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Abstract

A simple linear calibration function can be used over a wide concentration
range for the Inductively Coupled Plasma (ICP) spectrometer due to its linear
response. The random errors over wide concentration ranges are not constant,
and constant variance regression should not be used to estimate the calibration
function. Weighted regression techniques are appropriate if the proper weights
can be obtained. Use of the calibration curve to estimate the concentration of
one or more unknown samples is straightforward, but confidence interval
estimation for multiple use of the calibration curve is less obvious. We
describe a method for modeling the error along the ICP calibration curve and
using the estimated parameters from the fitted model to calculate weights for
the calibration curve fit. Multiple and single-use confidence interval
estimates are obtained and results along the calibration curve are compared.
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Brief

Iteratively weighted error modeling for nonconstant variance ICP
calibration curves is examined. Contributions of calibration bands and unknown
sample measurement uncertainty intervals are combined to obtain multiple-use
confidence intervals. The effects of weighting are examined at both ends of
the calibration curve.



Introduction

A widely used method for determining inorganic elements in aqueous samples
is the Inductively Coupled Plasma (ICP) spectrometric technique [1-3]. One of
the principal advantages of the ICP technique is its wide range of linear
response to analyte concentration. This feature, together with relative .
freedom from interelement interferences, often allows the analyst to determine
a given element in a variety of sample matrices with only infrequent
recalibration of the instrument. Although the variability of the calibration
process is sometimes assumed to be negligible compared to sample measurement
variability, it is desirable to establish procedures whereby this assumption
may be conveniently tested. If calibration is indeed a significant contributor
to the overall variation ofsthe measurement process, this source of variation

should be estimated and included in the everall uncertainty statement.

Patrea o

The calibration curve for ICP:.spectrometry is an example where weighted ¢
regression should be used-because.the measurements may exhibit non-constant
variance (heteroscedasticity). .In-general, if the calibrated region includes
the widest range of concentration for which straight-line response is assured,
non-uniform precision of measurement is evident. Agterdenbos [4] approached
the problem of "ICP type" calibration curves by dividing the range of
calibration into segments that exhibit either constant standard deviation or
constant relative standard deviation characteristics. Maessen and Balke [5] )
also compared the effects of treating ICP calibration curves as combinations of
linear and logarithmic segments. The usefulness of simple weighted linear

regression was mentioned, but not considered. It was stated by these authors




that no suitable method exists for obtaining the confidence interval for an

unknown analyte concentration calculated from a weighted linear regression.

More recently, Bubert and Klockenkamper [6] have considered the effects of
heteroscedasticity in ICP and x-ray fluorescence (XRF) calibration curves. They
outline a scheme for using established tests for the normality of the
distribution of the measured values as well as the homogeneity of variance. An
algorithm for evaluating the sources of variance was used, and a weighted
linear regression was carried out. Confidence limits for the coﬁcentration of
an analyzed sample can be calculated using their approach. Schwartz (7] and
Oppenheimer, et al. [8] have given methods for weighted regression of
calibration curves with nonuniform variance. Confidence intervals for a single
determination of an unknown are given using:propagation of error in the case of
Schwartz [7]. Although the main focus was to treat weighted calibration curve
estimation of detection limits, single-use intervals can also be obtained by
adapting the approach described by:Oppenheimer, et*al.:[8] to higher
concentration levels. A multiplesuse procedure _has been presented by Garden,
et al. [9] that often results in:intervalswider .than:those developed by the
methods described in this paper. - -Garden, et al.~ acknewledge the conservative
nature of their interval estimates, which allow for some nonrandom error that
often occurs -in-spectrometric measurement.  We prefer to restrict our
estimation of confidence intervals to include random error ouly. Assessment of
systematic errors should be carried out separately, using techniques
specifically designed for this task.

We describe here a simple method for characterizing the variance along an

ICP calibration curve due to the principal sources of noise in this specific



technique. Our approach is philosophically similar to that of Garden, et al.
[9] except that we use calibration data only as a starting point to model the
error along the calibration curve. Our method involves standard regression
techniques, and can be incorporated into routine analytical schemes due to its
simplicity. A flow chart of the procedures is presented in Figure 1. We model
both the standard deviation and the variance of instrument noise as a function
of sample concentration over the range of straight-line response. We use a
quadratic model of concentration as suggested by Oppenheimer, et al. [8] rather
than a quadratic model of intensity as used by Bubert and Klockenkamper [6] and
Schwartz [7]. We choose to model the error in terms of concentration rather
than intensity, since we are dealing with a specific technique whose linear
response is well documented. A particular feature of our approach is that each
iteration of the noise model fit is itself a weighted fit using estimates from
the previous iteration. This protedure differs from the unweighted modeling
used by Oppenheimer, et al.: [8].7 Thesfinal set of fitted standard deviations
or variances is then used for the.sfeighted regression of the straight-line
calibration curve.  Confiderice limit's for»concerntrations obtained using the
calibration curve are calculated in a straightforward manner.

Algorithm Ce e

The method we use for characterizing the ICP calibration curve assumes the

model

Yij = a + bxy + erroryj (L)




where Yij = measured intensity for

i=1, 2, ...., I calibration standards of concentration
Xi,
and j=1,2, ...., J =2 2 instrumental replicates.

The calibration function is a + bx, and the random errors have mean 0, and
variance az(xi). The errors are independent and normally distributed. The

model for the standard deviation is

o(x) = ¢ + dx + ex? (2)

The estimate of standard deviation: sj. atyeach.-calibration point, xy is
calculated by using the replicate: meastireménts of' eat!: standard solution.
These s;’'s are then fitted according to.model {2):by iunweighted least squares
to obtain predicted standard deviations, ﬁ%xi)i;wWe now iterate the fit using
weights, 1/62(xi) to obtain a new set  of predicted :standard deviations. Each
iteration uses weights calculated from the predicted values of the previous
step. The procedure stops when successive predicted values agree to within
0.1% relative.

Alternately, we also model variance in a .similar manner. The model is

02(x) = g + hx + kx2 (3)

and the s2;'s are fitted according to model (3). The iteration is performed as
i g



before except that the variance fit is now weighted by 1/64(xi). Predicted
variances are used to obtain standard deviations at each xj.

There exists a spectrochemical basis for certain aspects of models (2) and
(3). Constant noise sources such as detection electronics account for the
concentration-independent term in either model. Shot noise expressed as a
variance is proportional to intemsity, or in this case the concentration x,
which corresponds to the coefficient h in model (3). Source flicker noise
corresponds to the second term in model (2) or the third in model (3). A
similar partition of noise sources is mentioned in reference [6].

The final set of predicted standard deviations, 3w(xi) obtained from
either (2) or (3) is used to calculate weights 1/32w(xi) for the least squares
fit of the calibration function, a + bx. The results of this fit include an
estimate for the intercept, 4,%the'slope, B, the residual standard deviation &,
and the standard error for 'the:predicted mean at each x, dg(x) at concentration
X. We assign degrees of fréédom:;:y for ag(x) Y
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The estimated calibration function is then?:

L f(x) = & + Bx.

To obtain a concentration value for an unknown sample, we can solve
Yo = a+ on the mean measured analyte intensity, for Xg; i.e., we invert the
calibration function. To obtain an approximate confidence interval for the

sample concentration, we combine the confidence interval about the mean sample




intensity with the confidence band about the estimated calibration function.
The interval is constructed with probability l-a, and the band is constructed
with probability 1-§.

Let t7(1-a/2) be the l-a/2 percentile from a t-distribution with vy degrees
of freedom, and F2,7(1—6) be the 1-§ percentile of an F-distribution with 2 and
v degrees of freedom. The confidence interval for an unknown sample
concentration is obtained by measuring its intensity, Yg, and finding all x's
that satisfy the following inequalities:

£(x) - ty(l-a/2) Gy (x) 0
- (2Fp (1-60) bgxy = Yo = E(X) + t,(l-a/2) dyu(x) 8 (4)

+ (2F2,7(1-6))H af(x)

where tv(l-a/Z) Gw(x) 6 is the half-width of the confidence interval about Y,
and (2Fy (1-6)) 8g(yy is the half-width,of the gonfidence band at x about
f(x). Typically, equal values fo;ya and.§ are-chgsen. The derivation of (4)
for the homoscedastic case is given in [10], and the resulting confidence band
applies to multiple use of the calibration curve. We allow here for the
inclusion of weights as determined by the error modeling. The inequalities for

calibration followed by a single use [8;11] of-the eurve reduce to:

£(x) - ty(1-a/2) ((5y(x) §)2 + (6g(x))1)"
< Yy s (5)

£(x) + ty(L-a/2) (15, ') 812 + (8g(x)) 21"

The relationships of the calibration function, confidence interval, and

confidence band for the homoscedastic case (8w(x) = constant) are depicted in



Figure 2. The construction of the confidence interval for an unknown sample

concentration from replicate measurements of emission intensity is readily
discernible from the figure. However, the heteroscedastic case is not so
easily represented. We choose to represent the combination of the confidence
interval with the confidence band as a widened band whose upper bound, U(x) is
the right hand side of the inequalities (4), and the lower bound, L(x) is the
left hand side. The resulting band is plotted in Figure 3. The confidence
interval for an unknown sample concentration is then simply determined by the
intersection of Y with U(x) and L(x). This approach requires that the slope be
positive and sufficiently large to ensure that Y crosses the bounds, U(x) and
L(x), only once. 1In most applications of ICP spectrometry, these conditions
are fulfilled if analytically useful spectral emission lines are chosen.

Curves with negative slope can be treated using simple modifications to (4) and

(5). The location of the minimum calibfation band width is dependent on the

particular set of concentration ‘standards used. The dilution scheme described .
in the following section::results: 'iré the appearance of the bands in Figures 2 -
and 3. ; SRS

We examine the effects' of calibration ire various ICP analysis schemes in

the following example.

Experimental ..

The measurements were performed on a sequential ICP spectrometer system
with a spectral bandpass of 0.007 nm. The normal ICP spectrometer experimental
parameters and operating conditions were used. Various spectral lines were

used in this study, but we present the data for Ni at 231.604 nm as being




representative of the characteristics of most ICP spectral lines normally used
for analysis. The spectral background at 231.625 nm was measured and
subtracted from the peak intensity for each instrumental integration.

A total of ten standard solutions were prepared using volumetric pipets
and flasks. However, each aliquot and final dilution volume was weighed so
that the calculated concentrations of the calibration standards were based on
the gravimetric data. The concentrations of the standards ranged from O pg/mL
to 5.03 ug/mL, with a reagent blank used as the zero-standard. Vials
éontaining these ten solutions were placed in the autosampler of the
spectrometer and the run sequence was programmed. The order of standard
solution introduction was randomized, and adequate rinsing for the widest
concentration range was accommodated. In this case, the run sequence included
a rinse of 45 s in 1% nitric acid in distilled water followed by a washout of
30 s with the next solution to be measured. .The first 15 seconds of this
washout period take place with a.solution.uptake, rate of 8 mL/min. The sample
peristaltic pump returns to the norpal rate of limls/min 15 seconds before
measurements begin. Spectral intensities are measured by electronic

integration of the photomultiplier current:for.0.25: seconds.
Results and Discussion

Ten replicate integrations of each solution were recorded, and the average
net intensity value, Yj and standard deviation, sj fo: each were calculated.
The first analysis of the data included all ten replirites at each of the ten
standard concentrations. Since the ICP is often used in laboratories where the

sample analysis rate is high, instrumental replicates in such situations may be



limited to as few as four. We therefore examined this case by repeating the

fit using only the first four replicates from each set of ten. At this point
the data were examined to test the assumption of measurement independence and
outliers. The occurrence of outliers and non-random variability caused by the
performance characteristics of ICP nebulizers has been previously described
[12], and this issue has also been addressed by Garden, et al. [9]. Extensive
experience with ICP results for Ni in our laboratory indicated that the set of
replicate integrations at 1.0l ug/mL were not representative of normal ICP
instrument behavior.

This set of ten replicates has a calculated standard deviation of 15.1,
which is the expected level of variability for this concentration level.
However, if the ninth integration is excluded, this statistic is 6.2. These
data represent a period of measutement wherein the ICP sample delivery and

signal detection systems were-‘atypically stable. When only the first four data

points are used, the estimated'statdatd deviation (5.5) severely underestimates
typical variability at this concentration. Successive integrations over short -
periods of time often shbvw dome degrieé of drift. However, the interdependence
of successive integrdﬁ&%ﬂs‘dt’f)Ol pg/mL, and the existence of the outlier
(ninth integration) fridicate’ that the data at this concentration cannot be used
to estimate ICP variability’~ Accordingly, ‘we analyzed the remaining data
excluding the entire data set at-this concentration. The data are listed in
Table 1.
The fit of the estimated standard deviation, &(x), for both the 10 and 4
replicate cases according to model (2) yields the parameter estimates listed in
Table 2. Results for unweighted, weighted by 1/521, and weighted by 1/32w(x)

are given in the table. The largest differences in parameter estimates are
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observed between the unweighted case and either of the two weighted fits. Even
these differences are relatively small and have little effect on the remainder
of the analysis.

The fit of variance, however, is significantly affected by weighting. The
fit of estimated variance, 32(x), according to model (3) results in the
parameter estimates listed in Table 3 for unweighted, weighted by 1/541, and
weighted by l/&a(x) fitting. The method of weighting has a significant effect
on the parameter estimates. The weights, 1/82w(x), for the fit of s using
model (2) range over one order of magnitude. However, the weights, 1/84w(x),
for the variance fit of model (3) range over two orders of magnitude. Although
the high concentration points are important for estimating this fit in the
quadratic region, they have extremely low weighting. Therefore, the weighted
fitting procedure has difficulty distinguishing between a linear and a
quadratic model. Thus, the estimates of: the.linear and quadratic terms will be
determined with large uncertainties, although.the fit of either (2) or (3) may
be quite adequate. cen L me L mere

For limited sets of ICP calibration data, the iterative fitting procedure
with 1/62(x) weighting of model (2) or with 1/3%(x) weighting of model (3) is
preferred, since it appears to be generally applicahle and reliable. The
iteratively weighted fitting procedure for a?(gQ using model (3) yields a set
of predicted -standard deviations quite similar. to the set obrained by fitting
o(x) with model (2). Therefore, we will further examine the fit of model (2)
using parameter values from the 1/62w(x)-weighted case in Table 2.

The adequacy of the fit for the 10-replicate case is evident in Table 1,
where the observed standard deviations and predicted standard deviations are

listed for each of the nine concentrations. The largest difference is at
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0.101 ug/mL, where the observed standard deviation value is approximately 70%

of the predicted value. This deviation is well within expected instrumental
variability at the count level indicated in the table. The predicted standard
deviations for the 4-replicate case are also listed in Table 1, and the exhibit
reasonable agreement with the 10-replicate estimates. The only significant
difference between the two data sets lies in the standard error (se) of the
parameter estimates listed in Table 2. It is expected that 10 replicates are
more reliable for estimating the fit than 4. This is especially true when
problems of interdependence of data arise, as mentioned with regard to the data
for the standard at 1.0l ug/mL.

We now examine the fit of the calibration function. A comparison of
fitting effects on the calibration curve is presented in Table 4. Weights
equal to 1.00, 1/s21, and 1/52w(x)vare compared. In this case, the l/s2

weights are derived directly from the.standard deviation of the calibration

data at each concentration-{(Table 1): :Thetl/azw weights are calculated from
the final set of predicted:'standard:deviations using the fit of model (2) for
the azw case. The coefficient:rand gtandard error estimates for the 10-
replicate data are quite similar:regavdless.of whether 1/52i or 1/62w(x)
weights are used. The unweighted case (weights = 1.00) yields slightly
different (and erroneous) values: for the standard errors. Of course,
uncertainty interval: estimates for an: unknown sample concentration should not
be calculated for the unweighted case since homoscedasticity would have to be
assumed. Data in table 1 indicate that no single value for the standard
deviation is suitable over the range of calibration.

Using only 4 replicates causes a small change in the slope and a

relatively larger change in the intercept, especially for the 1/52i-weighting
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case. However, the standard errors for these estimates are large enough to
minimize the significance of these differences. In practical applications
where the chief concern is trace analysis near the intercept, a more limited
range of calibration is appropriate and the standard error of the intercept is
likely to be smaller. 1In terms of the standard error of the estimated
coefficients, the 4-replicate data represents a minor deterioration in the
variability of the fit, except for the unweighted case.

Although the spectral background near a number of ICP spectral lines for a
variety of elements may exhibit more complex structure, the background near the
231.604-nm line of Ni is quite flat. Therefore, net intensity measurements for
Ni could be fitted to a zero-intercept calibration model, as is indicated by
the intercept estimates and their standard errors listed in Table 4.

Confidence interval estimation was carried out using a = 0.10. The
components of inequalities (4) were evaluatedrfor the 10-replicate case and are
listed in Table 1. It is evident that'the.uncertainty interval for the unknown
sample measurement and the calibration:uncertaintyzband contribute almost
equally to the total uncertainty. Ignoring either:source of variability will
result in a significant underestimatien:of.the.random error in a sample
analysis. Sobeo oy Ballfipleva

Comparisons of final confidence intervals:obtained for the concentration
of an unknown-sample are presented in Figures.4 and:5. -The average value for
the last four integrations at 0.101 pg/mL and at 5.03 pg/mL was used as the
mean intensity for each of two unknown sample measurements. Multiple-use
confidence intervals were calculated for 10 and 4-replicate calibration, and
for weighting with 1/32w(x) and 1.00 as weights at each xy. Figure 4 depicts

data at the low end of the calibration curve where the true concentration of
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the unknown is 0.1006 ug/mL. At this end of the calibration curve, each
multiple-use interval is 41% wider than its corresponding single-use interval.
When comparing intervals for 10 and 4-replicate cases, it is useful to consider
which elements in the inequalities (4) differ. Different parameter estimates
for model (2) lead to different sets of predicted standard deviations. These
are used for the weighted calibration curve fit, so that the f(x) term in (&)
is affected, as is the standard deviation of the fit, &. The predicted
standard deviation at the unknown concentration, Gw(xi), is also obtained from
the fit of model (2), so that this term will also be affected. For the data
plotted in Figure 4, the predicted value for 6w(xi) for 4 replicates was less
than that for 10-replicate calibration. Again, this phenomenon is due to
short-term stability of 4 replicate integrations that leads to lower estimates
of variability. This underscores the need for caution when sample throughput
demands force a reduction in thehnpﬁber of instrumental replicates taken.

An important difference in: interval width exist. betwéen the weighted and
unweighted cases. In the latter case, the value of 8w(xi) is 1.0 and at the
low end of the calibration curve, G is appreciably larger for the unweighted
fit than the weighted fit. The product, &,(xj) &, is therefore slightly larger
for the unweighted case. This causes a small over-estimation of confidence
interval widths at the low end of the calibration curve.

Intervals for the high end of the calibration curve are depicted in
Figure 5, where the true value of the unknown concentration is 5.03 ug/mL. In
this case, the predicted value for Gw(xi) for 4 replicates is greater than that
for 10, causing the 4-replicate intervals to be wider than the corresponding
10-replicate intervals. At this end of the calibration curve, however, the

interval widths for fitting with weights 1.0 significantly under-estimate the
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true interval widths as estimated by the weighted cases. The larger variance
at the high end of the calibration curve, as estimated by GW(Xi) accounts for
this difference. At this end of the calibration curve, each multiple-use
interval is approximately 63% wider than its corresponding single-use interval.
In summary, estimation of the error along the calibration curve is
important for weighted regression. Error modeling is more stable than using
the standard deviations of the calibration standard measurements themselves.
The iterative weighted fitting procedure is applicable to standard deviation
modeling, and is the preferred approach in variance modeling. Clearly, if
heteroscedasticity is ignored, confidence intervals will be too narrow at the
high end and too wide at the low end of the ICP calibration curve. The
magnitude of these effects will depend on the particular dilution scheme used
to make the calibration standard solutions. Estimates of both single and
multiple-use confidence intervals differ significantly. Therefore, care should

be taken in applying these procedures to & Particular: analysis scheme.
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Table 1. ICP data for Ni at 231.604 nm using 10 replicates, l/&zw(x) weighting
of model (2), and 1/32w(x) weighting of the calibration function. Values at
each concentration are listed for observed standard deviation, sj(obs);
predicted standard deviation for 10 replicates, s(10 reps) and 4 replicates,
s(4 reps); sample measurement interval, SI; calibration uncertainty band width,

CB; and total uncertainty band, Total.

Concentration Intensity Sq s S SI CB Total
(pg/mL) (counts) (obs) (10 reps) (4 reps)
0.00 11.33 8.54 7.88 6.97 17.95 10.54 28.48
0.0101 16.60 7.88 7.98 7.03 18.17 10.49 28.66
0.0251 37.92 9.06 8.12 7.12 18.50 10.43 28.93
0.0503 57.00 8.46 . 8.36 7.28 - 19.05 10.33 29.39
0.101 149.88 6.13 8.84 ¢ 7.58 20.14 10.19 30.34
0.251 369.24 1157« 10.25 . . 8.50 23.34 10.13 33.47
0.503 763.36 11.94 12.48 10.02 28.42 11.20 39.62
2.51 3688.46 26.24 25.42 22.25 57.89 37.85 95.74
5.03 7431.08 29.12 29.30 37.55 66.74 76.67 143.40
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Table 2. Coefficient and standard error (SE) estimates for fit of model (2)

using 9 standard concentrations.

10 Replicates 4 Replicates
Coefficient Estimate SE Estimate SE

Unweighted:

é 7.78 0.56 6.80 1.29

a ) 10.28 1.17 7.25 2.67

e -1.20 0.24 -0.26 0.55
Weighted by 1/521:

e 7.88 0.56 7.00 1.42

a 9.66 2.63 5.84 6.82

é -1.07 0.58 0.046 1.62

Weighted by l/&zw(x):

e 7.88 0.56 = 6.97 1.41
a 9.69 2.59 - 6.07 - 6.56
e -1.08 0.57 = 0.0025 1.60
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Table 3. Coefficient and standard error (SE) estimates for fit of model (3)

using 9 standard concentrations.

10 Replicates 4 Replicates
Coefficient Estimate SE Estimate SE

Unweighted:

g 45.6 15.1 51.0 20.3

h 332.6 31.2 135.5 41.8

k -34.2 6.42 23.9 8.6
Weighted by l/sai:

g 71.6 22.8 65.1 23.0

h -46.6 254.6 5.1 189.8

N 62.8 62.2 57.2 62.9
Weighted by 1/6%,(x):

g 60.6 LL122.9 o 60.6 ©22.9

h 42.7 148.7 42.7 148.7

|3 50.4 56.7 50.4 56.7
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Table 4. Effects of weighting method on the calibration curve fit, a + bx.

10 Replicates 4 Replicates

Case Coefficient Estimate SE Estimate SE
Unweighted a 0.62 5.61 2.87 4.21
b 1476.04 2.98 1477.69 2.24

Weighted by a 0.95 3.95 -0.89 3.71
1/s2; b 1476.66 6.11  1481.12 9.01
Weighted by a 0.94 4.13 1.52 3.69
1/6,2(x) b 1476.30 6.16  1480.38 7.00

21



List of Figures

1. Flow chart of procedures for modeling ICP calibration error, weighted
linear regression of the calibration function, and estimation of confidence

intervals for an unknown sample measurement.

2. Calibration curve, confidence bands, and construction of the confidence
interval for the measurement of an unknown sample concentration for the

constant variance case.

3. Construction of the sample measurement interval band (a) and the
calibration confidence band (b) for the heteroscedastic linear calibration
function. The total confidence band is comprised of the upper bound, U(x) and
the lower bound, L(x), so that the confidence interval for an unknown sample
measurement is defined b} the intersection of Yg with U(x) and L(x).

4. Confidence bands for t%e measurement of éawunknown sample with a true
concentration of O.iOl pg/m%. Confidence paﬁds are constructed for calibration

using 4 and 10 replicate intégrat#vn57gand5ﬁith and without weighting of the
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calibration function. ; )
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5. Confidence bands for the measurement of an unknown sample with a true
concentration of 5.03 ug/mL. Confidence bands are constructed for calibration

using 4 and 10 replicate integrations, and with and without weighting of the

calibration function.
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