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Abstract

Motivation: Next-generation sequencing produces vast amounts of data with errors that are diffi-

cult to distinguish from true biological variation when coverage is low.

Results: We demonstrate large reductions in error frequencies, especially for high-error-rate

reads, by three independent means: (i) filtering reads according to their expected number of

errors, (ii) assembling overlapping read pairs and (iii) for amplicon reads, by exploiting unique

sequence abundances to perform error correction. We also show that most published paired

read assemblers calculate incorrect posterior quality scores.

Availability and implementation: These methods are implemented in the USEARCH package.

Binaries are freely available at http://drive5.com/usearch.

Contact: robert@drive5.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) machines produce reads of

lengths tens to thousands of bases. In an NGS read, the base call at

position i is assigned an estimated error probability pi represented as

an integer-rounded Phred (quality) score Qi¼ –10 log10 pi. Typical

base call error rates for current machines range from 0.1 to 10%

(Glenn, 2011). When coverage is high, error detection and correc-

tion can be achieved by aligning reads to each other (de novo assem-

bly) or to a closely related well-known sequence (reference-based

assembly). When coverage is low or a complete set of reference se-

quences is not available, sequencing error is difficult to distinguish

from true biological variation. Errors can be reduced by quality fil-

tering, i.e. by discarding or truncating reads with low-quality base

calls, by merging overlapping paired-end reads and, in the case of

amplicon reads, by clustering.

Quality filtering is often used in data analysis of next-generation

reads but is rarely regarded as a method in its own right which

should be designed and validated as a separate step. Published meth-

ods for quality filtering typically use ad-hoc criteria such as impos-

ing a maximum on the number of bases with less than a given Q

score (Bokulich et al., 2013). That article focuses on filtering but

does not attempt to measure error rates. Other articles describing

analysis pipelines for amplicon reads (e.g. Kozich et al., 2013;

Schloss et al., 2011) report the mean error rate but do not consider

the tail of the error distribution, which we believe to be important

due to the spurious clusters and consequent inflated estimates of di-

versity (spurious ‘rare biosphere’) obtained when the tail is not ad-

equately controlled (Huse et al., 2010).

When paired-end reads overlap, an improved prediction of the

sequence in the overlapping region can be obtained by aligning the

forward and reverse read. Previously published paired-read mergers

include SHERA (Rodrigue et al., 2010), FLASH (Magoč and

Salzberg, 2011), PANDAseq (Masella et al., 2012), COPE (Liu

et al., 2012) and PEAR (Zhang et al., 2014). Of these, only

PANDAseq included quality filtering in addition to merging.

Error correction methods for amplicon pyrosequencing reads in-

clude PyroNoise (Quince et al., 2009), AmpliconNoise (Quince

et al., 2011) and an unnamed method (Reeder and Knight, 2010)

that uses a greedy algorithm based on an abundance sort. These

methods all require flowgrams and therefore cannot be applied to

other technologies such as Illumina. Single-linkage pre-clustering

(Huse et al., 2010) and the pre-clustering method of (Kozich et al.,
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2013) also use abundance differences between closely related se-

quences to correct errors.

In this work, we use the expected number of errors in a read as a

measure of quality for filtering and show that this method is effect-

ive at reducing error rates, especially in the tail of the distribution.

We show how to calculate the posterior quality scores when read

pairs are merged and demonstrate that most previous merging meth-

ods calculate incorrect scores. We also describe and validate

UNOISE, a new amplicon error-correction method which can be

applied to any type of NGS read.

2 Methods

2.1 Quality filtering
Filtering is commonly used in amplicon sequencing applications

such as marker gene metagenomics (Edgar, 2013) and immune sys-

tem repertoire analysis (Jiang et al., 2013) where it is generally not

possible to identify reads derived from the same template sequence,

ruling out error detection and correction by assembling contigs as

typically done in genome sequencing.

2.2 Expected errors
For a given read, the expected number of errors (E) is defined to be

the mean number of errors that would be observed in a very large

collection of sequences where the error rate at each position is given

by its quality score, assuming that errors at different positions occur

independently. We prove below that E is the sum of error

probabilities:

E ¼
X

i

pi ¼
X

i

10–Qi=10: (1)

E is a real rather than integer value and may be less than 1. We will

also show that the most probable number of errors is well approxi-

mated by floor(E), i.e. the largest integer � E.

A natural approach to quality filtering is to impose a maximum

value Emax on the expected number of errors so that reads with

high E (low quality) are discarded. Motivated by the goal of sup-

pressing reads with larger numbers of errors, we could also con-

sider setting a threshold on the probability Pþ(kjp1 . . . pL) that a

read of length L has at least k errors. For example, 97% is a com-

monly used identity threshold in marker gene sequencing (Huse

et al., 2010), and we might therefore wish to discard reads which

have a relatively high probability of having �3% errors. It turns

out (proof below) that a Pþ filter is equivalent to an Emax filter to

a good approximation.

The threshold Emax¼1 is a natural choice as the most probable

number of errors is zero when E<1, and we therefore used

Emax¼1 for the tests reported here.

2.3 Proofs
For an informal, intuitive proof that E is the sum of error probabil-

ities, consider a large collection of M reads, all having the same set

of Q scores. Let Ki be the total number of errors found at position i.

Then by definition pi¼Ki /M and hence Ki¼M pi. The total number

of errors K in all positions is:

K ¼ RiKi ¼ RiMpi

and in the limit of very large M the expected number of errors (E) is,

by definition, the mean over the collection:

E ¼ K=M ¼ ð1=MÞ
X

i

ðMPiÞ¼
X

i

pi: (2)

For a more formal analysis, we obtain the probability of exactly

k errors by summing over all possible ways of distributing k errors

into L positions, i.e. over all combinations of k positions selected

from L. The probability of a given combination occurring is the

product of the probabilities for each position, i.e. pi for an error or

(1 – pi) for a correct call. This gives the so-called Poisson binomial

distribution (Wang, 1993):

BPoisðk; p1; ... pLÞ ¼
X1

k1¼0

X1

k2¼0

� � �
X1

kL¼0

d
k;
PL

i¼1
ki

YL
j¼1

p
kj

j ð1� pjÞ1�kj :
(3)

Here, ki is zero or one, giving the number of errors at position i.

The Kronecker delta

d
k;
PL

i¼1
ki

is zero unless k equals the sum of ki, in which case it is one.

By summing over the possible number of errors, which ranges

from 0 to L, and rearranging the sums in Equation (3), we again

find that the expected number of errors is the sum of error

probabilities:

hki ¼
XL

k¼0

kBPoisðk; p1 . . . pLÞ

¼
X1

k1¼0

X1

k2¼0

� � �
X1

kL¼0

XL

i¼1

ki

 !YL
j¼1

p
kj

j ð1� pjÞ1�kj

¼
XL

i¼1

X1

ki¼0

kip
ki

i ð1� piÞ1�ki

¼
XL

i¼1

pi:

(4)

We consider the regime E�L to cover all cases of practical

interest. A theorem due to Le Cam (1960) states that in this limit the

Poisson binomial distribution is well approximated by the simpler

and more familiar Poisson distribution with parameter E:

BPoisðk; p1; . . . pLÞ ! Poisðk; EÞ ¼ e�E Ek

k!
for

XL

i¼1

p2
i ! 0: (5)

The Poisson distribution satisfies the following relation:

Poisðk; EÞ
Poisðk� 1; EÞ ¼

E

k
: (6)

It follows from Equation (6) that as long as k<E, Pois(k; E) in-

creases with k, and it decreases with k for k>E. Thus, Pois(k; E)

has its maximal value as function of k at floor(E) (i.e. the largest

integer�E), and floor(E) is therefore the most probable number of

errors when E�L. It follows from Equation (5) that when E�L,

the probability BPoiss(k) that k errors occur is a function only of E

and k, and Pþ(k)¼
P

j� k P(j) is therefore also a function of E and

k. A filter which applies a threshold to Pþ(k) is therefore equivalent

to an Emax filter. The equivalent value of Emax can be calculated

from k and the threshold value of Pþ using Equation (5).

2.4 Posterior error probability for a merged base call
The most probable correct base call and posterior error probability

for an aligned pair of bases is calculated as follows. Define px and py
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to be the error probabilities and X and Y to be the letters in the for-

ward and reverse reads, respectively. The five possible outcomes are:

both base calls correct (C), forward correct and reverse wrong (F),

forward wrong and reverse correct (R), both wrong and disagree

(W) and both wrong and agree (G). The prior probabilities of these

outcomes are as follows:

PðCÞ ¼ ð1–pxÞð1–pyÞ;

PðFÞ ¼ ð1–pxÞpy;

PðRÞ ¼ pxð1–pyÞ;

PðWÞ ¼ 2pxpy=3;

PðGÞ ¼ pxpy=3:

(7)

(For proofs see Supplementary Equations S8–S12 and Fig. S1.) We

observe that the base calls agree (A, i.e. a match) or disagree (D, i.e.

a mismatch). Agreement is C or G, disagreement is F, R or W. Note

that P(A)¼P(C)þP(G), P(D)¼P(F)þP(R)þP(W), P(AjC)¼1,

P(AjG)¼1. By Bayes’ theorem,

PðGjAÞ ¼ PðAjGÞPðGÞ=PðAÞ

¼ PðGÞ=PðAÞ ¼ PðGÞ=
�

PðCÞ þ PðGÞ
�

¼ ðpxpy=3Þ=ð1–px–py þ 4pxpy=3Þ:

(8)

(Proof: see Supplementary Equation S21 and Fig. S2). P(GjA) is the

probability that X is incorrect given agreement between the two

base calls, i.e. the posterior error probability for a matched position

in the alignment.

For the case where we observe a disagreement (mismatch), we

use the convention that px<py, so that the merged base call is X. By

similar reasoning, the mismatch error probability is

PðRjDÞ þ PðWjDÞ ¼ ½PðRÞ þ PðWÞ�=PðDÞ

¼ ½PðRÞ þ PðWÞ�=½PðFÞ þ PðRÞ þ PðWÞ�

¼ pxð1–py=3Þ=ðpx þ py–4pxpy=3Þ:
(9)

(Proof: see Supplementary Equation S26 and Fig. S3).

2.5 Incorrect PANDAseq posterior calculation
Let X and Y be calls of unrelated bases with true bases X* and Y*

and error probabilities px and py, respectively. Suppose the predicted

bases are the same in the two calls, i.e. X¼Y, and the true bases are

also identical (X*¼Y*). This happens if (i) both base calls are correct

or (ii) both calls are incorrect and the true letters are identical, hence

PðX� ¼ Y�jX ¼ YÞ ¼ ð1–pxÞð1–pyÞ þ pxpy=3: (10)

(Proof: see Supplementary Equation S28 and Fig. S5).

Similarly, if the true bases are the same but the predicted bases

are different, the cases are (i) X is correct and Y is wrong while the

true base is the same or (ii) Y is correct and X is wrong while the

true base is the same or (iii) both calls are wrong but the true bases

are the same, so

PðX� ¼ Y�jX 6¼ YÞ

¼ ð1–pxÞpy=3þ ð1–pxÞpy=3þ 2pxpy=9:
(11)

(Proof: see Supplementary Equation S29 and Fig. S7).

PANDAseq calculates posterior Q scores using error probability

p¼1 – P(X*¼Y*) using Equation (10) for a match and Equation

(11) for a mismatch. This is incorrect. P(X*¼Y*jX¼Y) is not the

probability that the base calls are correct if a match is observed;

rather, it is the probability that the true bases are the same, which

includes the error case X*¼Y* and X¼Y and X=X*. Also, those

equations are derived assuming that the bases are independent of

each other, but in fact X and Y in the overlapping segment of a

paired read are observations of the same base. Therefore,

P(X*¼Y*)¼1 when merging, regardless of whether a match or

mismatch is observed. The typical effect of the calculation made by

PANDAseq is to reduce Q scores at positions where the base calls in

the forward and reverse reads match, when in fact scores should in-

crease to reflect that two independent observations of the same base

agree on the prediction (Fig. 1, Supplementary Equation S22). Thus,

the quality of a high-quality pair decreases after merging by

PANDAseq when in fact it should increase. This will degrade the ef-

fectiveness of quality filters and SNP callers that assume quality

scores are predictive of error frequencies.

2.6 UNOISE algorithm for amplicon error correction
When amplified libraries are sequenced, reads derived from a given

biological template can be visualized as an ‘error cloud’ surrounding

the correct sequence. An amplicon may contain polymerase chain re-

action (PCR) errors including point errors and chimeras (Haas et al.,

2011), producing a ‘daughter cloud’ connected to the correct biolo-

gical sequence (Fig. 2). Thus, if a sequence B has a small number of

differences (d) compared with a more abundant sequence R, this

may be because B has d errors and is derived from the same ampli-

con as R, and R is probably the correct sequence of that amplicon.

This observation has previously been exploited to attempt error cor-

rection. For example, the preclustering step of (Kozich et al., 2013)

uses d¼1%. However, it is the small minority of outliers in the tail

of the error distribution that are responsible for inducing spurious

operational taxonomic units (OTUs) obtained by clustering the

reads and thus inflating estimates of diversity (Edgar, 2013). These

outliers (call them ‘harmful’) will not be corrected if d is less than

the OTU threshold. If errors occur at random, then almost all of the

harmful outliers will be singletons, and discarding singletons have

been shown to be an effective filter (Edgar, 2013).

Here, we introduce a new denoising algorithm (UNOISE) which

allows larger d if the abundance skew, defined as

w¼ abundance(R)/abundance(B) (Edgar et al., 2011), is sufficiently

large. UNOISE was implemented as a variant of UCLUST (Edgar,

2010) as follows. A database of putatively correct sequences (D) is

initially empty. Unique read sequences are compared with D of

decreasing abundance. If a read (B) matches a database sequence

(R), i.e. if d�dmax and w�wmin, then the abundance of R is

Fig. 1. Paired read merging. The forward read is aligned to the reverse-com-

plemented reverse read. If both reads agree on a base call, the Q score in-

creases due to the increased confidence in the base call per Equation (8). If

there is a mismatch, the base call with higher Q is chosen and the posterior Q

score is reduced according to Equation (9)
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increased by that of B, and B is discarded; otherwise, B is added to

D. For this work, we chose dmax¼5 and wmin¼10. These were our

first guess at intuitively reasonable and conservative values; we did

not try other values because we do not believe valid parameter tun-

ing is possible on the available data. To tune parameters, we need

data for which correct sequences are known, i.e. reads of clones or a

mock community. However, we expect the biological sequences in

such data to be less diverse and more widely separated in sequence

space (i.e. to have more differences with their closest neighbors)

compared with samples collected in vivo. On mock data, an optimal

value of dmax will tend to be large because this will include more se-

quences with larger numbers of errors in the inferred cloud without

including the nearest true sequence. In contrast, in reads of in vivo

samples, we expect nearest neighbors with correct sequences to be

closer. Thus, larger values of dmax would increase the number of

false positives because neighbors that are correct biological se-

quences with low abundance would be misidentified as having

errors. By the same reasoning, we expect tuning of wmin on mock

data to favor small values, which would again increase the number

of false positives with in vivo data.

3 Results

3.1 Test data
For testing, we used three sets of overlapping paired reads and

named them MOCK1, MOCK2 and PHIX, respectively. MOCK1

contains amplicon reads of the V4–V5 region of the 16S rRNA gene

in the artificial (‘mock’) community samples in run 130403 of

Kozich et al. (2013). MOCK2 contains amplicon reads of the V4 re-

gion of the 16S gene from (Bokulich et al., 2013). The MOCK1 and

MOCK2 reads were filtered by UCHIME (Edgar et al., 2011) to

suppress reads of chimeric amplicons, which require specialized

detection algorithms. PHIX is a subset of reads containing PhiX

bacteriophage sequences in the data of Reveillaud et al. (2014).

Reads of the PhiX spike-in library were identified as hits to the PhiX

genome sequence (GenBank accession NC_001422.1) with at least

90% identity covering at least 90% of the read. These reads have no

bases with Q<12, suggesting that quality filtering using this thresh-

old was performed prior to posting. We would have preferred to use

unfiltered reads but were unable to identify a published, unfiltered

dataset containing PhiX spike-in reads. MOCK1 and MOCK2 ap-

pear to contain unfiltered reads.

3.2 Tested methods
We implemented our own methods in USEARCH (Edgar, 2010) and

compared quality filtering and merging with two popular software

packages, QIIME (Caporaso et al., 2010) and PANDAseq. We also

validated the posterior Q score calculations of COPE, FLASH,

PEAR and SHERA. At the time this work was performed, QIIME

did not support merging and we therefore tested its filtering script

on paired reads after merging by USEARCH. See Supplementary

Material for software versions and command lines. We also tested

using the forward reads alone, simulating an experiment where

paired reads are not available or do not overlap.

3.3 Measurement of error rates
We measured errors by aligning reads (or merged read sequences) to

the appropriate reference sequences, i.e. the PhiX genome and the

known 16S sequences in the mock communities. We used global

alignments to ensure that all bases in the read were included and

considered mismatches to be errors. We calculated the mean error

rate after filtering as the number of mismatches divided by the num-

ber of bases. We also considered the tail of the distribution, which is

especially important in marker gene sequencing experiments where

reads with high error rates induce spurious clusters and inflate esti-

mates of diversity, even if present only in very low abundance

(Edgar, 2013). We considered >3% errors to be the tail as a 3%

clustering threshold is conventionally used in marker gene sequenc-

ing (Edgar, 2010; Kozich et al., 2013) in which case a read with

>3% errors is certain to induce a spurious cluster, noting that reads

with fewer errors may also do this. Results are summarized in

Tables 1 and 2.

3.4 Correlation of measured and expected errors
Figure 3a and b shows that E is predictive of the number of meas-

ured errors in the MOCK1 forward and reverse reads, respectively.

These results show that E tends to be an underestimate on MOCK1;

for example, the median number of measured errors for reads with

4.5�E<5.5 is 18. We obtained similar results on the PHIX reads,

and with MOCK2, we observed a correlation where E tends to over-

estimate rather than underestimate the number of errors

(Supplementary Fig. S10). This reflects that the accuracy and biases

of Q scores may vary between sequencing runs.

3.5 Error rates after merging and filtering
Table 1 summarizes results obtained by QIIME, PANDAseq and

USEARCH on the test datasets, showing that merging by

USEARCH followed by filtering with Emax¼1 achieves a dramatic

reduction in the number of reads with >3% errors compared with

QIIME and PANDAseq. UNOISE achieves a further substantial im-

provement in the number of reads with zero errors in the case of

amplicon reads. Figure 3b and c shows the head (<3% errors) and

tail (>3% errors) of the measured error distribution after paired-

read merging and filtering of the MOCK1 reads. We obtained simi-

lar results for MOCK2 and PHIX (Supplementary Fig. S2).

3.6 Posterior Q scores
With the exception of PANDAseq, the equations used to calculate

posterior Q scores by the tested read mergers are not specified in

their publications. We therefore reverse engineered the calculation

by generating sets of simulated read pairs of length 150 nt with

Fig. 2. Conceptual structure of the ‘error cloud’ due to a given biological tem-

plate sequence R. Circles represent unique read sequences, the size of a circle

indicates its abundance (i.e. frequency in the reads). Errors are due to amplifi-

cation (polymerase chain reaction [PCR] point errors and chimeras) and

sequencing. With typical error rates, most incorrect sequences are singletons

with a single difference; a few have more differences (indicated by tick

marks). C is an amplicon containing a PCR error, e.g. a chimera. Amplicons

with PCR errors have ‘daughter’ clouds due to sequencing error. In the tail of

the distribution, reads are >3% diverged from R (black circles)

4 R.C.Edgar and H.Flyvbjerg

 at D
T

U
 L

ibrary on Septem
ber 1, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

.,
.,
to
By
RESULTS
-
",0,0,2
",0,0,2
(
., 
(
., 
b
<
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv401/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv401/-/DC1
3 (a)
(
)
 &leq; 
 < 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv401/-/DC1
3 (b)
(
)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv401/-/DC1
150nt
http://bioinformatics.oxfordjournals.org/


50 bp overlaps having exactly one mismatch. The sets were gener-

ated such that all pair-wise combinations of Q occur with both

matches and mismatches. The merged reads from each program

were used to construct tables giving the posterior Q for all possible

combinations of forward Q, reverse Q and agreement (match or

mismatch). Of the tested programs, only SHERA correctly calcu-

lated the posterior Q scores in the aligned region. It was readily ap-

parent from the tables that FLASH and PEAR use simple heuristics:

FLASH takes the maximum Q score at a position with a match and

the difference Qmax–Qmin at a position with a mismatch, while

PEAR uses the sum of the Q scores at a position with a match and

the minimum at a position with a mismatch. We were unable to de-

duce the rules used by COPE, noting that source code is not pro-

vided, contrary to the paper’s statement that the software is open

source. However, it is clear from the reverse-engineered tables that

the posterior Q scores generated by COPE are sometimes badly

wrong (Supplementary Table S1).

3.7 PANDAseq false-positive merges
We noticed that PANDAseq sometimes merged read pairs that did

not overlap, i.e. generated false-positives merges. To investigate this

systematically, we generated simulated read pairs containing unre-

lated random sequences with all Q scores set to 20 (pcorrect¼0.99).

PANDAseq merged 74% of these pairs with implied overlap lengths

ranging from 2 to 26 bases. The other tested mergers generated no

false positives on this dataset.

3.8 PANDAseq quality filtering
PANDAseq implements quality filtering by setting a min-

imum value for the geometric mean (t) of the posterior probabilities

pi
correct¼1 – pi that the base calls are correct. The default value of

the threshold is t¼0.6, corresponding to p¼0.4 or Q¼4. The mo-

tivation for this measure of quality is not stated by the authors and

was not clear to us, and we also noted that a threshold of p¼0.4

would allow many errors in low-quality reads. We therefore asked

whether using a more stringent t threshold could achieve

comparable filtering performance to Emax¼1. To answer this,

we tuned t to retain as close as possible to the same number of

reads as USEARCH with Emax¼1. On all three datasets,

PANDAseq with the tuned threshold produced fewer reads with

zero and one errors and more reads with two or more errors than

USEARCH, showing that Emax is a superior measure of quality

(Supplementary Fig. S3).

4 Discussion

We introduced the expected number of errors as measure of read qual-

ity. We showed that imposing a maximum value on expected errors is

an effective quality filter. We showed that most current paired read

mergers do not correctly calculate the posterior quality scores and

that PANDAseq will align unrelated random pairs, potentially causing

a high rate of false-positive merges in biological data.

We suggest that measurements of Q score accuracy and the correl-

ation of E with the true error rate should be a standard step in any

Table 1. Summary of results on the test datasets

Dataset Method Err. rate (%) Reads >3% errs.

MOCK1 (Fwd) Raw reads 1.2 737 660 79 481

QIIME/F 0.99 737 134 70 319

USEARCH/F 0.22 392 917 2687

UNOISE 0.092 611 176 1042

MOCK1 Merged 2.4 737 660 196 035

QIIME/MF 2.0 737 102 165 642

PANDAseq 1.9 717 064 157 797

USEARCH/MF 0.23 186 695 562

UNOISE 0.046 354 220 491

MOCK2 (Fwd) Raw reads 0.54 7 420 628 237 274

QIIME/F 0.33 7 033 106 73 228

USEARCH/F 0.19 2 912 861 401

UNOISE 0.009 6 565 970 251

MOCK2 Merged 0.35 7 420 628 144 584

PANDAseq 0.34 7 393 489 138 297

QIIME/MF 0.33 7 352 181 126 909

USEARCH/MF 0.19 6 736 514 1609

UNOISE 0.016 7 017 279 1226

PHIX (Fwd) Raw reads 0.25 1 201 502 8179

QIIME/F 0.68 1 201 435 8179

USEARCH/MF 0.20 1 044 123 3945

PHIX Merged 0.22 1 094 091 4681

QIIME/MF 0.22 1 094 091 4681

PANDAseq 0.22 1 139 895 4375

USEARCH/MF 0.17 983 832 550

Fwd indicates forward reads only. Method is one of raw reads (no process-

ing), UNOISE, QIIME/F (QIIME quality filtering only), merged (merge by

USEARCH only, no filtering), USEARCH/F (USEARCH filtering by

Emax¼1), USEARCH/MF (USEARCH merge and filtering by Emax¼ 1),

PANDAseq (merging and filtering with default parameters) and QIIME/MF

(QIIME quality filtering of reads merged by USEARCH). Reads is the number

of reads after any merging and/or filtering. Err. rate is the number of measured

errors divided by the total number of bases and >3% errs. gives the number

of reads with at least 3% measured errors. UNOISE assumes amplicon data,

so is not applicable to PHIX.

Table 2. Results of merging, filtering, discarding singletons and

denoising on the MOCK2 dataset

Pairs? Filter Ab. Den. Reads Uniques OTUs

Fwd only (No) 1 n 7 420 628 1 414 383 378 537

Y 7 420 628 439 597 52 452

2 n 6 158 319 152 086 203

Y 6 158 319 5055 66

Emax¼ 1 1 n 2 912 861 147 539 110

Y 2 912 861 141 35

2 n 2 803 435 38 113 29

Y 2 803 435 51 18

Merged (No) 1 n 7 371 922 888 089 177 972

Y 7 371 922 278 196 5939

2 N 6 592 326 108 493 110

Y 6 592 326 1688 42

Emax¼ 1 1 N 6 728 314 410 712 75

Y 6 728 314 22 443 39

2 N 6 407 439 89 837 534

Y 6 407 439 619 159

Reads that were predicted to be chimeric by UCHIME were discarded prior

to this analysis (because chimera detection is a specialized task, and chimeras ac-

count for a large majority of the unique amplicon sequences, obscuring the

underlying biological diversity). The reads contain 21 species, plus a few con-

taminants (Edgar, 2013). Ab. is minimum abundance (1¼ all reads, 2¼ single-

tons discarded), Den. is n (no denoising) or Y (UNOISE), Reads is the number

of reads after processing, Uniques is number of unique read sequences after pro-

cessing and OTUs is the number of clusters at 97% identity (made by running

UCLUST on the unique sequences sorted by decreasing abundance).
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next-generation read analysis where Q scores are used, especially

when coverage is low. This will enable informed setting of param-

eters such as the Emax threshold. With Illumina amplicon

sequencing, a control sample such as a mock community would be

ideal, but the additional cost and effort may be prohibitive. However,

a PhiX spike-in is often added to amplicon libraries before Illumina

sequencing (Kozich et al., 2013), and our results here show that PhiX

reads can function as an informative control sample for Q score

analysis.

We suggest the default value Emax¼1 as a filtering threshold as

the most probable number of errors is zero for the filtered reads.

More or less stringent thresholds may be appropriate to correct for

biases in the Q scores or to make trade-offs between sensitivity and

error rate in downstream analysis.

We believe that these methods will enable improved accuracy of

biological inferences in a broad range of NGS experiments.

Conflict of Interest: none declared.
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