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Error Measures for Resampled Irregular Data
Stijn de Waele and Piet M. T. Broersen

Abstract—With resampling, a regularly sampled signal is
extracted from observations which are irregularly spaced in time.
Resampling methods can be divided into simple and complex
methods. Simple methods such as Sample&Hold (S&H) and
Nearest Neighbor Resampling (NNR) use only one irregular
sample for one resampled observation. A theoretical analysis of
the simple methods is given. The various resampling methods
are compared using the new error measure SD : the spectral
distortion at interval . SD is zero when the time domain
properties of the signal are conserved. Using the time domain
approach, an antialiasing filter is no longer necessary: the best
possible estimates are obtained by using the data themselves.
In the frequency domain approach, both allowing aliasing and
applying antialiasing leads to distortions in the spectrum. The
error measure SD has been compared to the reconstruction
error. A small reconstruction error does not necessarily result
in an accurate estimate of the statistical signal properties as
expressed by SD .

Index Terms—Interpolation, signal reconstruction, signal sam-
pling, spectral analysis, time domain analysis.

I. INTRODUCTION

I
RREGULAR sampling occurs in several applications such

as geophysics [1], Laser Doppler Anemometry (LDA) [2],

and oscilloscopes [3]. The irregularly sampled signal can be an-

alyzed by extracting a regularly sampled signal from the irreg-

ular data with resampling. Frequently used resampling methods

are Sample&Hold (S&H), linear interpolation, and cubic spline

interpolation [2]. It has been observed that cubic spline inter-

polation can lead to spurious peaks in the resampled signal for

several types of data [1], [3]. With Sample&Hold (S&H), the

resampled signal does not display spurious peaks. Therefore, it

will be called a robust resampling method. Linear interpolation

is also a robust resampling method. The reconstruction of the

original signal will generally be more accurate than with S&H.

However, the variance of the signal is estimated too low, which

causes problems in spectral estimation.

The difference between the estimated and the true signal

properties is evaluated using an error measure. For sampled

continuous-time signals this is usually done by comparing

the estimated power spectrum to the true power spectrum up

to a certain frequency [4]. These error measures are called

frequency domain error measures. If no antialiasing filter is

used prior to sampling, aliasing will cause distortions in the

spectrum; if an antialiasing filter is used, distortions in the

spectrum will occur because practical antialiasing filters are

non-ideal.
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In this paper, the alternative option is developed, namely

a time domain approach. This approach results in the model

error at interval , ME [5] and the spectral distortion for the

time domain approach, SD . In this approach, no antialiasing

filter is used. The advantages of the time domain approach over

the frequency domain approach are discussed. The new error

measures are compared to the reconstruction error RE. Nearest

Neighbor Resampling (NNR) is introduced as an improvement

over S&H. Resampling methods are divided into simple and

complex methods. A theoretical analysis of the influence of

the simple methods on a stationary stochastic process is given.

Finally, both the resampling methods and the various error

measures are compared in a simulation study.

II. SIMPLE AND COMPLEX RESAMPLING METHODS

With resampling, an equidistant signal at times is de-

rived from the irregularly spaced samples. A popular resampling

method is S&H or zero order hold [2]. The resampled signal at

, is set equal to the last irregular sample prior to

. S&H is called a simple method because only one irregular

observation is used for each resampled observation. NNR is a

simple method which is an improvement over Sample & Hold.

With NNR the resampled signal at is set equal to the irreg-

ular sample nearest to . As with S&H, only one irregular

sample is used to determine a resampled observation. Complex

resampling techniques use two or more irregular samples for

each resampled observation. Examples of complex resampling

methods are cubic spline interpolation and linear interpolation.

These resampling techniques are applied to irregular samples

of the velocity of a turbulent flow as a function of time. The

measurements were obtained with Laser-Doppler Anemometry

(LDA) [6]. LDA is a non-intrusive way to measure the velocity

of a fluid or gas. As a consequence of the measurement tech-

nique the samples of the velocity signal are irregularly spaced

in time. The reconstructed signal obtained with cubic interpo-

lation is shown in Fig. 1. Also after resampling the signal dis-

plays spurious peaks. As a result, the estimated variance is too

high. Conversely, the variance estimated with S&H and NNR

is correct because only one irregular sample is used for each

resampled observation. The estimated variance for the various

resampling techniques is given in Table I.

As opposed to cubic interpolation, linear interpolation is a ro-

bust resampling method: the resampled signal does not display

spurious peaks. However, with linear interpolation the variance

is estimated too low. This can be understood by considering the

fact that linear interpolation is a weighted average of two irreg-

ular observations. This will result in a resampled signal with

a variance lower than the variance of the original signal. It is

a general property of complex methods that the variance may
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Fig. 1. Cubic interpolation applied to irregular samples of the velocity of a turbulent flow as a function of time. The resampled signal displays spurious peaks.
� = Irregular observations. ——— = Cubic interpolation.

TABLE I
THE VARIANCE ESTIMATED WITH VARIOUS

RESAMPLING TECHNIQUES FROM MEASURED LDA-DATA. THE FIRST COLUMN

ARE THE ESTIMATES USING all IRREGULAR OBSERVATIONS. IN THE SECOND

COLUMN THE AVERAGE IRREGULAR SAMPLING INTERVAL IS ARTIFICIALLY

DOUBLED BY RANDOMLY SELECTING 50% OF THE IRREGULAR SAMPLES

be estimated erroneously. The data at hand can easily be used

to demonstrate some of the properties of resampling methods.

The average irregular sampling interval is artificially doubled by

randomly selecting 50% of the irregular samples. Another esti-

mate of the variance is determined from this set of irregularly

spaced samples (see Table I). The estimated variance with S&H

and NNR is only slightly different due to statistical variations.

The bias in the estimate obtained with linear interpolation has

increased. The estimate found with cubic interpolation is com-

pletely different from the initial estimate. Summarizing, it can

be stated that the simple methods are robust and provide an un-

biased estimate of the variance. This result justifies paying more

attention to simple methods.

III. THEORETICAL ANALYSIS OF SIMPLE METHODS

In this section the influence of resampling with simple

methods on the signal properties of stationary stochastic

processes is analyzed in more detail. The interval between

resampled data is different from the various intervals

between the irregularly spaced samples used for resampling

(see Fig. 2). With NNR, the mean square deviation between

and will be smaller than for S&H. The difference between

and causes deviations between the properties of the

resampled signal and the properties of the original signal.

Fig. 2. Interval T between resampled data and the interval T between
the irregular observations used for resampling. In this example the signal is
resampled with S&H. The difference between the original signal properties
and the signal properties of the resampled signal are caused by the fact that T
deviates from T . � = Irregular observations. � = Resampled signal.

Irregular samples obtained with LDA can exhibit a velocity

bias. This is a dependency between the interval between sam-

ples and the value of the original signal: when the signal is high

the average irregular sampling rate is high [2]. This effect is dis-

regarded in this analysis. It is assumed that the sampling times

are equally distributed with mean irregular sampling time .

This means that the time between samples has an exponential

distribution [7]. The resampling time is assumed to be con-

siderably greater than the average irregular sampling time .

This means that the number of times the same irregular obser-

vation is used for two resampled observations is negligible in

this theoretical analysis. The possibility P that the same ob-

servation is used for two resampled observations using S&H is

equal to the possibility that the time between two irregular sam-

ples is larger than the resampling time

(1)

For NNR this possibility is smaller than for S&H.

The autocovariance function of the resampled signal is

(2)

For simple methods the resampled signal at time , is

equal to the original signal at time : (see Fig. 2).

The resampled signal at is equal to the original signal
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at time : Substitution in expression

(2) and some rearranging yields

(3)

with At this point a distinction

has to be made between and , . For

expression (3) reduces to

(4)

where is autocovariance function of . This means that the

variance of the resampled signal is equal to the vari-

ance of the original signal. For , the

covariance function of the resampled signal is

for (5)

where is the distribution function of τ. This can be

re-written as a convolution of and

(6)

Using the assumption that different irregular observations are

used for and it can be stated that τ1 and τ2

are independent stochastic variables with the same distribution

function . The distribution function of can be written

as the convolution of and the mirrored version of [8]

(7)

where is the distribution function of . Substitution of this

expression in (6) yields

for (8)

To include , (4) and (8) are combined to yield the fol-

lowing expression:

(9)

Since the delta-function δ is zero for (8) is

satisfied. Equation (4) is satisfied by setting equal to

(10)

can be interpreted as the expectation of

This expectation will never be greater than the maximum value

of which is This means that will always be pos-

itive. Note that the first part of (9) can be interpreted

as the covariance function of the signal filtered by a LTI with

pulsresponse [5]. The second part of (9) is additive white

noise. This means the resampled signal has the same auto-

covariance function as an artificial signal , where is a

filtered version of plus white noise (see Fig. 3). Examples of

the influence of these operations on turbulence spectra are given

in Section V.

Fig. 3. Relation between the original signal x and the signal x . The
resampled signal x has the same autocovariance function as x . The variance
of x is equal to the variance of x.

The distribution functions for S&H and NNR are

(11a)

(11b)

The standard deviations of for S&H and NNR are

(12a)

(12b)

The deviation between and is smaller for NNR than for

S&H. Therefore, it is expected NNR will conserve the character

of the original signal better than S&H.

The resampling noise level in S&H can be related to

a measurable quantity, namely the mean square difference be-

tween subsequent irregular samples and

(13)

Thus, an indication of the resampling noise level for S&H,

, can be obtained from the measurements. This expression

remains useful when measurement noise is present besides the

influence of resampling. For NNR the noise level will generally

be lower, because the distortions caused by the filter

will be smaller.

IV. ERROR MEASURES

The difference between the estimated and the true signal

properties is evaluated using an error measure. The signal

properties of a stationary process can be expressed by the

autocorrelation function, the power spectrum or a stochastic

differential or difference equation. The model error ME for

discrete-time [9] is the starting point for the development of

an error measure for sampled continuous signals. The model

error can be expressed in the time domain or in the frequency

domain. Both expressions are reformulated so they can be

applied to sampled continuous-time signals.

The model error ME is defined as a normalized version of the

one step ahead prediction error PE

ME
PE

(14)

where is the minimal value for PE. The prediction error PE

is a measure for how well can be predicted using all previous

observations with the estimated signal character-

istics. Expression (14) for the model error is called the time do-

main formulation of the model error.
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The frequency domain interpretation of the model error is that

it is asymptotically equal to the spectral distortion SD

SD (15)

for unbiased models. and are the true and the estimated

power density function, respectively. The advantage of the spec-

tral distortion is that the variance is taken into account. This ex-

pression can easily be reformulated for sampled continuous sig-

nals by comparing the estimated and true spectra up to half the

sampling frequency. This results in the spectral distortion SD

SD (16)

The time domain expression (14) for the model error can also

be reformulated for sampled continuous signals. This is done

by introducing a new prediction error, the prediction error at in-

terval , PE . This prediction error is a measure for how well

can be predicted using all previous observations at lag time

with the estimated signal charac-

teristics. This prediction error is denoted PE . The model error

at interval is again defined as a normalized version of the pre-

diction error at interval [5]

ME
PE

(17)

where is the minimal value for PE . As the sampled obser-

vations will become uncorrelated for large will tend to

if tends to infinity. It can be shown that ME is equal to the

ME of the sampled model with respect to the sampled process

if is set to the same value in both measures [5]. The sampled

process is given by

(18)

No antialiasing filter is applied prior to sampling, because op-

timal predictions are obtained by using the data themselves. This

is illustrated by the following example. Suppose a sine with fre-

quency 5 Hz is sampled with a sampling frequency of 4 Hz.

When antialiasing is applied before sampling a zero-signal is

all that is left. Consequently, no prediction of the original signal

can be made. When the signal is sampled without antialiasing,

the sampled signal looks like a sine of 1 Hz. Using these sam-

ples, the next value of the original signal can be predicted per-

fectly. The model error at interval is asymptotically equal to

the spectral distortion of the aliased spectrum SD

SD (19)

The spectrum ha is the aliased version of the original spectrum

or, equivalently, the Discrete Fourier Transform of the sampled

autocovariance function

(20)

ME and SD are error measures for the time domain ap-

proach, because both error measures are zero when the time do-

main properties given by the sampled autocovariance function

are conserved. Nevertheless, the autocovariance func-

tions are not plotted because ME and SD are relative error

measures. Autocovariance functions are not a good indication

of relative error measures, since differences with low power are

not noticed [11]. Instead, the aliased spectra are plotted with

a logarithmic power axis. The advantage of SD is that the vari-

ance is included in the error measure. The advantage of ME is

that it has a clear interpretation as a normalized version of the

prediction error at interval [(17)]. For the comparison of re-

sampling methods SD will be used, as the variance may be

estimated erroneously with complex methods.

The advantage of the time domain approach is that no pro-

cessing is required prior to sampling. The frequency domain ap-

proach requires the use of an ideal antialiasing filter. Even when

most of the power is concentrated at low frequencies compared

to half the sampling frequency, an antialiasing filter is necessary

for relative error measures. As a result of aliasing, the difference

between the original spectrum and the spectrum of the sampled

signal at half the sampling frequency is at least a factor of 2. The

contribution of the high-frequency part to a relative error mea-

sure is not diminished if the power at these frequencies is low.

The antialiasing filter must be applied to the continuous

signal. Often, the continuous signal is not available. Then, the

time domain approach is the operational alternative. When the

continuous signal is available an antialiasing filter can be used.

However, all antialiasing filters are non-ideal. This introduces

distortions in the estimated spectrum, which hampers the

analysis of the data. This is a fundamental problem of the

frequency domain approach which is not experienced with the

time domain approach. Hence, for many applications the time

domain approach has advantages over the frequency domain

approach.

Another type of error measure which is often used to compare

resampling methods is the reconstruction error RE [3]. This is

the mean square difference between the resampled signal and

the original signal

RE (21)

A resampling method which provides accurate reconstruction

of the original signal does not necessarily lead to an accurate es-

timate of the statistical properties of the signal. An example is

given by linear interpolation and nearest neighbor resampling.

Linear interpolation will generally provide a more accurate re-

construction. However, the variance of the signal is estimated

too low with linear interpolation, while nearest neighbor resam-

pling provides an unbiased estimate of the variance. This can re-

sult in a more accurate covariance structure with a lower SD .

An example of this is given in the next section. Another dif-

ference between the reconstruction error and the model error

is that the error of reconstruction is an absolute error measure

in the frequency domain while ME and SD are relative error

measures. A comparison of relative and absolute error measures
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TABLE II
THE INFLUENCE OF AN ANTIALIASING FILTER FOR SPECTRA A AND

B. THE ERROR AS A RESULT OF USING A NONIDEAL ANTIALIASING

FILTER IS COMPARED TO THE STATISTICAL ERROR IN AR, MA, AND

ARMA(p; p� 1) PARAMETER ESTIMATION AND ORDER SELECTION IN THE

TIME DOMAIN APPROACH

suggests that relative error measures are generally more appro-

priate for the analysis of stationary stochastic processes [11].

V. SIMULATIONS

Simulations are used to show the influence of an antialiasing

filter and to determine the performance of the various resam-

pling techniques. Two different turbulence spectra are used in

these simulations [12]:

1) Spectrum A with a −5/3 slope in the log-log spectrum

followed by a −7 slope

2) Spectrum B with only the −5/3 slope.

High order autoregressive (AR) processes have been determined

with power spectra that are very accurate approximations of the

turbulence power spectra. These AR processes are used to gen-

erate the data.

A. The Influence of an Anti-Aliasing Filter

The influence of an antialiasing filter on the turbulence

spectra A and B is examined. Most of the power in these

spectra is concentrated at the lower frequencies. This signal

is sampled at regularly spaced intervals with sampling time

. Using the frequency domain approach, the signal

is filtered prior to sampling by a fifth order Butterworth

antialiasing filter with the cut-off frequency at half the sam-

pling frequency. The influence of this filter on the true power

spectrum is expressed using the spectral distortion SD as

defined for the frequency domain approach (see Table II).

Using the time domain approach, no processing is required

prior to sampling. This means that the application of the time

domain approach to the true spectrum results in a perfect result:

SD is zero.

The spectral distortion of the frequency domain approach

is compared to the spectral distortion of estimated time series

models in the time domain approach. The models are estimated

from simulated observations regularly sampled at interval

100 without antialiasing. For spectrum A, the error of the an-

tialiasing filter applied to the true spectrum is up to 60 times

larger than the error as a result of parameters estimation and

order selection in the time domain approach. For spectrum B,

the differences are somewhat smaller.

TABLE III
THE SPECTRAL DISTORTION SD AT INTERVAL 500 AND THE

RECONSTRUCTION ERROR RE FOR THE VARIOUS RESAMPLING METHODS FOR

IRREGULAR SAMPLING TIME T EQUAL TO 100. THE RECONSTRUCTION ERROR

CANNOT BE CALCULATED FOR LINEAR INTERPOLATION WITH CORRECTED

VARIANCE � ; BECAUSE THIS METHOD CANNOT BE EXPRESSED AS A METHOD

WHICH RECONSTRUCTS THE ORIGINAL SIGNAL

B. Comparison of Resampling Methods

Of the high-order AR-process, equidistant obser-

vations are generated. Afterwards, this signal is sampled at ir-

regularly spaced intervals with mean irregular sampling interval

equal to 100. To show the influence of the irregular sampling

interval , both signals are also sampled with equal to 50.

The quality of the estimated signal properties is determined at

interval using SD . From the irregularly spaced data,

the signal properties are estimated using S&H, NNR, cubic and

linear interpolation. The resampling time equals 500. From

the resampled signal the signal properties are estimated using

ARMAsel time series analysis. ARMAsel time series analysis is

used instead of the windowed periodogram because ARMAsel

time series analysis provides a more accurate estimate of the

signal properties [10]. The resulting values of SD and the re-

construction error RE for equal to 100 are given in Table III.

The estimated spectra with NNR, S&H, and cubic interpolation

for equal to 100 are shown in Fig. 4. The values of SD for

equal to 50 are given in Table IV.

As expected, NNR performs better than S&H. The theory de-

scribing the influence of NNR and S&H has been compared to

the simulation results using SD . The SD is equal to the value

expected as a result of statistical errors in the estimated param-

eters. This means the theoretical description is correct for these

examples. The indication of the noise level n , which can be

obtained from the data by using (13), provides an accurate esti-

mate of the true noise level. The noise level for spectrum A with

equal to 100 is plotted in Fig. 4. For this signal the noise level

is greater than the true spectrum for the high frequencies: as a

result the spectrum found with S&H and NNR deviates from

the true spectrum. The noise level can be reduced by increasing

the average irregular sampling frequency. This results in a lower

SD , as can be seen by comparing Tables III and IV.

The variance of the resampled signal with linear interpolation

is too low. Since the correct value of the variance is known from

the simple methods, this error can be corrected. The variance

found with linear interpolation is replaced by the value found

with NNR. Results of linear interpolation with correct variance

are similar to those found with S&H. Using the erroneous value

for the variance in linear interpolation happens to result in a

lower SD for spectrum A; the result for spectrum B is worse.

Cubic interpolation has a smaller SD than NNR for spectrum A

and a higher SD for spectrum B. The behavior of resampling
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Fig. 4. Power spectra estimated with Nearest Neighbor Resampling,
Sample&Hold and Cubic interpolation. The mean irregular sampling interval
T is equal to 100. For spectrum A the estimated noise level n is
given. ——— = true spectrum. � = Nearest Neighbor Resampling. } =

Sample&Holdr = Cubic interpolation. - - - - - - - -= estimated noise level.

TABLE IV
THE SPECTRAL DISTORTION SD AT INTERVAL 500 FOR THE VARIOUS

RESAMPLING METHODS FOR IRREGULAR SAMPLING TIME T EQUAL TO 50

methods in measured data is similar to the behavior found in

these simulations.

The reconstruction error RE is not a good indication for

the quality of an estimate as expressed by SD . Comparing

the results for NNR for the two spectra for equal to

100 (see Table III), the reconstruction error is considerably

smaller for spectrum A, while the SD is smaller for spec-

trum B. This is a result of the fact that the errors in spec-

trum A occur in a region of the spectrum with low power

(see Fig. 4). Another example is given by the results for

linear interpolation and NNR for spectrum B (see Table III).

The reconstruction error RE is smallest for linear interpola-

tion, while the spectral distortion SD is smallest for NNR.

These simulations show that an accurate reconstruction of

the original signal does not necessarily result in an accurate

estimate of the statistical signal properties.

VI. CONCLUSIONS

Simple resampling methods have some desirable properties

which are not found in complex resampling methods. They are

robust and provide an unbiased estimate of the variance. NNR

is an improved version of S&H. A theoretical analysis of NNR

and S&H is given. The theoretical formulae have been verified

in simulations.

Complex methods such as linear interpolation and cubic in-

terpolation have as a common disadvantage that the variance

can be estimated erroneously. When applied to practical Laser-

Doppler Anemometry data, cubic interpolation displays spu-

rious peaks. The variance found with linear interpolation can

be replaced by the correct value. After this correction linear in-

terpolation is similar to Sample&Hold. Hence, NNR is the pre-

ferred resampling method for irregularly spaced data.

The error measures for the time domain approach ME and

SD have been introduced for sampled continuous signals. The

advantage of the time domain approach over a frequency do-

main approach is that no antialiasing is required prior to sam-

pling. An accurate reconstruction of the original signal does not

necessarily result in an accurate estimate of the statistical signal

properties as expressed by ME and SD .
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