ)ω , ∀φ ∈ PN , 0 < t ≤ ln(1 + T ),

ũN = ũN,0, t = 0.

(3.7)

By taking φ = 2ũN in (3.7), it follows that

d

dt
‖ ũN(t) ‖2

ω +
1
2
‖ ũN(t) ‖2

1,ω

+ 2B(ũN (t), ũN (t), ũN (t)) + 4B(ũN(t), uN (t), ũN (t))

≤ 2 ‖ f̃(t) ‖2
ω .

(3.8)

Using Lemma 2.4, we deduce that for 0 ≤ t ≤ ln(1 + T ),

|2B(ũN (t), ũN (t), ũN(t))| ≤ 1
2
√

µ
e

t
2 |ũN(t)|1,ω ‖ e−

x2
2 ũN (t) ‖2

L4
ω

≤ c1(T ) ‖ ũN (t) ‖ω‖ ũN(t) ‖2
1,ω,

(3.9)

where

c1(T ) =
2 4
√

π(1 + T )2√
µ

.

Furthermore, for any p, q > 0 and 1
p + 1

q = 1, we know from Hardy, Littlewood and
Pólya [17] that

|ab| ≤ |a|p
p

+
|b|q
q

.(3.10)

Thus by using Lemma 2.4 and (3.10), we assert that

|4B(ũN (t), uN (t), ũN (t))| ≤ 1√
µ

e
t
2 |ũN (t)|1,ω ‖ e−x2

uN(t)ũN (t) ‖ω

≤ 4 4
√

π√
µ

e
t
2 ‖ uN (t) ‖ 1

2
ω‖ uN(t) ‖ 1

2
1,ω‖ ũN(t) ‖ 1

2
ω‖ ũN (t) ‖ 3

2
1,ω

≤ 1
4
‖ ũN (t) ‖2

1,ω +c2(uN , T ) ‖ ũN (t) ‖2
ω,

(3.11)

where

c2(uN , T ) =
123π(1 + T )2

µ2
‖ uN ‖2

L∞(0,ln(1+T );L2
ω(Λ))‖ uN ‖2

L∞(0,ln(1+T );H1
ω(Λ)) .

By substituting (3.9) and (3.11) into (3.8), and integrating the resulting inequality,
we find that

‖ ũN(t) ‖2
ω +

∫ t

0

(
1
4
− c1(T ) ‖ ũN(η) ‖ω) ‖ ũN(η) ‖2

1,ω dη

≤ ρ(ũN,0, f̃ , t) + c2(uN , T )
∫ t

0

‖ ũN(η) ‖2
ω dη,

(3.12)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ERROR ESTIMATION OF THE HERMITE SPECTRAL METHOD 1075

where

ρ(ũN,0, f̃ , t) =‖ ũN,0 ‖2
ω +2

∫ t

0

‖ f̃(η) ‖2
ω dη.

We need the following lemma.

Lemma 3.1. Assume that
(i) the constants b1 > 0, b2 ≥ 0, b3 ≥ 0 and d ≥ 0,
(ii) Z(t) and A(t) are non-negative functions of t,

(iii) d ≤ b2
1

b2
2

e−b3t1 for certain t1 > 0,

(iv) for all t ≤ t1,

Z(t) +
∫ t

0

(b1 − b2Z
1
2 (η))A(η)dη ≤ d + b3

∫ t

0

Z(η)dη.

Then for all t ≤ t1,
Z(t) ≤ deb3t.

Proof. Consider the function Y (t) satisfying

Y (t) = d + b3

∫ t

0

Y (η)dη.

Then for all t ≤ t1,

Y (t) = deb3t ≤ b2
1

b2
2

.

Clearly Z(t) ≤ Y (t) for t ≤ t1, and so the conclusion is valid.

Applying Lemma 3.1 to (3.12), we obtain the following result.

Theorem 3.1. Let α > 1
8µ and uN(t) be the solution of (3.6). If for certian t1,

ρ(ũN,0, f̃ , t1) ≤ (1− a)2

16c2
1(T )

e−c2(uN ,T )t1 , a ≥ 0,

then for all t ≤ t1,

‖ ũN (t) ‖2
ω +

a

4

∫ t

0

‖ ũN (η) ‖2
1,ω dη ≤ ρ(ũN,0, f̃ , t)ec2(uN ,T )t.

Theorem 3.1 indicates that the error of the numerical solution is controlled by
the errors of the data uN,0 and f , provided that the average error ρ(ũN,0, f̃ , t) does
not exceed certain critical value. It means that (3.6) is of generalized stability in
the sense of Guo [14, 15], and of restricted stability in the sense of Stetter [16].

Next we deal with the convergence of scheme (3.6). Let U be the solution of
(3.5), and UN = PNU. We derive from (3.5) that

(∂tUN (t), φ)ω +
1
2
(UN (t), φ)ω + B(UN (t), UN (t), φ)

+
1
4
(∂xUN (t), ∂xφ)ω + G(t, φ) = (f(t), φ)ω ,

∀φ ∈ PN , 0 < t ≤ ln(1 + T ),

(3.13)
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where
G(t, φ) = G1(t, φ) + G2(t, φ) + G3(t, φ),

G1(t, φ) = (∂tU(t)− ∂tUN (t), φ)ω ,

G2(t, φ) =
1
2
(U(t)− UN(t), φ)ω ,

G3(t, φ) = B(U(t), U(t), φ) −B(UN (t), UN (t), φ).

Let uN be the solution of (3.6), and ŨN = uN − UN . By subtracting (3.13) from
(3.6), we obtain that

(∂tŨN (t), φ)ω +
1
2
(ŨN (t), φ)ω + B(ŨN (t), ŨN (t), φ)

+ 2B(ŨN(t), UN (t), φ) +
1
4
(∂xŨN(t), ∂xφ)ω = G(t, φ)ω ,

∀φ ∈ PN , 0 < t ≤ ln(1 + T ).

(3.14)

In addition, ŨN(0) = 0. Comparing (3.14) to (3.7), we can derive a result similar
to that of Theorem 3.1. But uN , ũN , ũN,0 and f̃ are now replaced by UN , ŨN , ŨN,0

and G(t, φ), respectively. Therefore we only have to estimate the term |G(t, ŨN (t))|.
We first have from Theorem 2.1 that for r ≥ 1,

|G1(t, ŨN (t))| ≤ cN− r
2 ‖ ∂tU(t) ‖r,ω‖ ŨN(t) ‖ω,

|G2(t, ŨN (t))| ≤ cN− r
2 ‖ U(t) ‖r,ω‖ ŨN (t) ‖ω .

An argument, as in the derivation of (3.9), leads to that for all t < ln(1 + T ),

|G3(t, ŨN (t))| ≤ 1
4
√

µ
e

t
2 |(e−x2

(UN (t) + U(t))(UN (t)− U(t)), ŨN (t))ω |

≤ 1
2
c1(T ) ‖ UN (t) + U(t) ‖ 1

2
ω‖ UN(t) + U(t) ‖ 1

2
1,ω‖ UN(t)− U(t) ‖ 1

2
ω

× ‖ UN (t)− U(t) ‖ 1
2
1,ω‖ ŨN (t) ‖1,ω .

By Theorem 2.1,

|G3(t, ŨN (t))| ≤ 1
8
‖ ŨN(t) ‖2

1,ω +cc2
1(T )N

1
2−r ‖ UN(t) ‖4

r,ω .

Hence

|G(t, ŨN (t))| ≤ 1
8
‖ ŨN(t) ‖2

1,ω + ‖ ŨN(t) ‖2
ω

+c(c2
1(T ) + 1)N

1
2−r(‖ UN (t) ‖4

r,ω + ‖ ∂tU(t) ‖2
r− 1

2 ,ω
).

(3.15)

Obviously, the last term in (3.15) tends to zero as N goes to infinity. Therefore we
obtain the following result.

Theorem 3.2. If α > 1
8µ and

U ∈ L2(0, ln(1 + T ); Hr
ω(Λ)) ∩H1(0, ln(1 + T ); Hr− 1

2
ω (Λ))

with r ≥ 1, then for all t ≤ ln(1 + T ),

‖ uN(t)− U(t) ‖2
ω +

∫ t

0

‖ uN (η)− U(η) ‖2
1,ω dη ≤ c∗N

1
2−r,

where c∗ is a positive constant depending only on µ, T and the norms of U in the
space mentioned above.
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Remark 3.1. In the proof of Theorem 3.1 and Theorem 3.2, we require that U ∈
H1

ω(Λ) and so e−
x2
2 (|U(x, t)| + |∂xU(x, t)|) → 0 as |x| → ∞. A sufficient condition

is that for certain α > 1
8µ , eαy2

(|V (y, s)|+ |∂yV (y, s)|) → 0, as |y| → ∞. It means
that V (y, s) should decay fast enough. It agrees with the experience in actual
computations as described in Funaro and Kavian [7] and other papers.

Remark 3.2. In this paper, we use the variable transformation (3.2) and so obtain
the error estimations. In fact, a similiar transformation was used in actual compu-
tations by Funaro and Kavian [7]. This trick can be generalized to other problems,
such as the two-dimensional heat equation and the Navier-Stokes equations.

In actual computations, we need to discretize the term ∂tuN in (3.6). We can use
Lemmas 2.1–2.4, Theorem 2.1 and an argument as in the proof of Theorems 3.1 and
3.2, to prove the generalized stability and the convergence of a fully discrete scheme,
provided that the value of τN satisfies certain reasonable conditions, where τ is the
step size in time t, and N is the number of terms used in Hermite approximations.
For instance, by Lemma 2.2, τN should be bounded in the case of explicite schemes.

We can also approximate nonlinear partial differential equations by the base
functions

H̃l(x) = (2ll!
√

π)−
1
2 e−ax2

Hl(x), a ≥ 0, l ≥ 0.

The set of H̃l(x) is an orthogonal system associated with the weight e(2a−1)x2
. For

the application to linear problems with a = 1, we refer to Funaro and Kavian [7].
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