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Abstract This short article analyzes an interesting property of the Bregman iterative procedure, which is
equivalent to the augmented Lagrangian method, for minimizing a convex piece-wise linear function J(x) sub-
ject to linear constraints Ax = b. The procedure obtains its solution by solving a sequence of unconstrained
subproblems of minimizing J(x) + 1

2‖Ax − bk‖22, where bk is iteratively updated. In practice, the subproblem

at each iteration is solved at a relatively low accuracy. Let wk denote the error introduced by early stopping a
subproblem solver at iteration k. We show that if all wk are sufficiently small so that Bregman iteration enters
the optimal face, then while on the optimal face, Bregman iteration enjoys an interesting error-forgetting prop-
erty: the distance between the current point x̄k and the optimal solution set X∗ is bounded by ‖wk+1 − wk‖,
independent of the previous errors wk−1, wk−2, . . . , w1. This property partially explains why the Bregman iter-
ative procedure works well for sparse optimization and, in particular, for ℓ1-minimization. The error-forgetting
property is unique to J(x) that is a piece-wise linear function (also known as a polyhedral function), and the
results of this article appear to be new to the literature of the augmented Lagrangian method.

Keywords Bregman iteration · error forgetting · sparse optimization · ℓ1 minimization, piece-wise linear
function, polyhedral function

1 Introduction

This article studies an interesting numerical property, which we call error forgetting, of the Bregman iterative
procedure for solving the convex problem

min
x∈Rn

{J(x) : Ax = b} (1)

with a piece-wise linear function J , where matrix A ∈ R
m×n and vector b ∈ R

m are given. A piece-wise linear
function is also called a polyhedral function. Among the well-known examples of piece-wise linear functions is
J(x) = µ‖x‖1, where µ is a constant scalar. The basis pursuit problem

min{‖x‖1 : Ax = b}, (2)

tends to return a sparse solution of Ax = b. Problem (2) and its variants arise in compressive sensing, sta-
tistical learning, signal and image processing, etc. The Bregman iterative procedure [1, 2] is based on solving
subproblems of the form

min
x

F (x; d) := J(x) +
1

2
‖Ax− d‖22 , (3)
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and iteratively performing

xk ← argmin
x

F (x; bk) (4a)

bk+1 ← b+ (bk −Axk) (4b)

for k = 1, . . . starting with b1 = b. Subproblem (3) can be efficiently solved for various different convex functions
J(·). For J(x) = µ‖x‖1, there are first-order algorithms such as GPSR [3], FPC [4], SpaRSA [5], and so on.

In practice, the update (4a) is computed inexactly, giving rise to the inexact iteration

x̄k ← argmin
x

F (x; b̄k) + wk, (5a)

b̄k+1 ← b+ (b̄k −Ax̄k), (5b)

Step (5a) introduces errors wk, and they roll over to subsequent iterations through (5b). In general, these errors
may accumulate over the iterations or can even cause the iteration to diverge. However, we show that as long
as (5a) is solved with sufficient accuracy (which is not necessarily very high), the errors do not accumulate and
can even cancel each other under certain situations. Consequently, the inexact iteration (5) can yield a highly
accurate solution to (1) for a moderate amount of computation on every subproblem.

1.1 Background of Bregman Iteration

Bregman iteration (4) was introduced in [1] for total variation based image processing, extended to wavelet-
based denoising in [6], nonlinear inverse scale space in [7, 8], MR imaging [9], matrix rank minimization [10],
hyperspectral imaging [11], etc. Its usefulness for solving ℓ1 and ℓ1-related problems has been discussed in [2].
In this subsection, we briefly discuss another form of the iterative procedure.

The Bregman distance [12] induced by a convex function J(·) is defined as

Dp
J
(u, v) = J(u)− J(v)− 〈p, u− v〉, where p ∈ ∂J(v). (6)

Because Dp
J
(u, v) 6= Dp

J
(v, u), Dp

J
(u, v) is not a distance in the usual sense. Yet, it measures the closeness between

u and v in the sense that Dp
J
(u, v) ≥ 0, and Dp

J
(u, v) ≥ Dp

J
(w, v) for any point w being a convex combination of

u and v.
Instead of solving (1) with the constraints, at each Bregman iteration, a problem in the form of

min
x

Dp
J
(x, y) +

1

2
‖Ax− d‖,2 (7)

is solved, and the iteration is

xk ← solve (7) with p := pk−1, y := xk−1, d := b, (8a)

pk ← pk−1 +A⊤(b−Axk−1). (8b)

for k = 1, . . . starting with x0 = 0 and p0 = 0. Since J(u) is not differentiable everywhere, there can be multiple
choices for p in definition (6). Nevertheless p can be uniquely determined from the previous iteration using the
optimality condition of (8a):

0 ∈ ∂J(xk)− pk−1 +A⊤(Axk − b),

which gives update (8b). Assuming that (4a) and (8a) are computed exactly, one can verify that, for all iterations
k, iteration (8a)–(8b) and (4a)–(4b) are equivalent through the identify pk = A⊤(bk − Axk); see Theorem 3.1
of [2]. However, inexact computation of the subproblem in either iteration breaks down the equivalence.

We remind the reader not to confuse Bregman iteration with linearized Bregman iteration [2]:

xk ← solve (10) with p = pk−1, y = xk−1, d = b, (9a)

pk ← pk−1 +A⊤(b−Axk−1)−
1

α
(xk − xk−1), (9b)

where

min
x

Dp
J
(x, y) + 〈A⊤(Ay − b), x〉+

1

2α
‖x− y‖22 (10)
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is the prox-linear variant of (7). Not only do the two iterations solve different subproblems, they generate two
sequences {xk} converging to different solutions. For example, if J(x) = ‖x‖1, the sequence generated by (9)
converges to the solution of

min{‖x‖1 +
1

2α
‖x‖22 : Ax = b}, (11)

which is a result first shown in [13] under some assumptions and then improved in [14, 15]. (Although with
sufficiently large α, the solution of (11) becomes a solution to (2), according to analysis in [15–17].) Also see [18]
for its application to matrix completion and equivalence to Uzawa’s algorithm, [15] for its equivalence to dual
gradient descent, and [17] for a global linear convergence proof.

Turning back to Bregman iteration, its equivalence to augmented Lagrangian iteration [19, 20] has been
established in [2] and reviewed in [21]. We can introduce Lagrange multiplier λk = bk − b; then from (4b) we
obtain the update λk+1 ← λk + (b − Axk). Inexact augmented Lagrangian iteration has been studied in [22]
and [23] where the first-order optimality conditions of the subproblem (4a) are satisfied up to tolerance ǫk that
decreases to 0 in k. However, we study the case (5) where the error ‖wk‖ is sufficiently small but not diminishing
in the limit and it is dominated by the error due to an early-terminated subproblem.

1.2 Organization

The main results are given in Section 2, in which subsection 2.1 introduces important notation, subsection 2.2
presents a numerical example to motivate the analysis in subsequent subsections. Subsection 2.3 reviews the
existing convergence results. Subsections 2.4 and 2.5 study the error-forgetting and the strong error-cancellation
property of Bregman iteration. Finally, Section 3 summarizes this article.

2 Main Results

2.1 Notation

The nature of iterative error analysis requires different sequences, which we now define:

– Exact sequences: {x1, x2, . . . , xk, . . .} and {b1, b2, . . . , bk, . . .} from exactly computed update (4).

– Inexact numerical sequences: {x̄1, x̄2, . . . , x̄k, . . .} and {b̄1, b̄2, . . . , b̄k, . . .} generated by (5), where wk is the
error at iteration k.

– Quasi-exact sequences: {x̂k} and {b̂k}, which are artificial sequences defined for the convenience of analysis
as follows. Each x̂k = argminx F (x; b̄k) is the exact solution of (3) given the inexact input b̄k, and b̂k+1 =
b+ (b̄k −Ax̂k).

In general, xk, x̄k, and x̂k are different from one another. Unless the word inexact is used, the computation is
exact by default.

Note that wk does not equal the collective error x̄k − xk, which depends not only wk but also wk−1, . . . , w1.
Instead, wk is just the new error introduced at iteration k, and wk obeys wk := x̄k − x̂k.

X∗ denotes the set of solutions of (1), and x∗ ∈ X∗ denotes a solution of (1), which should be clear from
the context.

2.2 A Motivating Example

In this simple test, the true solution x∗ ∈ R
500 had 25 nonzero entries that are sampled from i.i.d. Gaussian

and located uniformly at random. Matrix A ∈ R
250×500 had i.i.d. Gaussian entries, and b := Ax∗. The exact

solution of problem (2) was x∗.

We set µ = 0.01 and ran inexact Bregman iteration (5). We repeated the same test five times, each time
with one of the five different subproblem solvers: ISTA iteration (17), FPC–BB [4], GPSR [3], SpaRSA [5], and
Mosek [24]. All the solvers started from 0 at each Bregman iteration (i.e., no warm start) and had the stopping



4 W. Yin and S. Osher

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Bregman iteration

E
rr

o
r

 

 

ISTA

FPC−BB

GPSR

SpaRSA

Mosek

Fig. 1 The iterative errors, ‖x̄k − x∗‖2/‖x∗‖2, of Bregman iteration using five different subproblem solvers. At each k, each of
these solvers starts from 0 and stops at the ℓ2 tolerance of 1e-6.

tolerance1 of 10−6. With this tolerance, the truncation error due to early termination dominated the round-off
error. Hence, each solver at each Bregman iteration generated a point x̄k containing an error on the order of
10−6.

We recorded the normalized errors of x̄k to x∗, ‖x̄k − x∗‖2/‖x
∗‖2, at different Bregman iterations. The

Bregman iteration was stopped once this error fell below 10−14, where round-off errors started to dominate the
truncation error. These errors are depicted in Figure 1.

According to Figure 1, when the subproblems were solved by ISTA, FPC-BB, GPSR, or SpaSPA, the errors
of x̄k to x∗ were not affected by the truncation errors ≈ 10−6 contained in x̄1, x̄2, . . .. Not only did the truncation
errors not accumulate, but they were canceling each other, letting x̄10 through x̄14 converge to x∗ at a geometric
speed. When the subproblems were solved by Mosek, the truncation errors did not accumulate, yet the errors of
x̄k to x∗ stagnated around 10−6, the level of the truncation errors. We call the non-accumulating phenomenon
error forgetting (see Subsection 2.4) and the cancellation phenomenon error cancellation (see Subsection 2.5).
Roughly speaking, error cancellation does not occur with Mosek since it is based on the interior-point method,
which consists of a series of linear and nonlinear operations, whereas the other four codes are based on operations
either linear or piece-wise linear in the input (see Subsection 2.5).

The Matlab code to reproduce this test is available for download from the first author’s webpage.

2.3 Related Existing Results

We first review some related existing results.

Assumption 1 Let function H(x) generalize the data fidelity term 1
2‖Ax − b‖22. H(x) is convex and differentiable.

Furthermore, every subproblem solution xk exists.

The following theorem summarizes the convergence of Bregman iteration.

Theorem 1 ( [1]. Convergence) Under Assumption 1, the sequence {xk} of Bregman iteration (4) or (8) has the

following properties:

1. Monotonic decrease in H(·): H(xk+1) ≤ Dpk

J
(xk+1) +H(xk+1) ≤ H(xk).

2. Convergence to x∗ in H with exact data: if x∗ minimizes H(·) and satisfies J(x∗) <∞, then H(xk) ≤ H(x∗) +
J(x∗)/k.

1 The different solvers use different stopping criteria. ISTA and FPC-BB compute the ℓ2-distance between 0 and the sub-
differential of (7), scaled by µ, and compare it with the tolerance. GPSR and SpaRSA use the same ℓ2-distance except it
is not scaled by µ but normalized by the ℓ2-norm of x instead, along with other minor differences. Underlying Mosek is an
interior-point algorithm, which uses stopping criteria based on primal and dual feasibility violations, the duality gap, and the
relative complementarity gap. For more details, the interested reader is referred to the companion code of this example.
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3. Convergence to x∗ in D(·) with noisy data: Let H(·) = H(·; b) (e.g., H(x) = 1
2‖Ax − b‖2) and suppose that x̃

obeys H(x̃; b) ≤ δ and H(x̃; b0) = 0 (b, b0, x̃, and δ represent the noisy input, noiseless input, true signal, and

noise level, respectively). Then, Dpk+1

J
(x̃, xk+1) < Dpk

J
(x̃, xk) for k obeying H(xk+1; b) > δ.

Remark 1 Point 2 indicates that if the input b is noiseless (i.e., H(x∗; b) = 0; e.g., Ax∗ = b), then H(uk)→ H(x∗).

Theorem 2 ( [2]. Finite convergence.) Consider Bregman iteration (4) or (8) applied to the ℓ1–minimization prob-

lem (2), where J(x) = µ‖x‖1 and µ > 0. There exists K > 0 such that any xk, k > K, is a solution of (2).

Proof For completeness, we give a sketchy proof. Using vectors p ∈ [−µ, µ]n, we define the subsets

U(p) := {x ∈ R
n : xi ≥ 0, if pi = µ;xi ≤ 0, if pi = −µ;xi = 0, if pi ∈ (−µ, µ)}.

There are finitely many distinct subsets U(p), and their union is R
n. Furthermore, we have xk ∈ Uk := U(pk)

(otherwise, pk 6∈ ∂(µ‖xk‖1)) and Dpk

(x, xk) = 0 for any x ∈ Uk. Since x∗ satisfies Ax∗ = b or H(x∗) = 0, the
convergence xk → x∗ gives H(xk)→ H(x∗) = 0. The finiteness of {Uk} and the monotonicity of H in k dictate
the existence of K > 0 such that min{H(x) : x ∈ Uk} = 0 for all k ≥ K. Therefor, for k > K, there exists

x ∈ Uk such that Dpk

(x;xk)+H(x) = 0, so zero is the best possible value of (8a). Hence, Dpk

(xk+1;xk) = 0 and
H(xk+1) = 0. From Lemma 1 below, xk+1 is optimal. Since pk = pk+1 = · · · , (8a) remains the same problem;
hence, all subsequent solutions are optimal. ⊓⊔

Lemma 1 Suppose that in Bregman iteration (4) or (8) is applied to problem (1) with a convex function J . Once

Axk = b holds, xk is a solution of (1).

Proof The Bregman distance Dp
J
(·, ·) induced by a convex function J is nonnegative, and according to iteration

(8), pk ∈ Range(A⊤). Therefore, there exists vector c such that

J(xk) ≤ J(x)− 〈pk, x− xk〉

= J(x)− 〈A⊤c, x− xk〉,

= J(x)− 〈c, Ax−Axk〉

= J(x)− 〈c, Ax− b〉.

The above inequality shows that for any x satisfying Ax = b, J(xk) ≤ J(x). Therefore, xk is a solution of (1). ⊓⊔

It is not difficult to extend the result of Theorem 2 from J(x) = µ‖x‖1 to any piece-wise linear function J(x)
by defining subsets U(p) based on p ∈ ∂J .

2.4 Error Forgetting

We start with an assumption below on the finite identification of the optimal face, namely, the exact and
inexact sequences stay on the optimal face after a certain iteration K. While the faces of the ℓ1 function can be
conveniently characterized by the signs of the input, such characterization does not exist for a general convex
function J(x). However, observe that the Bregman distance (6) between two different points equals 0 only if
between these two points J is linear, namely, the two points belong to the same face of J . Hence, we employ
the Bregman distance in the assumption below for general piece-wise linear convex J(x).

Assumption 2 Let σ > 0 and K > 0 be such that as long as ‖wk‖ < σ holds uniformly for all k, we have (i) for

J(x) = µ‖x‖1,

sign(x∗) = sign(xk) = sign(x̄k) = sign(x̂k) (12)

holds for all k ≥ K, and (ii) for general piece-wise linear convex J(x),

Dp
J
(x∗, xk) = 0 for any p ∈ ∂J(xk), (13a)

Dp
J
(x∗, x̄k) = 0 for any p ∈ ∂J(x̄k), (13b)

Dp
J
(x∗, x̂k) = 0 for any p ∈ ∂J(x̂k) (13c)

hold for all k ≥ K.
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Remark 2 Under Assumption 2, all the sequences stay on the optimal face after a certain iteration K. There
are results on the finite-identification property in the literature for the augmented Lagrangian iteration (e.g.,
[25, 26]), but nevertheless, they do not address inexact iterations with non-diminishing errors or give (12) or
(13). Since error forgetting will be shown to occur after k ≥ K and yet establishing Assumption 2 (which is not
our focus) is quite involved, we decide to leave it as an assumption with a non-rigorous explanation as follows.
Theorem 2 addresses the finite property for the exact sequence xk. Existing results such as [26, 27] on inexact
iterations assert if the errors decay quickly enough, the inexact sequence x̄k will converge to x∗. On the other
hand, we can apply the arguments in the proof of Theorem 2 to x̄k: Rn is decomposed to finitely many subsets
U(p), among which the optimal Uk satisfies min{H(x) : x ∈ Uk} = 0, and since x̄k → x∗, after finitely many
iterations, x̄k will stay in the optimal Uk, which means x̄ki = 0 if x∗i = 0. Apparently, x̄k → x∗ also gives, after
finitely many iterations, x̄ki > 0 if x∗i > 0 and x̄ki < 0 if x∗i < 0. Furthermore, we shall be able to extend the
property to x̂k since it is no more inaccurate than x̄k.

Remark 3 It is generally difficult to predictK or to detect k > K unless more computation is done. Methods such
as the adaptive inverse scale space method [28] are able to detect k > K by solving nonnegative least-squares
problems. In fact, that method finds the solution of (2) by solving a sequence of nonnegative least-squares
problems, each of which either identities the solution or provides information to update the current point. It is
related to Bregman iteration, so the error forgetting property might also apply.

Theorem 3 (Two exact steps on the optimal face) Under Assumptions 1 and 2, consider inexact Bregman

iteration (5) applied to problem (1) with a piece-wise linear J(x) through iteration k − 1, where k > K. Then, two

exact steps of (4a) at iterations k and k + 1 yield an exact solution to (1).

Proof As an exact minimizer of F (x; b̄k), x̂k satisfies the first order optimality condition:

0 = p̂k +A⊤(Ax̂k − b̄k), where p̂k ∈ ∂J(x̂k).

Hence, A⊤b̂k+1 = A⊤b+A⊤(b̄k −Ax̂k) = A⊤b+ p̂k. Hence, x̆ is the exact solution to

min
x

J(x) +
1

2

∥

∥

∥

Ax− b̂k+1
∥

∥

∥

2

2
, (14)

or after re-organizing the terms,

min
x

Dp̂k

J
(x, x̂k) +

1

2
‖Ax− b‖22.

According to Assumption 2 and k > K, the subdifferential p̂k ∈ ∂J(x̂k) satisfies Dp̂k

J
(x∗, x̂k) = 0 for x∗ ∈ X∗.

Hence, considering the facts that Dp̂k

J
(x, x̂k) + 1

2‖Ax − b‖22 ≥ 0, ∀x, and Dp̂k

J
(x∗, x̂k) + 1

2‖Ax∗ − b‖22 = 0, we

conclude that the solution x̆ obeys Dp̂k

J
(x̆, x̂k) + 1

2‖Ax̆ − b‖22 = 0 and thus Ax̆ = b. Although Lemma 1 only
addresses exact Bregman iteration, its proof applies to x̆; in particular, the first-order optimality conditions of
(14) are 0 = p̆+A⊤(Ax̆− b̂k+1), where p̆ ∈ ∂J(x̆), and thus p̆ ∈ Range(A⊤). Therefore, x̆ ∈ X∗. ⊓⊔

Theorem 3 means that once Bregman iteration (exact or not) identifies the optimal support, another two exact

steps will yield the exact solution to problem (1). The first exact step corrects the subdifferential p̂k (or the
Lagrange multiplier, in terms of augmented Lagrangian iteration), which allows the second step to find the
exact solution to problem (1).

Since it is difficult to know when the optimal support has surely been identified, it is hard for one to decide
when to take the two exact steps. So, Theorem 3 does not provide a powerful computational rule. Nevertheless,
Theorem 3 introduces x̆, which is used in the analysis below.

Based on Theorem 3, we can treat x̆ as a solution to problem (1), just the same as x∗. Although in case X∗

has multiple elements, different x̆ may be obtained by two exact steps starting at different k > K, this is not a
problem in our analysis below, so we do not associate x̆ with k.

Theorem 4 (Error forgetting) Consider inexact Bregman iteration (5) applied to problem (1) with a piece-wise

linear J(x). Define x̆ ∈ X∗ as in Theorem 3, i.e., x̆ is the solution of (1) that one would get after applying two exact

Bregman steps on the optimal face. Under Assumption 1 and the additional assumption −A⊤(Ax̆−b̂k+1) ∈ ∂J(x̆−wk)
(see Remark 4 below), we have

x̄k+1 − x̆ = wk+1 − wk. (15)
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Proof By definition of x̆ in Theorem 3, x̆ is an exact minimizer of J(x)+ 1
2‖Ax− b̂k+1‖2, so we have −A⊤(Ax̆−

b̂k+1) ∈ ∂J(x̆). The assumption −A⊤(Ax̆ − b̂k+1) ∈ ∂J(x̆ − wk) means that x̆ is also an exact minimizer of
J(x− wk) + 1

2‖Ax− b̂k+1‖2, a fact we shall use below.

From the definition wk = x̄k− x̂k and the updates b̂k+1 = b+(b̄k−Ax̂k) and b̄k+1 = b+(b̄k−Ax̄k), we have
b̄k+1 = b̂k+1 −A(x̄k − x̂k) = b̂k+1 −Awk.

The exact solution of min J(x) + 1
2‖Ax − b̄k+1‖2 is x̂k+1 by definition. Plugging b̄k+1 = b̂k+1 − Awk into

the objective function, we obtain J(x) + 1
2‖A(x+wk)− b̂k+1‖2, which after variable transforming y := x+wk,

becomes J(y −wk) + 1
2‖Ay − b̂k+1‖2, for which we have argued x̆ is an exact minimizer. Hence, x̆−wk exactly

minimizes J(x) + 1
2‖A(x+ wk)− b̂k+1‖2, so x̂k+1 = x̆− wk.

Finally, from the definition wk+1 = x̄k+1 − x̂k+1, we get x̄k+1 = x̂k+1 + wk+1 = x̆+ wk+1 − wk. ⊓⊔

Corollary 1 Under Assumption 2 and the assumptions of Theorem 4, we have

dist(x̄k+1, X∗) ≤ ‖wk+1 − wk‖2, ∀k > K. (16)

Proof For k > K and under Assumption 2, Theorem 3 gives x̆ ∈ X∗, and Theorem 4 gives x̄k+1− x̆ = wk+1−wk.
Hence, dist(x̄k+1, X∗) ≤ ‖x̄k+1 − x̆‖2 = ‖wk+1 − wk‖2. ⊓⊔

Remark 4 Since −A⊤(Ax̆− b̂k+1) ∈ J(x̆) by the definition of x̆, the assumption −A⊤(Ax̆− b̂k+1) ∈ J(x̆−wk) in
Theorem 4 holds if x̆ and x̆−wk are both in the relative interior of the same face of the epigraph of J , or simply
speaking, the error wk is small enough so that x̆−wk stays within the same face with x̆. Consider J(·) = ‖ · ‖1
for example. If x and w satisfy sign(x) = sign(x− w), then any p ∈ J(x) also satisfies p ∈ J(x− w).

Remark 5 Corollary 1 shows that the absolute error dist(x̄k+1, X∗) depends only on wk and wk+1, which are the
numerical errors introduced at iterations k and k+1 and are independent of the early errors wk−1, wk−2, . . . , w1.
That means that they do not accumulate to large absolute errors. This result holds no matter how each step
(5a) is computed as long as the assumptions hold, and it explains why none of the curve in Figure 1 increases
above 10−6 even though ‖wk‖ ≈ 10−6 at each k. While it explains the solid curve, it does not explain the
other four curves, which not only stay below 10−6 but also decrease geometrically to 10−15. In general, the
two vectors wk and wk+1 can be anything of size 10−6 or less. So, ‖wk+1 − wk‖ is not necessarily small. The
additional analysis in the next subsection shall explain why ‖wk+1−wk‖ decrease geometrically corresponding
to those four curves.

Remark 6 Although iterations (4) and (8) are equivalent on paper, the error-forgetting property holds only for
iteration (4)’s inexact version (5). When the subproblems of (4) and (8) are solved inexactly, iterations (4) and
(8) do not generate the same sequences. Iteration (8) is less stable since pk generated by the inexact version of
(8b) does not obey pk ∈ ∂J(xk).

2.5 Error Cancellation

In this section, we focus on J(·) = µ‖ · ‖1 and explain that in the inexact iteration (5), when every subproblem
(3) is solved by first-order (i.e., gradient based) iterations, the right-hand side of (16) — ‖wk+1 − wk‖2 —
can decrease geometrically in k. As one will soon see, this property requires “perfect synchronization” of the
subproblem iterations at iterations k, k + 1, k + 2, . . ., where k > K. While it does happen, it is less likely to
happen than error-forgetting. Instead of rigorously proving the property, we merely explain why it can happen.

By perfection synchronization, we refer to the phenomenon that when an iterative procedure consisted of
linear and piece-wise linear operators starts from input b̄k+1 and then starts again from input b̄k, the input
difference ‖b̄k+1 − b̄k‖ is so small that the two sequences of operations take place on the same linear piece at
all iterations, i.e, b̄k+1 and b̄k are processed by two identical sequences of linear operations. The first-order
algorithms FPC, GPSR, and SpaRSA are based on the ISTA iteration

x(i+1) ← shrink(x(i) − τA⊤(Ax(i) − f), µτ), (17)

where the operator shrink(x, α) := x−Proj[−α,α]n(x) is piece-wise linear. While on the optimal face, as x̄k gets

close to x̆, the difference between b̄k+1 and b̄k is also very small, so small that perfect synchronization occurs
and leading to good consequences as we shall continue explain below.
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Now let us explain how wk+1−wk geometrically decreases in k. According to the definitions of {wk}, {x̄k},
and {x̂k}, they obey

wk+1 − wk = (x̄k+1 − x̄k)− (x̂k+1 − x̂k). (18)

We first argue (x̂k+1 − x̂k) = (wk−1 − wk). We assume that

η := wk−1 − wk (19)

is sufficiently small so that L(w) := J(x) − J(x + w) is well defined for points x and w specified below. From
b̄k+1 − b̄k = b−Ax̄k = A(x̆−Ax̄k) = Aη, we have b̄k+1 = b̄k +Aη. Hence, the problem

min{J(x) +
1

2
‖Ax− b̄k+1‖2}, (20)

is equivalent to min{J(x) + 1
2‖A(x− η)− b̄k‖2}, or with the change of variable y := x− η, is further equivalent

to min{J(y + η) + 1
2‖A(y) − b̄k‖2}. Since J(y + η) = J(y) − L(η) near y = x̂k, and x̂k is the minimizer of

J(y) + 1
2‖A(y) − b̄k‖2, we can let x̂k be the minimizer y∗ and thus, the solution x̂k+1 to problem (20) obeys

x̂k+1 = y∗ + η = x̂k + η, or

(x̂k+1 − x̂k) = η. (21)

Next, we study (x̄k+1− x̄k) in (18). Since x̄k+1 and x̄k are generated from the inputs f := b̄k+1 and f := b̄k,
respectively, we shall first get

b̄k+1 − b̄k = b−Ax̄k = A(x̆− x̄k) = A(wk−1 − wk) = Aη,

where the first equality follows from (5b), the second from Theorem 3, the third from Theorem 4, and the last
from (19). Since η is assumed to be sufficiently small, we can assume the same for (b̄k+1 − b̄k).

Suppose from the inputs f := b̄k+1 and f := b̄k, (17) generates sequences {xk+1
(0)

, xk+1
(1)

, . . . , xk+1
(i)

, . . .} and

{xk(0), x
k
(1), . . . , x

k
(i), . . .}, respectively, where xk+1

(0)
= xk(0) = 0. At iteration i = 0, the shrinkage operation is

applied to xk+1
(0)
− τA⊤(Axk+1

(0)
− b̄k+1) and xk(0) − τA⊤(Axk(0) − b̄k), respectively, which are very close since b̄k+1

and b̄k are very close. Consequently, the same linear piece of the shrinkage operation is applied to both, yielding
xk+1
(1)

and xk(1) that are again very close. This, in turn, lets the same linear piece of the shrinkage operator applied

at iteration i = 1, and by induction, also at iterations i = 2, 3, ... until the iterations are terminated, typically
after the same number of iterations when the same stopping is used. Hence, {xk+1

(1)
, xk+1

(2)
, . . . , xk+1

(i)
, . . .} and

{xk(1), x
k
(2), . . . , x

k
(i), . . .} are generated by the same sequence of linear operations from slightly different inputs

f := b̄k+1 and f := b̄k. The difference (b̄k+1 − b̄k) = Aη causes the difference (xk+1
(i)
− xk(i)). Without going into

further details, we claim that they give x̄k+1 := xk+1
(istop)

and x̄k := xk(istop) obeying

x̄k+1 − x̄k = (I +M)η, (22)

where M depends on both the stopping iteration istop and matrix A, but not on η, b̄k+1, or b̄k. Furthermore,
M obeys ‖M‖ < 1 provided that τ‖A⊤A‖2 < 2. Therefore, from (18), (21), and (21), we finally obtain

wk+1 − wk = Mη = M(wk − wk−1). (23)

According to Corollary 1, ‖wk+1 − wk‖ upper bounds the absolute error of x̄k+1. From (23) and ‖M‖ < 1, it
follows that the absolute error decays geometrically.

Since this analysis is not thorough, we prepared a Matlab demo for download from the first author’s webpage.
We suggest that the interested reader play with the demo and verify error cancellation, and we also hope that
it will motivate the discoveries of more interesting properties of minimizing a piece-wise linear function.
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3 Conclusions

When minimizing a piece-wise linear function subject to linear constraints, Bregman (or augmented Lagrangian)
iteration is more tolerant to numerical errors due to inaccurately solved subproblems. While the standard
practice requires diminishing errors over the steps, Bregman iteration only requires sufficiently small errors so
that the optimal face can be identified. Once on the optimal face, errors from two or more steps back will
be “forgotten.” Furthermore, the errors of last two steps of subproblem solvers based on linear and piece-wise
linear operators may nearly cancel each other, causing geometric convergence of the intermediate solutions to
the exact solution. Hence, a highly accurate solution can be obtained by inaccurate Bregman steps.

Acknowledgements The authors thank Professor Yin Zhang and two anonymous reviewers for their valuable comments.
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