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ERROR FORMULAE FOR OPTIMAL LINEAR FILTERING,
PREDICTION AND INTERPOLATION
OF STATIONARY TIME SERIES

By JAKOV SNYDERS!
Technion—Israel Institute of Technology

Several explicit expressions are presented for the minimum mean
square error in linear causal filtering, prediction and interpolation of
weakly stationary discrete-time processes corrupted by additive noise. A
general procedure for deriving error expressions of this kind is established.

1. Introduction. Several explicit formulae expressing the minimum mean
square error of linear filtering and prediction of wide-sense stationary processes
are known. The basic and earliest of these results is due to Szego-Kolmogoroff-
Krein ([1]; [2], page 49); it states that
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where y is a finite positive Baire measure on C, the unit circle of a complex
plane, and f is the derivative of the absolutely continuous part of z2 with respect
to Lebesgue measure (the right-hand side is interpreted as zero if log f is not
integrable). Equivalently,
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where H,*(dy) is the (Hardy) subspace of L*(dy)spanned by {¢*’;n = 0, 1,2, - - - }.
If p stands for the spectral measure of a stationary discrete-time process, then
(1) expresses the minimum mean-square error of linear prediction one time-unit
ahead. Our concern in this paper is to derive formulae for cases when the process
is (possibly) disturbed by noise and when other types of operations, such as
prediction several units of time ahead, is desired. This is accomplished by fol-
lowing simple procedures developed in the sequel. However, only absolutely
continuous spectral densities will be considered.

2. Statement of the problem. A stochastic sequence {g,} is said to be derived
by a linear operation on a wide-sense stationary sequence {P,} if, for each , g,
is either of the form Y% a,P,.,, or is the quadratic mean limit of such finite
sums. A linear operation is called causal if only non-positive #(k) appear in its
defining sums of the above mentioned form.

Let {m,} and {n} be wide-sense stationary sequences, considered to be the
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message and the noise, respectively. Assume that these processes are uncorrelated
with each other and that they have spectral densities denoted, respectively, by
f and g. Further assume that the mean of {n,} is zero. Let % be a function on
C which represents a linear causal operation on {m, + n,} and which belongs,
therefore, to H,*(f df + g df); and let r ¢ L*(f df) represent a linear “desired”
operation on {m,}. The mean-square difference between the “desired” and the
best obtainable sequences, shortly termed minimum (mean-square filtering) error
and denoted by E, is given by

(2)  E=min a0 % §2r [1A(e™) — r(e)}f(e¥) + |h(e*)’g(e*’)] df .
It is easily verifiable that the minimum in (2) is indeed attained by some 4, ¢
H,*(f df + g df), which is uniquely defined a.e. with respect to (f + ¢)0, and
is called the optimal transfer function.

Some further properties, especially the rationality of g and r, are required for
the manipulations performed in the sequel. Stated more precisely, we assume
the following:

A;: f, g and r are integrable functions on C;

A,: fand g are nonnegative on C;

A;: g and r are rational (thus defined over the whole plane);

A,: at least one of the conditions g = 0, log f € L holds;

A;: the structures of g and r are known, i.e. the number and multiplicity of
zeros and poles of each function are known;

A, in case g = 0, the number and multiplicity of the poles of r located inside
the unit disc are known;

and our purpose is to express E, defined by (2), in terms of f, g and coefficients
of g and r. Observe that fis not necessarily rational. A, is assumed since if both
g = Oand log f¢ L then E = 0 (this is obvious for r ¢ H *(f df), for r(e*’) = e~
it follows from (1), which in turn implies the minimum’s vanishing for all r €
L*(f df)). The information included in A and A; is important: in general differ-
ent structures of g and r induce different formulae.

Some not too complicated error expressions, arising from simple structures
of g and r, are given in the next section. They include examples of filtering,
prediction and interpolation in white noise, colored noise and without noise.
These expressions were derived by a method which is summarized in Propositions
1 and 2 of the last section. The Poisson transform extension (to the unit disc)
of the optimal transfer function corresponding to each case is also obtainable
by these propositions. A detailed proof of one error formula is presented at the
end of Section 4. It helps to clarify the routine but sometimes tedious nature
of derivation.

Previous work includes a matricial extension ([8]) of (1), and several expressions
derived by using Toeplitz forms ([6], [9]). Choosing the imaginary axis version
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of (2) as starting point, Yovits and Jackson [11] arrived at an explicit error ex-
pression for continuous-time filtering in white noise. This and other results
related to continuous-time were usually derived under more restrictive conditions
involving either rationality of the signal spectral density ([3], [4], [7]) or mini-
mum-phase property of the optimal transfer function in [10]. In[5]the particular
case r = 1 of (2) and its imaginary axis version were considered. The method
applied here is similar to that of [5]. However, the results obtained, in particular
Propositions 1 and 2, are not an immediate generalization of the results in [5]. In
a recent report ([12]) it was demonstrated that four error formulae, among them
the fourth assertion of Theorem 1 and the second assertion of Theorem 2, stand
also for the non-absolutely continuous case in the same sense as (1) does, i.e.
the minimal error is unaffected by the singular part of the signal spectral measure.
This property of the minimal error is possibly quite general.

3. Some error formulae. Throughout this section we assume that A,—A, hold
and E is defined by (2).

THEOREM 1. Let g be a nonzero constant and r(e*’) = e~*"’ with n specified below.
Then

n=—3 E=g9g{l —[1+ |a) + |a, — }a,* + |a; — a,a, + }a*[']P7?*(0)},
n= -2 E=g{l1 —[1+ |a + |a, — $a’]']P7*(0)},
n=—1: E=g{l —[1+ |a]P20)},

n=0E=g{l — P0),

n=1 E = g{P¥0) — 1},

n=2  E=gl +|a[1P0) — 1},

n=3  E=¢g{l+ |a]+ |a, + $a’]*]P*0) — 1},

n=4  E=g{[l +|a] + |a + 3a? + |a; + aa; + 3aF1PY0) — 1}

0
PY(0) = exp [21? i log (1 + fi‘;_)> d(i] .
a; = Ziﬂ i=. e log [g + f(e)] d6 , j=1,2,3.

These results were obtained by direct application of Proposition 1. Correspond-
ing results for g = 0 are derivable by Proposition 2 or, more simply, by
observing that P-%*0) — 0, gP*0)— exp [(2x)~" §=, log f(¢*’)df] and a; —
(27)~* {7, €'i? log f(e?) df as g — 0. For n < 0, E = 0 and for n = 1 we obtain
(the absolutely continuous case of) (1), as expected. The manipulations leading
to the first assertion of Theorem 1 are presented in the next section.

THEOREM 2. Let g(e*’) = |af?/|e'’ — b|* where |b| > 1 and r(e*’) = e~*"* with n
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specified below. Then

n= =t B = P — a0 — P,
—0: E=_1T 11_|pp)p
n G [ = PO,
=t E= 1) — PP
where
P(b) = exp [_ i ei iblog<1 " fEZW)>d0]’

P(0) = exp [4—71_ §. 10g< + f(ew)> 0] .

THEOREM 3. Let r(e'’) = a/(e’’ — b) where |b| & 1 and let g be constant. If
g + 0 then

E= |T|Igli_gT {1 —exp[%ﬁ Wﬁ}log( + f_(i:}ﬁye]},

whereas if g = O then

E=_l o [L = 1= 1OF jog frei d0:| B <1,
g P 5 S 108 /) bl <
=0, |6] > 1.

4. The derivation of error formulae. H_ * will be shorthand for H, *(dy) when

¢ is the Lebesgue measure; H_? denotes the subspace of L? spanned by {e~*"’; n =

0,1,2,...}. For a nonnegative measurable function on C satisfying log fe L
we define the outer functions ([2], page 62) f+, f~ by
£ = exp[ L . S log ey v | f< 1,
e‘lf
f(2) = exp[—~_ 1,;,0 + ? log fie*) dﬁ], 2> 1.

On C, f* and f- are defined, respectively, as the nontangential limits of the
above expressions. Obviously f(ei?) = f*(e*’) f~(e*%), and it is well known ([2],
page 53) that fe L implies f* e H,* f~eH_* For a rational f with known
structure this factorization is performable by inspection and produces rational
functions.

The next lemma and its proof were communicated to the author by M. Zakai.
Since it is apparently unpublished except for a similar statement in [5], we shall
give also the proof. Dash above a function indicates complex conjugation.

LEMMA 1 (Zakai). Let k be a nonnegative integrable function on C satisfying
logkeL. Then H*kdf) = {h: hk* ¢ H,?}.
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Proor. Denote W = {h: hk* e H,’} and equip this set with the L*(k df) norm.
By writing k = |k*|* it is easily seen that H %k df) c W. Assuming therefore,
that H %k df) is a proper subspace of W, there exists A € W such that

3) §= . h(e*%)k(e?)ei*? df = 0, n=0.

Thus %k € H,?, which implies, using the inner-outer functions factorization ([2],
page 62) that k= ¢ H,®. But obviously Ak~ ¢ H_?, hence hk~ is a constant. Con-
sidering (3) with n = 0 and since §~ k*(e'’) df + 0, this constant is zero. There-
fore # = 0 a.e. with respect to k df.

Notation of the kind 37 Res| p(s, z); ¢(s), s = co] means the sum of the residues
of p(s, z) over the poles of g(s) and at s = co. If the summation is only over
those poles of g(s) which are located outside the closed unit disc or inside the
open unit disc, then g(s) will be replaced by g, (s) or g_(s), respectively. It should
be emphasized that g (s) differs from g*(s) since ¢, is introduced above as a
notation related to any rational function ¢, while ¢* is a function which is defined
only if g is nonnegative on C. Nevertheless, if g is rational without poles on C
and if g* exists then obviously 3} Res[p(s, 2); g*(s)] = X Res[p(s, 2); .(5)]-
Similar remarks apply to the difference between g_(s) and g~(s) (it is customary
to associate the notations ¢, and ¢_ with a decomposition of the form g = ¢, 4 ¢q_,
but we do not need these functions).

LemMA 2. Let fe H,* and g H_*. If g is rational then
) % §2. 9(e*) f(e¥)e?* db = 3] Res [9(2)f(2); 9(2)] -
Similarly, if f is rational then
2% §2:9(e”)f(e?)e? db = — 3  Res [g(2) f(2); f(2), 2 = oo].

Proor. Since the two cases are provable by the same method, we shall consider
the first one only. Choose p < 1such that the disc |z| < p contains all the poles
of g, and define f,(¢*’) = f(pe*’) (f inside the unit disc is obtained by Poisson
transform, as usual). An equation like (4) certainly holds for f replaced by f,,
and this implies (4) since f, — f as p — 1 both pointwise a.e. and in L? [2].

ProrosITION 1. Assume A,—A, and g + 0, and let E be defined by (2). Then
E =} Res[T(2)P'(2)g=(2); T(z), 9=(2), 2 = 0]
where
(5) T(z) = @ » Res[w; Hs), 9H(s), 5 = oo]
and o

—exp| Lye &0 T Z1og(1 4 L€ 1
FE) = exp |:4r: s_"e“" —z og< + g(e“’))da:" el # 1
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Furthermore, the Poisson transform extension of the optimal transfer function h, (to
the unit disc) is given by
T(2)P7(2)
6 hy(2) = r(z z ’
©) 2 =) + 2R
Proor. First note that by the assumptions, log g and, consequently, log (f + g)
are integrable. Set f + g = k. Perturbation of the equation

|zl < 1.

™ E = L2, by — r'f + Ihfg] o
T

yields

(8) §=. 3A[(ky — r)f + hog] d6 = O

or .

©) 52 OF{(h, — 1)k + rg] db = O

for every 6h € H,*(k df). By Lemma 1 we may choose dh(e*?) =[(1 — Ze*?)k*(e'%)]*
with |z| < 1 and obtain
six[ ho(efo)k"'(ew) _r(e*)k*(e) T r(e*%)g(*%) j|ei0 de, 2| < 1.

e’bﬁ — 7z ew — 7z (eiﬁ —_ Z)k—(eiﬁ)

Each term in the brackets is factorable into a kind of product appearing in
Lemma 2, since hk* e H,? (by Lemma 1) and |9~ (2)/k=(z)| < 1 for |z| = 1,
therefore,

(10)  hy2)k*(z) — r(z)k*(z) — 3 Res [Cw r_(s):l

— ¥ Res [..M; ro(), g*(s), 5 = oo:l .

(s — 2)k=(s)
Observing that
(11) ) _ psy if s <1,
9*(s)
i;%zp(s) it |5 >1,

it is possible to rewrite (10) as follows:
[h(z) — r(2)]k*(2) = 3 Res [M; H(s)s 07(s), 5 = oo] .
s — 2z
Define T by (5), then (6) obviously holds and
T(e?) = e~ [hy(e’) — r(e")]k*(e)r(e”) .
Setting 6k = h, in (8) and comparing with (7)

(1) = § ) — [He) — )/ () o

= L A — (e o) k(o) — L o,
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thus
E=Lg, TEE) pogg _ 1 e 1(eiop(eo)eir ag .
2r k*(e’) 2n
Lemma 2 isagain applicable since T is rational without poles on C, |g*(z)/k*(z)| <
1 for |z| < 1 and k- ¢ H_?, hence

E=Y Res[Tgi’()z) T_(2), g- (z)] + 3 Res [T(2)k~(2); T,(2), 7 = oo]
and by (11)

E = ¥ Res [T(2)P-Y(2)9~(2); T(2), 97(2), z = o] .

Note. It is possible to replace r(z~*) by r(z~*) in (5); (6) and in the next propo-
sition, if and only if the coefficients of r are real. This is the natural case as
long as the stationary sequences involved (the message and the noise) are real.

PROPOSITION 2. Let E be defined by (2) with g = 0, and assume A,—A,. Then

E = 3 Res[T(2)Q7Y(2); T,(2), z = oo]
and
(z)—r(z)+@_Q_(z), lz| < 1
r(z™)

where

T(z) = 75—_'1) 3" Res [I%Q_Q_(;‘_); r_(s):I,

1 i .
0() = exp| - 5.5 Flog ey o | re1.
Proor. It is sufficient to note that (10) and (12) reduce, respectively, to
[(2) = r(2)1/*(2) = 3 Res| "LC)p ()],
s —z

- iﬂ §2. (€ )[r(e) — k(€)1 f*(e¥) f~(e*") db

= 2 Res[T(2) f~(2); T.(2), z = 0]
and f*(z) = Q(z) for |z| < 1, f~(z) = Q%(2) for |z] > 1.

PrOOF OF THEOREM 1 for n = —3. Obviously r(z) = 2%, rZ™Y) = r(z7!) = z7*
and g*(z) = g=(z) = g*. Therefore by (5)

T(z) = z* Res [Ef’l(i)"l; 5= oo:l

S —2Zz

= —gtz Res[&; s = 0]
st(1 — s2)

O i [P ]
ds®

3! 1 — sz
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22P(s7") 2 dP(s7")

= —giz*lim,,
(I —sz)* (1 —s2)® ds

z d*P(s7") 1 d*P(s™) ]
+ 2(1 — sz)* ds* + 6(1 — sz) ds°
where
0 26
P(s-!) = exp [4‘17, i, i:v *_L 1 log< n L(;_)> d(i], ] % 1.
Denote for |s] = 1
it it )
Ky(s) = S_n(——e—w)T g(1+ﬁ——)>da, j=12,3.
Then K,(s) > a; = (271-) §. e’ log[g + f(e*’)] db as s — 0 and
WPET) = —K P,
ds

EPET) _ 2K (s) — KA)IPG »
ds?

daz(;“> = —[6K,(s) — 6K,()Ky(s) + K ()]P(s™?) -

Consequently

(13) T(z) = géz“[—z8 + a2 + 2a, 5 — a4, + — 6a61a2 T4 ]P(oo)

= g*[—z“ + a,z7? + 2a, — a’ ; a4’ - + 6a, — 606102 + e’ z“] P-Y0) .

Using this result we obtain
E = Y Res[T(z)P~Y2)9}; 2 = 0,z = 0]
= Res [gz P~} (z71)P~(0); z = 0] 4+ Res[T(z)P~*(z)g%; z = 0]

. _ dP~(z) |, 2a, — a® d*P7(z2)
= lim,__, [—P 1 2 L
g +glim,_, @) +a—=+ = dz

6a, — 6a,a, + a°® d*P- l(z):| -0) .
36 dz?
Now the assertion follows since

-l(z)_exp[_ §= . Z+e 10g< -}-ﬂgo—))dﬂ],

+

AP _ _ My)Pz)
dz*
L) = M) — MDIPE)
dz*
L) = —[6My(2) — 6M(M() + MA)P()

where for |z| # 1 .
M,.(z)=%r§zz__f“_10g< +f(;—w)>d0, j=1,2,3,

(eio )1+.1
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and My(z) —a; as z — 0. Note also that insertion of (13) into (6) yields

hy(z) = 2* + 23[—1 +az' 4+

2a, 2_ a,’ 7 4 6a, — 6‘161‘12 + a’ Z—s]

X P-Y(0)P-}(z)
= 2[1 — P-Y(0)P~Y(z)]

+ [0122 + 2a, 2_ a’ 7+ 6a, — 6‘;102 + al3i| P—I(O)P—l(z) .

Propositions 1 and 2 were applied in order to obtain all the results of Section 3.
Naturally, they can be used for deriving other error formulae and the optimal
transfer function corresponding to each case. It is also remarkable that the
method used in proving Propositions 1 and 2 is applicable to certain filtering
problems involving noise correlated with the signal.
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