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Abstract—In this paper, we assess the random coding error
exponents (EEs) corresponding to decode-and-forward (DF),
compress-and-forward (CF) and quantize-and-forward (QF)re-
laying strategies for a parallel relay network (PRN), consisting
of a single source and two relays. Moreover, through numerical
analysis we show that the EEs achieved by using QF relaying
along with non-Gaussian signaling (coded modulation, M-QAM)
at the source and symbol-by-symbol uniform scalar quantizers
(uSQs) at the relays is better than that achieved by DF and CF
relaying strategies when the system is in the low signal-to-noise
ratio (SNR) regime and the backhaul capacity is sufficient. This
behavior is due to the structure of coded modulation, as opposed
to Gaussian signaling, which leads to better EEs for simple
relaying strategies compared to its more complex counterparts.

I. I NTRODUCTION

For future mobile wireless networks one of the major con-
cerns for service providers is to provide seamless connectivity
to the end users with quality of service (QoS) as high as
possible. One of the major hindrances to achieve a determined
QoS is the interference caused by surrounding transmitters.
In order to alleviate the interference effect in future cellular
networks, base station cooperation (network MIMO) and relay
deployment techniques have been recently proposed [1]–[5].

In this paper, we focus on a parallel relay network (PRN)
consisting of a single source and two relays wherein an error-
free finite capacity backhaul connection between the relaysand
destination is assumed. This model was first studied by Schein
[6] where he derived several outer bounds and achievable
rates. This setup can findapplications in cellular networks
for UL communications, in long-range sensor networks, and
in rapidly deployable infrastructure networks for military or
civil applications. The impact of limited-capacity backhaul on
both base station and mobile station cooperation for uplink
and downlink for non-fading Gaussian scenarios have been
studied in [4], [5].

Note that system performance is highly dependent on the
processing capabilities of RSs. In this paper, we investigate
whether it is possible to have good performance by using
simple and cheap relays with limited backhaul connections to
the destination. In particular, we look at asimpler and more
practical quantization technique at the relays which relies on
symbol-by-symbol uniform scalar quantization (uSQ), since in
the high resolution regime the performance loss compared to
vector quantization (VQ) becomes negligible [9].

In order to have thorough characterization of a system’s
performance, knowing the capacity of the system is not
sufficient alone. Hence, in this paper, we consider the ran-
dom coding error exponent [8], which is also defined as
channel reliability function and represents a decaying rate
in the decoding error probability as a function of codeword
length, as the performance metric. In particular, we assess
the random coding EEs corresponding to DF, CF and QF
relaying strategies for the PRN setup. Specifically, for theDF
we assume Gaussian codebook at the source and maximum-
likelihood (ML) decoding at the relays where each passes
its own decision and a correspondingreliability function to
the destination. For the CF, we assume Gaussian codebook
at the source and VQ at the relays and ML decoding at the
destination. For the QF, we assume M-QAM at the source
and uSQ at the relays. Moreover, through numerical analysis
we show that the EEs achieved by using the proposed QF
relaying along with M-QAM at the source and simple symbol-
by-symbol uSQ at the relays is better than that of DF and CF
relaying strategies when the system is in the low SNR regime
and the backhaul capacity is large enough.

II. CHANNEL MODEL AND PRELIMINARIES

We study the PRN model shown in Fig. 1 where a single
source wants to communicate with a destination with the
assistance of two relay stations (RSs). We assume no link be-
tween the source and destination nor between the RSs. All the
channels are modeled as time-invariant, memoryless additive
white Gaussian noise (AWGN) channels with constant gain
(which may correspond to path-loss between each transmitter
and receiver). The source encodes its messageW ∈ W ,
whereW = {1, 2, . . . , 2nR} and R is the transmission rate
in [bits/transmission], into the codewordXn(W ).

The received signal at thek-th RS after thei-th channel
use, fork = 1, 2 and i ∈ [1, n], is 1

YRk,i = hkXi + Zk,i, (1)

wherehk ∈ R+ is the fixed channel gain from the source to
the k-th RS,Zk,i ∼ CN (0, σ2) is the noise term at thek-th

1We use capital letters, e.g.,X, for random variables (RVs), lower case
letters, e.g.,x, for the realization of these RVs, and calligraphic letters, e.g.,
X , for their alphabets. Also,E[(.)] denotes the expectation operator,Im is
them×m identity matrix.X ∼ CN (µ, σ2) means RVX follows circularly
symmetric complex Gaussian distribution with meanµ and varianceσ2 .
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1h

h2

C1

C2
Relay 2

Relay 1

Destination

n
R1
Y

n
R 2
Y

W

n
1Z

n
2Z

)W(Xn

sP

Fig. 1. A single source, 2 relay PRN setup with orthogonal error-free finite-
capacity backhaul links between the relays and the destination, whereCk

in [bits/transmission] is the link capacity between thek-th relay and the
destination, fork = 1, 2.

relay. We assume an average power constraint at the source,
i.e., E[|X(W )|2] = Ps, ∀W ∈ W .

Thek-th RS transmitsXRk
based on the previously received

signals (causal encoding) [7]

XRk,i = fRk,i(YRk,1, YRk,2, . . . , YRk,i−1) (2)

wherei ∈ [1, n] is the time index.
For the access channel from the RSs to the destination,

we consider lossless orthogonal links with finite capacity be-
tween each RS and the destination. LetCk[bits/transmission],
k = 1, 2, be the link capacity between thek-th RS and the
destination.

A. Random Coding Error Exponent

In order to have thorough characterization of a system’s
performance, the capacity of the system alone is not sufficient.
The random coding EE [8], which is also defined as channel
reliability function and represents a decaying rate in the
decoding error probability as a function of codeword length,
gives insights about how to achieve a certain level of reliability
in communication at a rate below the channel capacity.

The error exponent of a communication system is defined
by [8]

E(R)
∆
= lim

n→∞
sup

− log2 Pe(n, R)

n
(3)

wherePe(R, n) is the average block error probability for the
optimum block code of lengthn and rateR[bits/transmission].
For any rate below capacity, the average probability of decod-
ing errorPe(R, n) for codes of block lengthn can be bounded
between the limits

2−n[Esp(R)+O(n)] ≤ Pe(n, R) ≤ 2−nEr(R) (4)

where Esp(R), known assphere packing EE, andEr(R),
known asrandom coding EE, are lower and upper bounds
on the reliability functionE(R), respectively, andO(n) is a
function going to0 with increasingn. For a given codeC of
lengthn and alphabet size2nR, Gallager’s random coding EE,
which relies on ML decoding, is given by

Er(R) = max
0≤ρ≤1

max
p

[E0(ρ, p) − ρR] (5)

whereE0(ρ, p) is defined as

E0(ρ, p) = − log2





∑

y

(

∑

x

p(x)p(y|x)
1

1+ρ

)1+ρ


 (6)

for discrete channels wherep(x) is the input distribution and
p(y|x) are the channel output distributions conditioned on the
input, and

E0(ρ, f) = − log2

[

∫ ∞

−∞

(
∫ ∞

−∞

f(x)f(y|x)
1

1+ρ dx
)1+ρ

dy

]

(7)

for AWGN channels wheref(x) is the continuous input distri-
bution andf(y|x) the channel output distributions conditioned
on the input.

III. E RROR EXPONENT ANALYSIS FOR SINGLE USERPRN

In this section, we obtain expressions for the EEs cor-
responding to DF, CF and QF relaying strategies for the
considered PRN set-up. For the DF, we assume a Gaussian
codebook at the source and ML decoding at the RSs where
each passes its own decision and a correspondingreliability
function to the destination. We note that for the DF the
destination is not required to have channel side information
(CSI). For the CF, we use a Gaussian codebook at the source
and VQ at the RSs and ML decoding at the destination. For
the proposed QF relaying, M-QAM at the source and uSQ at
the RSs are considered.

A. DF relaying with Gaussian Inputs

Assume each RS applies ML detection and sends the
message corresponding to the detected signal along with a
reliability information (which is a scalar variable equal to
the logarithm of the Euclidean distance between the received
signal and the detected signal) to the destination on orthogonal
error- and cost-free limited capacity backhaul links. Moreover,
we assume that the backhaul link capacities are at least equal
to the source transmission rate,R. Hence, the backhaul links
do not create a bottleneck for system performance.

Upon receiving the detected signals and the reliability
information, the destination makes its decision by comparing
the reliability information: it decides on the codeword which
has the minimum reliability information (Euclidean distance).
Hence, if the codeword detected at one of the RS is wrong and
its corresponding reliability information is smaller, then the
ultimate detection will be wrong even if the other RS has made
a correct detection (but with greater reliability information).

Assume thew-th message,w ∈ W , is encoded into the
codewordx(w) ∈ Cn of length n and letyRk

∈ Cn denote
the received signal vector of sizen at thek-th RS fork = 1, 2.
Then, the ML detection at thek-th RS is given by

x̂ML,k = argmax
x

ln
(

p(yRk
|x(w), hk)

)

= argmax
x

− 1

σ2
‖yRk

− hkx‖2 − n ln(πσ2)

= argmin
x

‖yRk
− hkx‖ = argmin

x
βk, k = 1, 2,



where we defineβk as the reliability information, i.e.,

βk = ‖yRk
− hkx‖, k = 1, 2.

Upon receiving the detected signal and the reliability infor-
mation of each RS, the destination node makes the following
final detection:

x̂ML = arg min
x̂ML,1,x̂ML,2

βk, k = 1, 2. (8)

We defineEa
∆
= Pr{βa > βb|x̂ML,b 6= x(w), x̂ML,a =

x(w)} for a, b = 1, 2, a 6= b. Then, with the above detec-
tion rule we have the following average probability of error
(conditioned onx(w) was sent)

Pe ≤ PML,1PML,2 + PML,1(1 − PML,2) Pr{E2}
+ PML,2(1 − PML,1) Pr{E1}

≤ PML,1PML,2 + PML,1 Pr{E2} + PML,2 Pr{E1} (9)

wherePML,k, for k = 1, 2, is the standard ML error proba-
bilities at thek-th relay.

Assumingsymmetric channels from the source to the RSs,
i.e., h = h1 = h2, and hencePML = PML,k and
Pr{E1} = Pr{E2}, the probability of error will have the
following simplified expression:

Pe ≤ P 2
ML + 2PML Pr{E2}. (10)

Now we need to find an expression forPr{E2}. This can
be evaluated as follows

Pr{E2} = Pr{β2 > β1 | x̂ML,1 6= x(w), x̂ML,2 = x(w)}
= Pr{‖yR1

− h1x̂ML,1‖2 ≤ ‖yR2
− h2x̂ML,2‖2}

= Pr{‖yR1
− h1x̂ML,1‖2 ≤ ‖yR2

− h2x‖2}
= Pr{‖h1(x − x̂ML,1) + z̃1‖2 ≤ ‖z̃2‖2}
= Pr{‖ẑ1‖2 − ‖z̃2‖2 ≤ 0}
= Pr{T − Y ≤ 0} = Pr{Z ≤ 0} (11)

whereẑ1
∆
= h1(x− x̂ML,1)+ z̃1 ∼ CN (0, (2h2

1Ps+σ2)In), we
note that Gaussian codebook is assumed at the source withPs

being the average source power, andz̃2 ∼ CN (0, σ2In). Fur-
thermore, we define the random variables (RVs)T

∆
= ‖ẑ1‖2,

Y
∆
= ‖z̃2‖2 andZ

∆
= T − Y .

The RV Z can be re-written in the following form

Z = T − Y = ‖ẑ1‖2 − ‖z̃2‖2

=

n
∑

i=1

(

|ẑ1,i|2 − |z̃2,i|2
)

=

n
∑

i=1

(Ti − Yi) =

n
∑

i=1

Zi (12)

where2 Ti
∆
= |ẑ1,i|2 ∼ Exp(λt) with λt = 1/(2h2

1Ps + σ2),

Yi
∆
= |z̃2,i|2 ∼ Exp(λy) with λy = 1/σ2, andZi = Ti − Yi,

i = 1, . . . , n. With these definitions the probability distribution
function (pdf) ofZi fZi

(zi) is given by (23) (see Appendix-A
for the derivations of the pdf) with meanµZ = E[Zi] and
varianceσ2

Z = VAR[Zi], for i = 1, . . . , n.

2The notationT ∼ Exp(λ) means thatT is an exponentially distributed
RV with meanλ, i.e., pT (t) = λ exp{−λt}, t ≥ 0.

Finally, we can upper boundPr{β2 > β1} as follows3, for
sufficiently largen,

Pr{β2 > β1} = Pr{β2 > β1|x̂ML,1 6= x(w), x̂ML,2 = x(w)}

= Pr{Z ≤ 0} = Pr

{

n
∑

i=1

Zi ≤ 0

}

(a)

≤ Q

(

nµZ
√

nσ2
Z

)

(b)

≤ exp

{

−n
µ2

Z

2σ2
Z

}

≤ exp

{

−n

(

1

2
− λ2

t λ
2
y

λ4
t + λ4

y

)}

(c)
= 2

−n

(

log2(e)

2
− log2(e)(1 + 2Γ)2

1 + (1 + 2Γ)4

)

(13)

where Γ = h2Ps

σ2 with h = h1 = h2, (a) follows from
the central limit theorem, (b) follows by upper-bounding
the standard tail functionQ(.) and (c) holds by inserting
λt = 1/(2h2

1Ps + σ2) and λy = 1/σ2. Hence, the overall
average probability of error can be approximated as

Pe ≤ P 2
ML + 2PML Pr{β2 > β1}

≤ P 2
ML + 2PML 2

−n

(

log2(e)

2
− log2(e)(1 + 2Γ)2

1 + (1 + 2Γ)4

)

≤ 2
−n min

{

2Er(R), Er(R) +
log2(e)

2
− log2(e)(1 + 2Γ)2

1 + (1 + 2Γ)4
− 2

n

}

where we usePML = exp{−nEr(R)} as the standard ML
error probability [8] at each RS. From the definition (3), as
n → ∞, the corresponding error exponent is given by

EDF (R) = min

{

2Er(R), Er(R) +
log2(e)

2
− log2(e)(1 + 2Γ)2

1 + (1 + 2Γ)4

}

,

(14)

which indicates that by the proposed DF relaying allowing
multiple RSs (here two) to participate in communications be-
tween the source and the destination always providesdiversity
gains (against noise) at all SNR ranges.

B. CF relaying with Gaussian Signaling

For CF relaying, assuming phase compensation and Gaus-
sian mapping at the RSs, the quantizer outputs are given, in
vector form, by

v = yR + zq = h x + z + zq

whereh = [h1 h2]
T , z, zq ∈ C2×1 and zk ∼ CN (0, σ2) and

zq,k ∼ CN (0, Dk) for k = 1, 2. Define the2 × 2 matrix
W = diag{σ2 + D1, σ

2 + D2}. Then,E0(ρ, Ps) becomes

E0(ρ, Ps) = ρ log2

∣

∣

∣

∣

I +
Ps

1 + ρ
W−1hhH

∣

∣

∣

∣

= ρ log2

(

1 +
Ps

1 + ρ

[

h2
1

σ2 + D1
+

h2
2

σ2 + D2

])

.

(15)

3Q(x) =
∫∞

x
1√
2π

e−
t2

2 dt is the standard tail function for Gaussian RVs.



As in the process of achievable rate calculation, we have the
following compression rate constraints [7]:

log2

(

σ2
vk

Dk

(1 − ζ2)

)

≤ Ck k = 1, 2,

log2

(

σ2
v1

D1

σ2
v2

D2
(1 − ζ2)

)

≤ C1 + C2 (16)

whereσ2
vk

= h2
kPs + σ2 + Dk, k = 1, 2, and ζ ∈ [−1, 1] is

the correlation factor betweenv1 andv2.
Then, the random coding EE corresponding to the CF

relaying scheme is given by

Er,CF (R) = max
0≤ρ≤1

[E0(ρ, Ps) − ρR] (17)

subject to the rate constraints specified above. We note that
Er,CF (R) is a decreasing function of bothD1 andD2, hence
the minimum possible distortion values will result in optimum
error exponent.

C. QF relaying with Non-Gaussian Signaling

In this section, we examine the EE for PRNs where the
source transmits(n, R) block code where each letter of each
codeword is independently drawn according to a probability
distributionp(x) and an M-QAM constellation is used where
2nR messages (alphabet size) are encoded over a block ofn
symbols. The received signals at the RSs are simply quantized
by using uSQ, where correlation information is discarded. We
assume that each symbolx = (xR, xI) = xR + jxI on the
M-QAM constellation has equal probabilityp(x) = 1/M , and
p(xR) = p(xI) = 1/

√
M .

The input-output model (1) can be decomposed into real
and imaginary parts as follows

y
Rk

=

[

yR
Rk

yI
Rk

]

=

[

ℜ{yRk
}

ℑ{yRk
}

]

=

[

hkxR + zR
k

hkxI + zI
k

]

, (18)

wherexR = ℜ{x} andxI = ℑ{x} are the real and imaginary
parts of the signal transmitted from the source, respectively,
and E[(XR)2] = E[(XI)2] = Ps

2 (note thatE[XRXI ] =
0). Noise components have zero mean and covariance matrix
E[(ZR

k )2] = E[(ZI
k)2] = σ2

2 .
The uSQ process at each RS follows the same steps as in

[9]. Then, for a given source input signalx, the probability
that the quantizer output is in thel = (lR, lI)-th quantizing
interval, i.e.,V k = (V R

k , V I
k ) = vk,l = (vR

k,lR
, vI

k,lI
), k = 1, 2,

is given by

Pr
[

V k = vk,l|x
]

= Pr
[

(V R
k , V I

k ) = (vR
k,lR , vI

k,lI )|x
]

= Pr
[

V R
k = vR

k,lR | xR
]

Pr
[

V I
k = vI

k,lI |xI
]

= Pr
[

yR
Rk

∈ SR
k,lR |xR

]

Pr
[

yI
Rk

∈ SI
k,lI |xI

]

(19)

where

Pr
[

yR
Rk

∈ SR
k,lR |xR

]

=Q

(

uR
k,lR

− hkxR

σ/
√

2

)

−Q

(

uR
k,lR+1

− hkxR

σ/
√

2

)

Pr
[

yI
Rk

∈ SI
k,lI |xI

]

=Q

(

uI
k,lI

− hkxI

σ/
√

2

)

−Q

(

uI
k,lI+1

− hkxI

σ/
√

2

)

for l = [1, . . . , LR
k ]×[1, . . . , LI

k] whereLR
k andLI

k denote the
number of quantization outputs for real and imaginary parts
of the received signal at thek-th relay,k = 1, 2.

We note that for symmetric channel gainsh = h1 = h2

and
√

Lk = LR
k = LI

k = 2
Ck
2 , the quantization steps for

both real and imaginary parts become symmetric, then the
representation points and the transition levels become the
same, i.e,vR

k,l = vI
k,l = v̂k,l and uR

k,l = uI
k,l = ûk,l for

l = 1, . . . , Lk.
The destination performs ML decoding based on the ob-

servationsv1, v2, which are the representation points corre-
sponding to the received signals at each RS. Then, we have
the following EE for the QF relaying with M-QAM at the
source and uSQ at the RSs

Er,QF (R) = max
0≤ρ≤1

[E0(ρ, p(x) = 1/M) − ρR] , (20)

whereE0(ρ, p(x) = 1/M) = E0(ρ) is defined as

E0(ρ) = − ln





∑

v1,v2

[

∑

x

1

M
p(v1, v2|x)

1
1+ρ

]1+ρ




= − ln





∑

v1,v2

[

∑

x

1

M
p(v1|x)

1
1+ρ p(v2|x)

1
1+ρ

]1+ρ




= E∗
0 (ρ) + E∗∗

0 (ρ) = 2E∗
0(ρ) (21)

where

E∗
0 (ρ) = − ln





∑

vR
1

,vR
2

[

∑

xR

1√
M

[

p(vR
1 |xR)p(vR

2 |xR)
]

1
1+ρ

]1+ρ


 ,

E∗∗
0 (ρ) = − ln





∑

vI
1
,vI

2

[

∑

xI

1√
M

[

p(vI
1 |xI)p(vI

2 |xI)
]

1
1+ρ

]1+ρ




andp(vR
k |xR) andp(vI

k|xI), for k = 1, 2, are evaluated as in
(19). With these settings (20) becomes

Er,QF (R) = max
0≤ρ≤1

[2E∗
0 (ρ) − ρR] . (22)

IV. N UMERICAL RESULTS

We compare the random coding EE performances of the
relaying strategies studied above for the symmetric system
model case where the channel gains from the source to RSs
are the same, i.e.,h = h1 = h2 = 1, and the link capacities
from the RSs to the destination are the same,C = C1 = C2.

In Fig. 2 and Fig. 3, we plot the EEs given by (14), (17)
and (22) corresponding to DF, CF and QF (with 4-QAM at the
source and uSQ at the RSs) relaying strategies with respect to
transmission rateR [bits/transmission] for fixedΓ = Psh2

σ2 =
{0, 10} [dB]. In Fig. 2, which corresponds to a low SNR
regime, we see that at rates above0.2 [bits/transmission] the
proposed simple and practical QF relaying has better EE than
both DF and CF. However, when we operate at rates lower than
0.2 [bits/transmission], the EE for the proposed DF relaying
strategy outperforms the others. In Fig. 3, which corresponds
to a high SNR regime, we see that at all rates our proposed



QF relaying performs the worst, which could be explained
as follows: since the backhaul rate is fixed whilst the SNR
is increased the proposed QF strategy cannot fully exploit
the structure of the modulation scheme used at the source.
From this plot we can also see that the achieved EE with the
proposed DF relaying is better than that of the CF relaying
strategy at low to moderate rates.

V. CONCLUSIONS

In this paper, we studied the PRN consisting of a single
source and two relays which are connected to a destination
via an error-free finite capacity backhaul. We evaluated the
random coding EEs corresponding to DF, CF and QF relaying
strategies for the PRN in order to have thorough characteri-
zation of system performance. Moreover, through numerical
analysis we illustrated that the EEs achieved by using QF
relaying along with non-Gaussian signaling (M-QAM) at the
source and symbol-by-symbol uSQs at the relays is better
than that achieved by DF and CF relaying strategies when the
system is in the low SNR regime and the backhaul capacity
is large enough. Using a finite constellation, such as M-
QAM, at the source node along with simple processing, such
as the proposed QF scheme, at the relay can provide better
EEs compared to more complex schemes. This is due to the
structure inherent in the considered modulation scheme, which
Gaussian signaling lacks.

APPENDIX A
THE PDF OF THE DIFFERENCE OF EXPONENTIALLY

DISTRIBUTED RVS

Let T andY be two independent exponentially distributed
RVs with respective meansE[T ] = λt and E[Y ] = λy. Now
define a new RV,Z = T − Y .

We want to find the pdf ofZ. The cdf ofZ is given by

FZ(z) = P (Z ≤ z) = P (T − Y ≤ z)

=















∫ ∞

0

∫ z+y

0

f(t)f(y)dtdy = 1 − λy

λy + λt

e−λt z, z ≥ 0
∫ ∞

−z

∫ z+y

0

f(t)f(y)dtdy =
λt

λy + λt

eλy z, z < 0.

Then, the pdf ofZ is calculated as

fZ(z) =
∂FZ(z)

dz
=















λt λy

λt + λy

e−λt z , z ≥ 0

λt λy

λt + λy

eλy z , z < 0
(23)

Then, the mean and variance ofZ are given by

µZ = E[Z] =

∫ ∞

−∞

zf(z)dz =
1

λt

− 1

λy

,

σ2
Z = VAR[Z] =

1

(λt + λy)2

[

λ2
y

λ2
t

+
λ2

t

λ2
y

]

. (24)
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Fig. 2. Error exponents for 1-Source, 2-Relay PRN withΓ = Psh2

σ2 = 0
[dB] and C = C1 = C2 = 4[bits/transmission].
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Fig. 3. Error exponents for 1-Source, 2-Relay PRN withΓ = Psh2

σ2 = 10
[dB] and C = C1 = C2 = 4[bits/transmission].
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