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�e aim of this study is to improve the estimation of the characteristic uncertainties of optic disdrometers in an attempt to calculate
the ecient sampling area according to the size of the drop and to study how this in�uences the computation of other parameters,
taking into account that the real sampling area is always smaller than the nominal area. For large raindrops (a little over 6mm),
the e�ective sampling area may be half the area indicated by the manufacturer. �e error committed in the sampling area is
propagated to all the variables depending on this surface, such as the rain intensity and the re�ectivity factor. Both variables tend
to underestimate the real value if the sampling area is not corrected. For example, the rainfall intensity errors may be up to 50%
for large drops, those slightly larger than 6mm.�e same occurs with re�ectivity values, which may be up to twice the re�ectivity
calculated using the uncorrected constant sampling area. �e �-� relationships appear to have little dependence on the sampling
area, because both variables depend on it the same way. �ese results were obtained by studying one particular rain event that
occurred on April 16, 2006.

1. Introduction

Knowledge of precipitation, and in particular of the physical
characteristics of rainfall, is essential in order to construct
and assess meteorological and climatic models. One of the
physical parameters of raindrops is their size, associated with
their volume and their fall velocity.

Various mathematical distributions have been proposed
that could be adapted to drop size distributions (DSD).
In [1] an exponential distribution is proposed, which is
subsequently generalised by [2, 3]. Because observations
con�rmed that an exponential distribution overestimated
the number of raindrops recorded (e.g., [4–7]), the gamma
distribution was introduced. Despite the fact that other
mathematical formulae have been proposed to represent drop
size distributions [8, 9], the most widely used systems are
the exponential and the gamma distributions, which are both
still in use today (e.g., [10–14]). �ese distributions are also
present in the e�orts that have been made in the search for a
normalization approach [15–20].

Raindrop size distributions reveal the microphysical
mechanisms associated with the formation of precipitation

[3, 21], which means that they are very useful for their
assimilation in meteorological models, and for their func-
tion as an element to verify the validity of these models
[22]. Also, the characteristics of the drop size distributions
depend on the type of clouds (convective or stratiform)
that produce them, and their stage of development [23–
25]. An excellent summary of the history of the search for
relationships between the microphysics of raindrops and
drop size distributions can be found in [26].

As mentioned above, for many years the measurement of
drop sizes has been a fundamental goal of scientists studying
rainfall [27]. Progress in this �eld is obvious, from the earliest
techniques, involving brie�y exposing a sheet of absorbent
paper to the rain [28] or using an uncompacted layer of �our
[29, 30] to the modern equipment in use today. In [31] a
method was developed consisting of taking two photographs
simultaneously from two perpendicular angles; this may be
considered as an intermediary stage before the development
of disdrometers.

Joss and Waldvogel may be credited as having developed
the �rst automatic disdrometer, using a microphonic sensor
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which transformed the vertical momentum of the impact of
a drop into an electrical signal [32, 33]. Subsequently, other
disdrometers were developed based on optical techniques
used to measure drop sizes ([34–40] to mention some of the
�rst ones; [41] includes a comprehensive summary). Today,
all of these types of disdrometers continue to be used in
scienti�c studies throughout the world [42–47]. In [48] we
�nd a brief but excellent summary of research carried out
with disdrometers.

Based on data from the DSD, it is possible to explore
many other interesting aspects, such as the kinetic energy,
momentum or re�ectivity. It should be noted that the rela-
tionship between the re�ectivity and the intensity of the
precipitation has become a discriminating factor between
convective and stratiform rain. In order to carry out some
of these calculations, it is necessary to know the value of the
terminal velocity of the raindrops, which may be measured
or estimated. �e measurements of terminal velocities made
with great precision in [49] served as a basis for the empirical
tests proposed in [50, 51]. However, this dependency of the
terminal velocity on the size is not always taken into account
[52], and this is a clear source of error when making the
calculations of the derived parameters.

�e fact that each drop is precipitated at a di�erent
terminal velocity means that the sampling volume of the
disdrometer depends on the size of the drop considered
[53]. As a result, it is easy to verify that for example, the
�-� relationships depend on the velocity of the drops [54].
However, these relationships also vary depending on the
type of instrument used to take the measurements [55]. �is
makes it necessary to take uncertainty into account when
making calculations with disdrometers, as in scienti�c results
no numeric data makes sense unless it is accompanied by its
corresponding uncertainty.

In [56] themain sources of error that a�ectmeasurements
madewith disdrometers are described.However, one possible
error is not included: the error due to the fact that the area
(and not only the volume) of the sample from the disdrometer
may vary with the drop size.

In this study, we will attempt to establish the uncertainty
in the sampling area of an optical disdrometer, and how
this is propagated to the calculations for precipitation, as has
been done for other equipment for measuring rainfall [57] or
other hydrometeors [58]. More speci�cally, the aim of this
paper is to progress in the estimation of the characteristic
uncertainties of the optical disdrometer, as [59] did for the
Joss-Waldvogel disdrometer, [60] for the GBPP-100 probe, or
[61] for several types of disdrometers. In the case of optical
disdrometers, the measurement process mainly consists of
the interruption or obscuration of a laser beam when rain-
drops cross this beam. No problems arise when the raindrop
falls perfectly within the sampling area. However, on the
edges the error may be considerable and will depend on the
geometric characteristics of the laser beam and on the drop
size. In this paper we will attempt to quantify the sampling
area and study how this in�uences the computation of other
parameters.

In Section 2 we provide basic information on the dis-
drometer used. �e sampling area for each drop size is

Figure 1: Ground-Based Precipitation Probe (PMI Model GBPP-
100) installed at the University of León.

63 cm

Figure 2: Illustration showing the measurement system of the
GBPP-100, representing a laser beam intercepted by a raindrop
(illustration not to scale).

calculated, and we determine the error that would have
occurred if a sampling area independent of the drop size
had been used. In Section 3 we describe how this error is
propagatedwhen other variables that depend on the sampling
area are calculated. Section 5 contains the conclusions and is
followed by the acknowledgements and list of bibliographic
references included in the text.

2. Disdrometer Sampling Area

From 2003, the University of León, Spain, has carried out
campaigns to gather data using an optical disdrometer
during the winter. �e measurement equipment considered
(Figure 1) is the Ground Based Precipitation Probe (PMI
Model GBPP-100). Two metres from the GBPP, at the same
height over the ground, a weather station has been installed
which, amongst other variables, measures wind speed and
direction. It is important to know the wind speed because
it may a�ect the reliability of the measurements taken by
the GBPP; in fact, the manufacturer recommends discarding
rainfall data if it is accompanied by gusts of wind stronger
than 10m/s. In our data-gathering campaigns, we have only
taken into account rainfall episodes in which the wind speed
did not exceed 5m/s.

�e measurement system used by the GBPP is the
following: the device emits a helium and neon laser beam
with 64 rays (Figure 2) with a separation of 0.2mm, and a
receiver positioned 63 cm from the emitter detects howmany
rays are intercepted by a body (a raindrop or other object) that

crosses the sampling area of 63×1.26 cm2.�e number of rays
intercepted corresponds to the channel in which the drop is
included.
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Figure 3: Geometry of the e�ective sampling area for a certain
raindrop size �, based on the nominal sampling area.
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Figure 4: Relative error of the sampling area depending on drop
size.

In other words, the GBPPmeasures the spectrum of drop
sizes from 0.2mm, in 63 channels. �e channels correspond
to a given precipitation size of between 0.2 and 12.4mm.
Another channel is used to include the drops that intersect
either of the two rays on the edge of the beam. In this case,
the drop size is unknown.

If the nominal sampling area (shown in Figure 3) is a
rectangle with dimensions � × � and we are measuring a
raindrop with a diameter �, only raindrops centred in a

rectangle with an area of (� − �)(� − �) = �� + �2 − �(� + �)
will be counted. As a result, if we suppose that the sampling

area is �� then we are committing an error of �2 − �(� + �).
It would perhaps be of interest to try and quantify this

error for the case that concerns us. Firstly, it is observed
that as � < � + �, the error we have just identi�ed will
always be negative. �is means that the real sampling area
is always smaller than the nominal area. In order to avoid
complications with the signs, we will always refer to the

absolute value of this error, namely �(� + �) − �2.
For a sampling areawith a value of (�−�)(�−�), supposing

that �� is suitable means working with a quantity that is
a�ected by a relative error:

� (� + �) − �2
(� − �) (� − �) .

(1)

In this equation, considering � = 63 cm and � = 1.26 cm,
the result is shown in Figure 4, indicating the relative error
based on the drop size. Here we can see that for large drops (a
little over 6mm), the e�ective sampling area is half the area
indicated by the manufacturer.
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Figure 5: Rainfall intensities calculated with the sampling area
uncorrected (�0) and corrected (�).

3. Rain Variables

�e error committed in the sampling area is propagated to
all of the variables that depend on this surface. Here we will
refer to two of them: rain intensity or rain rate, and re�ectivity
factor.

�e intensity is the precipitated volume of water per
unit of time and area, so it will depend on the sampling
surface. It is possible to calculate the intensity � once the
sampling surface is corrected and the intensity �0, supposing
the sampling surface is constant (��).On representing the two
variables depending on the drop size, Figure 5 is obtained.
Here we can see the precipitation intensity (y-axis) when
a drop of a certain size (x-axis) falls in one minute. On
producing this graph, the deformation of the drops when
falling has been taken into account.�is is important because
the �attening of the drops means that the disdrometer always
measures the largest dimension of the drop. �e correction
proposed in equation (1) in [51] has been used here.

Figure 5 shows that the error committed by assuming that
the sampling area is constant tends to underestimate the real
intensity: actually, the intensities are higher than those we
calculate with a constant area. And these rainfall intensity
errors may be of up to 50% for large drops, slightly more than
6mm (larger sizes are infrequent, and drops larger than 8mm
are not registered).

Another variable that depends on the sampling area is
the re�ectivity factor � of the rainfall, de�ned as in [62].
In this case, apart from the sampling area, it is necessary to
know the fall velocity of the drops. As the GBPP does not
measure this parameter, it is necessary to assume that it takes
a certain value. A sophisticated study of the terminal velocity
is described in [63], using experimental data found by other
authors. In this study, we have supposed that the velocity
varies with size, according to

V = −0.0009748�4 + 0.05730�3 − 0.8393�2 + 4.712�
(2)
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Figure 6: Re�ectivity factors calculated with the sampling area
uncorrected (�0) and corrected (�).

proposed by [51], based on the measurements of [49].
As in the previous case, we have used � to refer to the

re�ectivity factor calculatedwith the di�erent sampling areas,
and �0 for the re�ectivity factor calculated with a constant
sampling surface. Using these terms, Figure 6 shows these
two re�ectivity factors as a function of the drop size that
falls in one minute. Once again we may see that assuming
a constant sampling area results in an underestimation
of the re�ectivity. For example, for large drop sizes, such
as 6mm, the di�erence between these two re�ectivities is
approximately 3 dBZ. In these units the di�erence does not
seem to be exaggerated, but we have to take into account the
fact that these are logarithmic units: a di�erence of 3 dBZ
between two re�ectivities means that one is approximately
twice the size of the other.

Here we have presented a calculation for monodisperse
drop distributions. In a real precipitation event, if the size
distribution is known (�� drops of size ��), then Figures 5 and
6may be used to evaluate the possible error. However, we will
continue using these data for a real precipitation event.

4. Example: Case Study of April 16, 2006

On April 16, 2006, atmospheric instability over the city of
León led to rainfall that was not excessively intense but
quite continuous, lasting between approximately from 0930
to 1800UTC. During this interval, the GBPP detected 105,192
drops, distributed in intervals of ten seconds, as shown in
Figure 7.

In order to establish comparisons with the rain gauge
installed a couple of meters from the optical disdrometer,
the data are shown in one-minute intervals. Figure 8 shows
the intensity of the rainfall per minute calculated with the
constant sampling area and with the sampling area that varies
according to the drop size. It was seen that the intensity
(GBPP corrected) calculated with the variable sampling area
is always higher than the other one (shown asGBPP).�e fact
that the intensity is not proportional to the number of drops
in Figure 7 indicates that the distribution of sizes is di�erent
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Figure 7: Number of drops recorded at ten-second intervals.

0

5

10

15

20

25

30

35

40

45

50

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Time (UTC)

R
ai

n
 i

n
te

n
si

ty
 (

m
m

/h
)

GBPP

GBPP corrected

Figure 8: Rainfall intensities calculated with the sampling area
uncorrected (GBPP) and corrected (GBPP corrected).

in each precipitation event. �e data for the whole rain event
recorded by the DSD are shown in Figure 9 and indicate a
distribution that is closer to a gamma distribution than to the
exponential distribution in [1].

With the aim of focusing our example on an uninter-
rupted rainfall episode over a certain period of time, we
decided to select one of the intervals shown in Figure 8, more
precisely the one that shows the highest precipitation inten-
sity, registered approximately between 1030 and 1130UTC.
�is interval is ampli�ed in Figure 10, showing more clearly
the di�erence between the two intensities, especially in the
precipitation peaks, perhaps because the drop sizes recorded
are larger. We should not forget that the larger the drop size,
the larger the correction that needs to be introduced in the
sampling area.

�e scope of the correction proposed in this study would
be quite reduced, and perhaps reserved for theoretical use,
if we did not compare it with other types of measurements
that avail its transcendence. Together with the GBPP, the
meteorological station contained a tipping bucket rain gauge,
so we have been able to compare the precipitation recorded.
For the episode we have studied, Figure 11 shows the accu-
mulated precipitation as measured by the rain gauge and as
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Figure 9: Drop size distribution of all raindrops recorded on April
16, 2006.
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Figure 10: Rainfall intensities calculated with the sampling area
uncorrected (GBPP) and corrected (GBPP corrected) during the
most intense rainfall episode.

calculated according to the data from the GBPP, with and
without correction of the sampling area.

Of course we must bear in mind that the di�erences
between the values measured by disdrometer and by rain
gauges are due to a number of facts other than the sampling
area, such as the discretization of diameter [64, 65], mini-
mum detectable drop size, and others. Figure 11 corroborates
that the precipitation calculated with the correction of the
sampling area is higher than with the nominal sampling
area. However, the most interesting aspect is that the values
provided by the rain gauge are, generally, closer to those
calculated with the corrected sampling area. We therefore
argue that, although disdrometers generally tend to measure
lower rainfall values than rain gauges, a correction of the
sampling area may reduce these di�erences.

�e other variable studied in the previous epigraph is
re�ectivity, �. Figure 12 shows the re�ectivity values calcu-
lated as previously indicated. Once again, on reducing the
sampling area the re�ectivity increases, and the values found
are twice those made using the nominal sampling area. �is
di�erence, which is evident when� is represented on a linear
scale, is eclipsed if the scale is logarithmic (e.g., when it
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Figure 11: Comparison between the total rainfall recorded by the
GBPP and by the rain gauge during themost intense rainfall episode.
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Figure 12: Re�ectivity factors calculated with the sampling area
uncorrected (GBPP) and corrected (GBPP corrected) during the
most intense rainfall episode.

is represented in dBZ units). It may be seen that in some
minutes, the di�erence is as much as around 3 dBZ, which
represents a ratio equal to 2 in the re�ectivity.

Finally, we will deal with the �-� relationships, which
are of interest in order to know the type of precipitation.
Figure 13 shows the distribution of the re�ectivity based on
the precipitation intensity during theminutes of precipitation
we have just studied. �e curves of best �t are not shown,
as they are both superimposed over each other. In fact, their

equations are � = 376�1.51 for the corrected data, and � =
382�1.50 for the data calculated with the nominal sampling

area. �e correlation is also similar (	2 = 0.968 and 0.969,
resp.).

So why are there no di�erences in the �-� relationships,
when both � and � individually had a di�erent behavior,
which was strongly dependent on the sampling area? �e
answer is simply that the two variables depend on the
sampling area in the same way: both variables increase with
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Figure 13: �-� relationship calculated with the sampling area un-
corrected (GBPP) and corrected (GBPP corrected).

the proposed correction, so this relationship seems to have
little dependence on the sampling area.

Of course, it will be necessary to have a more extensive
database in order to generalize this result, including not only
more rainfall episodes with di�erent characteristics, but also
rainfall data fromother locations, due to the strongly regional
nature of the �-� relationship [66–68].

To conclude, it seems clear that any other variable we
calculate (energy, linear momentum, size spectrum, etc.)
which is dependent on the sampling area will have to
be corrected according to the guidelines indicated in this
paper. In this case, comparing the databases with those for
disdrometers with transfer of momentum [32] in order to
corroborate the corrections of the sampling area would be a
good research line.

5. Conclusions

�emain conclusions of this study are the following.

(i) When calculating the variables based on the data from
the disdrometer it is necessary to take into account
the real sampling area (variable for each drop size):
it is not enough to take a constant area, which may
be the one indicated by the manufacturer. Otherwise,
this leads to major errors in the calculations of the
derived variables.

(ii) One of the most important errors is the one found
in calculating the rainfall intensity �, which may be
as much as 50% of the rainfall for the largest drop
sizes. For this reason, once we know to what degree
of accuracy we have to know � and the size of the
raindrops recorded, we will be able to determine if we
need to introduce the correction of the sampling area.

(iii) Another variable that may also be a�ected is the
re�ectivity factor �, which when calculated using
the variable sampling area may be up to twice the
re�ectivity calculated using the uncorrected constant
sampling area.

(iv) In contrast, the �-� relationship seems to have little
dependence on the sampling area, because the errors
of � and � tend to be compensated.

(v) With actual rain records, it was observed that the
fact that the intensity is not proportional to the
number of raindrops indicates that the distribution
of sizes is di�erent in each precipitation episode,
even on the same day. �e global data for the drop
size distribution indicate that it is more similar to a
gamma distribution than to an exponential one.

(vi) Although disdrometers generally do not provide
exactly the same rainfall values as rain gauges, a
correction of the sampling area could reduce these
di�erences.

In conclusion, the nominal area of the sampling should
not be considered as �nal, without previously calculating the
possible error we may introduce into the calculations.
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[53] R. Uijlenhoet, J. M. Porrà, D. Sempere-Torres, and J. D. Creutin,
“Analytical solutions to sampling e�ects in drop size distri-
bution measurements during stationary rainfall: estimation of
bulk rainfall variables,” Journal of Hydrology, vol. 328, no. 1-2,
pp. 65–82, 2006.

[54] C. Salles and J. D. Creutin, “Instrumental uncertainties in Z-
R relationships and raindrop fall velocities,” Journal of Applied
Meteorology, vol. 42, no. 2, pp. 279–290, 2003.

[55] E. Campos and I. Zawadzki, “Instrumental uncertainties in Z-
R relations,” Journal of Applied Meteorology, vol. 39, no. 7, pp.
1088–1102, 2000.

[56] Q. Cao and G. Zhang, “Errors in estimating raindrop size
distribution parameters employing disdrometer and simulated
raindrop spectra,” Journal of Applied Meteorology and Climatol-
ogy, vol. 48, no. 2, pp. 406–425, 2009.

[57] C. R. Williams and P. T. May, “Uncertainties in pro�ler and
polarimetric DSD estimates and their relation to rainfall uncer-
tainties,” Journal of Atmospheric andOceanic Technology, vol. 25,
no. 10, pp. 1881–1887, 2008.

[58] C. Palencia, A. Castro, D. Giaiotti, F. Stel, and R. Fraile,
“Dent overlap in hailpads: error estimation and measurement
correction,” Journal of Applied Meteorology and Climatology,
vol. 50, no. 5, pp. 1073–1087, 2011.

[59] A. Tokay, P. G. Bashor, and K. R. Wol�, “Error characteristics of
rainfall measurements by collocated Joss-Waldvogel disdrom-
eters,” Journal of Atmospheric and Oceanic Technology, vol. 22,
no. 5, pp. 513–527, 2005.

[60] L. Yangang and Y. Laiguang, “Error analysis of GBPP-100
probe,”Atmospheric Research, vol. 34, no. 1–4, pp. 379–387, 1994.

[61] X. C. Liu, T. C. Gao, and L. Liu, “E�ect of sampling variation
on error of rainfall variables measured by optical disdrometer,”
Atmospheric Measurement Techniques Discussions, vol. 5, pp.
8895–8924, 2012.

[62] R. Fraile and M. Fernández-Raga, “On a more consistent
de�nition of radar re�ectivity,”Atmosfera, vol. 22, no. 4, pp. 375–
385, 2009.

[63] E. X. Berry and M. R. Pranger, “Equations for calculating
the terminal velocities of water drops,” Journal of Applied
Meteorology, vol. 13, no. 1, pp. 108–113, 1974.

[64] R. Fraile, C. Palencia, A. Castro, D. Giaiotti, and F. Stel,
“Fitting an exponential distribution: e�ect of discretization,”
Atmospheric Research, vol. 93, no. 1–3, pp. 636–640, 2009.

[65] M. Marzuki, W. L. Randeu, M. Schönhuber, V. N. Bringi, T.
Kozu, and T. Shimomai, “Raindrop size distribution parameters
of distrometer data with di�erent bin sizes,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 48, no. 8, pp. 3075–3080,
2010.

[66] C. W. Ulbrich and D. Atlas, “Microphysics of raindrop size
spectra: tropical continental and maritime storms,” Journal of
Applied Meteorology and Climatology, vol. 46, no. 11, pp. 1777–
1791, 2007.

[67] B. E. Martner, S. E. Yuter, A. B. White, S. Y. Matrosov, D. E.
Kingsmill, and F. M. Ralph, “Raindrop size distributions and
rain characteristics inCalifornia coastal rainfall for periodswith
and without a radar bright band,” Journal of Hydrometeorology,
vol. 9, no. 3, pp. 408–425, 2008.

[68] Y. Zhang, J. A. Smith, A. A. Ntelekos, M. L. Baeck,W. F. Krajew-
ski, and F. Moshary, “Structure and evolution of precipitation
along a cold front in the Northeastern United States,” Journal of
Hydrometeorology, vol. 10, no. 5, pp. 1243–1256, 2009.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Mining

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation 

http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geochemistry
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mineralogy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Paleontology Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geology  
Advances in


