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ERROR ESTIMATORS FOR NONCONFORMING FINITE ELEMENT
APPROXIMATIONS OF THE STOKES PROBLEM

ENZO DARI, RICARDO DURAN, AND CLAUDIO PADRA

Abstract. In this paper we define and analyze a posteriori error estimators for
nonconforming approximations of the Stokes equations. We prove that these
estimators are equivalent to an appropriate norm of the error. For the case of
piecewise linear elements we define two estimators. Both of them are easy to
compute, but the second is simpler because it can be computed using only the
right-hand side and the approximate velocity. We show how the first estimator
can be generalized to higher-order elements. Finally, we present several numer-
ical examples in which one of our estimators is used for adaptive refinement.

1. Introduction

In recent years there has been considerable interest in the development of
computable a posteriori error estimates in the finite element method (see [3, 4, 5,
and 12] and references therein). The object of this work is to define and analyze
a posteriori error estimators for nonconforming finite element approximations
of the Stokes equations.

The use of nonconforming elements for the Stokes problem is motivated by
the fact that standard low-order elements do not satisfy the inf-sup condition.
In contrast, the nonconforming linear elements of Crouzeix and Raviart [8]
and the quadratic elements of Fortin and Soulie [10] do satisfy that stability
condition and therefore provide optimal order of convergence.

In the conforming case there are several ways to define error estimators by
using the residual equation. In particular, for the Stokes problem, Verfürth [ 16]
and Bank and Welfert [6, 7] introduced several error estimators and proved that
they are equivalent to the energy norm of the error.

In the nonconforming case there is an estimator introduced by Verfürth [ 17]
who proved the equivalence of it with the norm of the error but neglecting the
consistency terms in the error equations. However, these terms are not in general
of higher order, and therefore the estimators have to contain a term related to
them, which are the jumps of the tangential derivatives of the approximate
solution, as we show in this paper. Indeed, these terms are very important and
cannot be neglected, as is shown by our Theorem 3.3. Otherwise, it would be
possible to construct an estimator equivalent to the error which would depend
only on the right-hand side f. This estimator would be of order h whenever
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f is regular, and therefore it cannot be equivalent to the norm of the error in
problems with singular solutions.

In [9] we considered the simpler case of nonconforming approximations of
a scalar second-order elliptic problem, and we introduced a technique which
allowed us to define two error estimators which are equivalent to the error. In
this paper we show that, with appropriate modifications, the ideas in [9] can
be extended to the Stokes problem. We define two error estimators based on
suitable evaluations of the residual and prove that they are equivalent to the
energy norm of the error.

In §2 we introduce some notations and recall the Crouzeix-Raviart elements.
In §3 we define the error estimators and prove their equivalence with the error.
Section 4 deals with the extension to the quadratic elements of Fortin and Soulie
and finally, in §5 we present some numerical computations in which one of our
error estimators is used for adaptive refinement.

2. Preliminaries and notations

Given a simply connected polygon Si c R2, we consider the Stokes problem

{-Au + V/7 = f   in Si,
divu = 0 inQ,
u = 0 on ail,

where u stands for the velocity and p for the pressure. The weak formulation
appropriate for mixed methods is then:

Find u e H¿(Q) and p e L^(Q) such that

(22] í/íiVu:Vv-/í2pdivv = /fif.v,    VveH¿(Q),
\/nídivu = 0, VqeL2(Si),

where, H¿(Q) = Hx(Si) x Hx(Si), L2(Si) = {q e L2(Si): faq = 0}, Vu is
the matrix (ff^), and we use the standard notation for the contraction of two
matrices A and B, i.e.,

2
A:B= Y, A>JBV>

ij=l

and for Sobolev spaces. Also, ||-||>,o and \-\j,d will denote the usual j norm
and seminorm, respectively, on D, and when D = Si the subscript D will be
supressed.

Assume that we have a family {77~k} of regular triangulations of Si such
that any two triangles in 7Tk share at most a vertex or an edge. The Crouzeix-
Raviart nonconforming finite element spaces are defined by

\k = {y e L2(Si) x L2(Si): y\T £ &x x &x, vr e 7Tk ,
v is continuous at midpoints of edges and 0 at midpoints

of edges contained in dSi}

and
Qk = {q€L2l(Sl):q\T£&>0,VTe2rk}

(where 7?r denotes the space of polynomials of degree not greater than r).
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The approximate solution (u* , pk) e V* x Qk of problem (2.1) is defined by

(2.3)

J2  { / Vu*: Vv- /Vdivvj =  /"f-v.VveV*,

J2   f qdivuk = 0,VqeQk.

Note that the second equation means that for every T € ETk , div(ufc|r) = 0.
In the analysis of the error estimators we will also use the standard conform-

ing space
Mfc = {veH'(Q): v|re^i xâ°x,^T &3rk).

We end this section with some notation. For a vector function w = ( ̂  ) we
define the matrix curl w by

/     dm i       dw\

curlw=(_f£    f*
\     dx2      dxi

and for a matrix A the divergence of A is the vector,

(Mil _i_ Mxl\
aXl "•" a.x2
dAn   ,  dA„     ■
ax, ^ dx2 }

Observe that with these notations we have

/ div A • w = - / A : Vw + /   yln • w
Jd Jd JdD

for any A and w with the appropriate regularity, where n is the outward
normal to 90.

Also,
/ Vv : curl w = /    Vvt • w

Jd JdD
for any v e HX(D) and w e H'(Z)), where t is the tangent to dD.

3. Error estimators
In this section we introduce the error estimators and prove their equivalence

with the error.
To define the estimators we need to introduce some jumps associated with the

discrete solution (uk, pk) eYk x Qk . Given an interior edge /, we choose an
arbitrary normal direction n/ and denote with Tm and ToM the two triangles
sharing this edge, with n¡ pointing out of 7¡n as in Fig. 3.1.

Figure 3.1
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If n¡ = ( «2 ) ' we define the tangent t/ = ( ~"2 ). When / is a boundary edge,
n/ is the outward normal.

We define

Œ(Vu* -^1)11/1, = [V(u*|rotll) -pk\ToJ}n¡ - [V(uk\Tm)-pk\Tal]n,,

where I is the identity matrix, and

[Vu*t,]|/ = V(u*|Ot,-V(u*|rill)t/.

Let Ei be the set of interior edges of ¡Tk , and for an element T, let Et
be the set of edges of T.

Now set
l(Vuk - pkl)n,li   ifleEi,

. 0 iflcdSi
and

f ttVu^t/]/   if/e£7,
'■'     I 2Vu/ct/      iflcdSi.

With these notations we introduce the local error estimator r\j defined by

^ = l^ll|f|lg,r + ̂ El/l2(lJ/.«l2 + lJ/.'l2)
l€ET

and the global one,
I

Let e = u - u* and e = p - pk be the errors in velocity and pressure,
respectively.

For a piecewise regular vector function v we define the discrete gradient as
the L2-matrix defined by

Vky\T = V(v|r).
We will use the following error equation, which is obtained subtracting (2.3)

from (2.2) for any v e H¿(Q) n V* :

(3.1) [ Vke:Vv- [ sdivy = 0,    Vv e H¿(Q) n V*.
Ja Ja

For a function v e H'(Q) we take v' e M* as a suitable interpolation of v
satisfying

(3.2) llv-v'Ho.r^CmîM, ~
and

(3.3) ||v- v'llo./ < Cl/plvl, ~   forleEr,

where T is the union of all the elements sharing a vertex with T. We recall
that if v e H¿(Q), then v' can be taken in H¿(Q) n Mk (see for example [14]
for the construction of this kind of interpolation). Here and hereafter the letter
C denotes a generic constant which depends only on the minimum angle of the
triangulation.
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First we will show that the norm of the error,

ll«Ho + l|V*e||o,
is dominated by the estimator. This will be a consequence of two lemmas. The
first shows that the error in pressure is dominated by the error in velocity plus
the estimator, and the second bounds the velocity error by a constant times the
estimator.

Lemma 3.1. The following estimate holds:

Hello < C{n + ||Vfce||0}.
Proof. Since e e Ll(Si), there exists v e H¿(fí) [11] such that

(3.4) ll*<C^.
lV|l

Now, since v7 e M¿nH¿(Q) c V* nH0(Q), we can use the error equation (3.1)
to obtain

/ edivv= / ediv(v - v7) + / edivv7
Ja Ja Ja

= / ediv(v-v7) + / V¿e: Vv7
Ja Ja

= / ediv(v-v7)- / V¿e: V(v-v7)+ / V^e: Vv.
Ja Ja Ja

Thus, integration by parts in each element yields

/ edivv =   E  I / (-V/7 + Au)-(v-v7)

/  (V^u/c-/l)n-(v-v7))+ / Vte:Vv
Jar )     Ja

Now, using the Schwarz inequality, (3.2) and (3.3), we obtain

f edivv <C(n + \\Vke\\o)\v\i,
Ja

which together with (3.4) proves the lemma.   D

Lemma 3.2. The following estimate holds:
l|V*e||o < Cn.

Proof. First we decompose the error as

(3.5) V^e = Vr - ql + curl s
with r 6 H¿(Q), q e L2(Si) and s € H1 (£2) satisfying

(3.6) IMIi + IWIi<C||V*e||o
and

(3.7) divr = 0.

Te^k

ke: Vv.
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This decomposition can be obtained as follows.    Let  r e  H0(ß)   and
2
0q   €   Lk   be  the  solution  of the  Stokes  problem  with  right-hand  side

-div(VA:e)eH-1(n),i.e.,

„ov / -Ar + V<7 = -div(Vfce),
(18) \divr = 0.

From standard a priori estimates we know that

(3.9) ||r||i + ||i||o<q|V*e||o.

On the other hand, the first equation in (3.8) can be written as

div(Vr - q\ - Vfce) = 0.

Therefore, there exists s e H'(Q), with integral zero, such that (3.5) holds, and
the bound for ||s||i follows from (3.9) and (3.5).

Now we estimate the velocity error using the decomposition (3.5).   First
observe that

/ Vke:ql = J~] [ qdive = 0
Ja y Jt

because div(e|r) = 0. Therefore, since divr = 0, we have

(3.10) ||Vfce||g= / Vfce: Vr- / edivr-l- / Vke: curl s.
Ja Ja Ja

Using the error equation (3.1) for v = r7 e H¿ n V* and the orthogonality
relation

(3.11) / Vfce: curls7 = 0,
Ja

which is known [1] and easy to verify, we obtain from (3.10) that

l|V*e||0= / Vfce:V(r-r7)- / ediv(r - r7) + f Vfce: curl (s - s7)
Ja Ja Ja

= í (Vfce - el) : V(r - r7) + / Vfce: curl (s - s7).
Ja Ja

Integrating by parts in each element, we obtain

l|V*e||2 = W/f.(r-r7)- /  (Vkuk-pkl)n-(r-r1)-[   Vkukt • (s - s7)}
j.    \.Jt JdT JdT )

(where t denotes the tangent to d T), and applying the Schwarz inequality,
(3.2), (3.3) and (3.6), we obtain the lemma.   D

As an immediate consequence of the two lemmas above we have the following

Theorem 3.1. There exists a constant C such that

Hello+ l|Vfce||o<C»7.    D
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In the next theorem we show that the estimator is essentially dominated by
the error. Indeed, we extend to our case the technique introduced in [16] for
conforming elements and prove that the estimator is bounded by a constant
times the error plus a higher-order term which depends on local regularity of
the right-hand side.

Theorem 3.2. Let fj = rfr JT f. Then there exists a constant C such that

1<CI ||e||o + ||Vfce||o+i£milf-fHlo,:

Proof. Proceeding as in Lemma 3.2, we see that

(3.12)

/ V¿.e: (Vr + curl s) - / edivr
Ja Ja

= çU''>'+3,Ç[/,<--'+/,<-'-] +/r(,-f
for every r e H¿(fí) and every s e Hx(Si).

Now we choose r and s such that

Í fT-r = \T\2\fT\2,      vre^*,

(3.13) |j/,„.r = |/|2|J/,„|2,       V/€£/,

rj/,,-s = |/|2|J/,,|2,      v/e£/,v/côil
/•

and

(3.14) |r|,,r + |s|i,7-<Cr/r.

These functions can be taken in the following way:

r = aTfTbT + ^2 ß^i.nVl
le Er

and

s= Yl yiJi,><pi>
leEr

where bj is a usual bubble function on T (i.e., a cubic polynomial vanishing
on d T), tpi is the standard quadratic basis function which takes the value 1
at the midpoint of / and 0 at the other nodes, and ar, ßt and y¡ are scalars
chosen such that conditions (3.13) are satisfied. The estimate (3.14) follows
from standard scaling arguments.
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From (3.12) and (3.13) we get

/ Vfce: (Vr + curl s) - / edivr
Ja Ja

= EJiri2i^+^Ei/i2(iJ/.«i2 + iJ/.'i2) + /7.(f-f^-r|

= E|irnifiio,r+5Ei/i2(iJ/^i2 + iJ/>'i2)
T    [ l€ET

+ ^(f-fr).r-|r|||f-fr||2,,rl

E{/r(f-fr)-(r-rr)-|r|||f-fr||2>rJ.= n2 +

Therefore, using the Schwarz inequality, (3.14), the known estimate ||r — rj-||o, r
l i

<C|r|2|r|1)7- and \T\2\\f-fT\\0tT <r¡T, we obtain

n2< (Hello + ||V*e||0)(|r|i + |s|,)

+ CEllf-frllo,r|r|5(|r|1,r + r/r)

<Cl ■|e||o + l|Vke||o+   EHf-fHlo,rl^l
I ^
2

>v,

and the theorem is proved.   D

We now introduce an estimator which is equivalent to n and simpler to
compute.

To do this, we show that the terms corresponding to J/ „ can be eliminated.

Lemma 3.3. Given an edge I e Ej, the following inequality holds (we use the
notation of Fig.  3.1) :

|J/,»|2|/|2<l|f||¡U +3    ' ii-iio,Tout    3   •

Proof. Let y/¡ be the basis function associated with the midpoint of /, that is,
\pi is one at this midpoint and vanishes at all other nodes.

Taking v1 = (<£') and v2 = ( ° ) as test functions in (2.3), and integrating
by parts, we obtain

/ f.v'=/   Vi.u/c:Vv'-/   pkdivy'+        Vfcu/c:Vv'-/    pkdi\y'
</7¡0urout JTí„ JTm •'Tom •'Tout

= Í    (Vu* - pkl)n¡ • v' - Í     (Vu* - pkl)n¡ ■ y'
JdTin JdT0M
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Therefore, denoting by //    and /', i = 1, 2, the two components of J/ „
and f, respectively, we have

-J,\n\i\= [     /Vf,
Jt,„uToM

and so

|J/,„||/| < l|f||o,rJl^llo,rin + ||f||o,r„Jk/llo,r01

= llIllo,ri„ + Pilo,

which concludes the proof.   G

Consequently, we define the estimator f\ by

í/2 = £#

with

^ = l^lll^,r + ÍEl/l2lJ'.'l2-
l€ET

From Lemma 3.3 and Theorems 3.1 and 3.2 we obtain for fj analogous
estimates as for n :

Theorem 3.3. There exist constants Cx and C2 such that

l|e||o + II Vfce||0<C,r/
and

f\<c2{ |e||o + l|V*e||o+[£mi|f-fHló\ D

Remark 3.1. The estimator fj depends only on the right-hand side f and the
approximate velocity u* , and not on pk . Therefore, it can be computed with-
out knowing the approximate pressure. This fact is useful if one computes only
u* by using a divergence-free basis of V* .

Remark 3.2. Following the proof of Lemma 3.1, we see that the part of n
corresponding to J¡ <t does not appear in the bound of that lemma. Therefore,
in view of Lemma 3.3, we obtain the better estimate

i

|e||r,<C< fEmilfllo.rj2+l|Vfce||0

4. The second-order elements of Fortin and Soulie
We have introduced and analyzed the error estimators only for the lowest-

degree nonconforming space for the sake of simplicity. In fact, the first estima-
tor and the results concerning it can be extended straightforwardly to higher-
order elements.
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Let us consider the second-order elements of Fortin and Soulie [10]. As
was shown in [10], the situation is quite different than in the piecewise linear
elements case, since the natural nodes (i.e., the six Gaussian nodes of the sides
of T) cannot be taken as degrees of freedom. The reason is that there exists a
quadratic polynomial that vanishes at these six nodes. If X¡ are the barycentric
coordinates of T, this polynomial is

pT(X) = 2-3(X\+X22 + X22).

Fortin and Soulie showed that the space of piecewise quadratic functions
continuous at the two Gaussian nodes of each side coincides with the standard
continuous piecewise quadratic elements enriched with an interior node in each
triangle associated with pj. The computational cost for these elements is es-
sentially the same as that for the standard quadratic elements since the internal
degree of freedom can be condensed.

On the other hand, the inf-sup condition is satisfied when these elements are
used for the velocity together with discontinuous piecewise linear pressures.

To extend the techniques of §3 to this case, we observe that the orthogonality
relation (3.11) holds also in this case; indeed, denoting with flu*]]/ the jump of
u* at /, we have

/ Vke: curl s7 = - V / V*u* : curl s7
Ja T Jt

= - E / u* • (curl s')n
j   JdT

= -E /Vl/• (curl s7)n/= 0

because flu*]/ vanishes at the two Gaussian points of /.
To define the estimator, we have to replace the term containing ||f||o,r in

the piecewise linear case by the local residual (in fact, f was the local residual
in that case). Also we have to take into account that J/„ and J/ , are not
constant in this case. So, we define

n2T = \T\ ||f + Au* - Vpk\\lr + i £ |/|(I|J/.«II0./ + lU/Jo,/)-
l€ET

The results of Theorem 3.1 and 3.2 hold in this case with fT replaced by the
local L2-projection of f into the linear functions.

Remark 4.1. The proof of Lemma 3.3 cannot be immediately extended to this
case. Therefore there is not a straightforward generalization of the estimator r)
to this case.

5. Numerical results

In this section we present the results of numerical computations with the
Crouzeix-Raviart elements. We have used rjT as a local error indicator for
adaptive refinement in problems involving singularities.
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The adaptive procedure is as follows. First, we compute u° and p° corre-
sponding to an initial triangulation J7"° . Then, the partition 7Tk+x is obtained
from 77~k by refining those elements such that

m > 0.7r/max,

where

»/max = max nT.

The refinement is propagated using the method introduced in [13]. In this way,
the minimum angle of 7Tk is not less than half of the minimum angle of ¿7"°.

In our theoretical results we have assumed, for the sake of simplicity, ho-
mogeneous Dirichlet boundary conditions. However, the estimators can be
defined with simple modifications for general boundary conditions, and the
results are essentially the same. In this case we define J¡ n as before and
J/ , = 2(Vg7 - Vu*) • t/ if / c dSi*, where g7 is the linear interpolation of
the Dirichlet boundary datum g and Si* is a polygonal domain approximating
Si. The only difference is the presence of higher-order terms in the equivalence
between error and estimator depending on local regularity of the data (see [2,
9] for details in similar situations).

Examples 1 and 2. Let Si = {(r, <p): 0 < r < 1, 0 < tp < *f}, with k = 3 for
Example 1 and k = 4 for Example 2. We solve -Au + Vp = 0 with homo-
geneous Dirichlet boundary conditions on the straight parts of the boundary,
and nonhomogeneous Dirichlet boundary conditions on the curved part of the
boundary. The exact solutions are given by

u = (ra[(l +a)sin<py/(tp) + costpdyi//^)],
r" [sin tp dp y/(<p) - (1 + a)cos<py(<p)]),

p= -r'-1[(l+a)29^(ç>) + o,V((?)]/(l-«)

with

ip(tp) - sin(( 1 + a)<p) cos(aco)/( 1 -I- a) - cos(( 1 + a)tp)
+ sin((a - l)(p)cos(aco)/(l - a) + cos((a - l)q>),

a = 856399/1572864,        (o = 3ti/2,

for Example 1, and

y/(tp) = 3sin(0.5ç?) - sin(1.5ç>),
a = 0.5,     co = 2n,

for Example 2.
Table 1 shows the error || V^e||o + ||e||o and the estimator for five steps of the

refinement procedure for Example 1. The integer N stands for the number of
unknowns. Table 2 shows similar results for Example 2.
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Table 1 Table 2

From these results, it follows that optimal order of convergence is obtained
for these singular solutions, i.e.,

|e||o + l|V,fce||o = <*(#"-\/2s

This is shown in Fig. 1. This order of convergence is the same as that obtained
for regular solutions with uniform refinement.

Ho + l|V*e||o
2 r

+ + + ++   Example 1
*xxx><   Example 2

2 3*5678 <iw,100 1000

Number of unknowns

Figure 1

Figure 2 shows the meshes ETk for k — 0, 1,3,5 obtained in Example 1.
Figure 3 shows the same meshes for Example 2.

Example 3. This last example is the standard square lid driven cavity. Table 3
shows the estimator for five steps of the refinement procedure.

The results in Table 3 show that n — cf(N~xl2), which, according to the
theorems proved above guarantees the optimal order of convergence also for
this problem. The meshes 77~k for k = 0, 1, 3, 5 obtained in this example
are shown in Fig. 4.
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Figure 2
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Figure 3
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Table 3
~k N r¡~
0 198 1.50
1 362 1.26
2 726 0.99
3 1176     0.83
4 1616     0.72
5 2280     0.62

Figure 4

6. Concluding remarks

We have introduced and analyzed a posteriori error estimators for noncon-
forming approximations of the Stokes problem.

For the case of piecewise linear elements of Crouzeix and Raviart we defined
two estimators which are equivalent to the error. Both estimators are easy to
compute. However, the second is simpler and depends only on the right-hand
side and the approximate velocity; therefore, it can be used when one computes
only the velocity by using a divergence-free basis.
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Our numerical computations show good behavior of our first estimator when
used as an error indicator for adaptive refinement.

Also, we showed how the first estimator can be generalized for the quadratic
elements of Fortin and Soulie. As is easily seen, it can also be generalized
for the method of Stenberg and Baroudi [15] in which one component of the
velocity is approximated with nonconforming linear elements and the other
with standard conforming linear elements. For the same triangulation, the total
number of degrees of freedom for these elements is lower than for the Crouzeix
and Raviart elements. These two elements have the additional advantage that
they can also be used for the elasticity equations.
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