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Abstract—A recent proposal for realizing long-distance, high-fi-
delity qubit teleportation is reviewed. This quantum communica-
tion architecture relies on an ultrabright source of polarization-
entangled photons plus a pair of trapped-atom quantum memo-
ries, and it is compatible with long-distance transmission over stan-
dard telecommunication fiber. Models are developed for assessing
the effects of amplitude, phase, and frequency errors in the en-
tanglement source, as well as fiber loss and imperfect polarization
restoration, on the throughput and fidelity of the system.

Index Terms—Parametric amplifiers, polarization entangle-
ment, quantum communication, teleportation.

I. INTRODUCTION

A TEAM OF researchers from the Massachusetts Institute
of Technology (MIT), Cambridge, MA, and Northwestern

University (NU), Evanston, IL, has proposed a quantum com-
munication architecture [1] that permits long-distance high-fi-
delity teleportation using the Bennettet al.singlet-state protocol
[2]. This architecture uses a novel ultrabright source of polar-
ization-entangled photon pairs [3] and trapped-atom quantum
memories [4] in which all four Bell states can be measured. By
means of quantum-state frequency conversion and time-division
multiplexed polarization restoration, it is able to employ stan-
dard telecommunication fiber for long-distance transmission of
the polarization-entangled photons. This paper studies the ef-
fects of source and fiber-transmission errors on the throughput
and fidelity achieved by the MIT/NU system.

Section II reviews the MIT/NU architecture, to establish the
foundation for the error models that will follow. It introduces
the lumped-element model for the dual optical parametric
amplifier (dual-OPA) entanglement source, describes how
quantum-state frequency conversion and time-division-mul-
tiplexed polarization restoration permit the use of standard
telecommunication fiber, and discusses the functioning of the
trapped-atom quantum memories. Section III presents our
fiber-transmission model, which accounts for propagation loss
and imperfect polarization restoration. Section IV generalizes
the cavity-loading analysis from [1] to include nonidealities
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Fig. 1. Schematic of long-distance quantum communication system:P =
ultrabright narrowband source of polarization-entangled photon pairs;L =

L km of standard telecommunication fiber;M = trapped-atom quantum
memory.

in the source and fiber transmission. Section V develops the
single-photon error models implied by the result of this loading
analysis, i.e., by the joint state of the loaded memory cavities.
The throughput and fidelity assessments that follow from these
error models appear in Section VI.

II. MIT/NU C OMMUNICATION ARCHITECTURE

The notion that a singlet state could be used to teleport a
qubit is due to [2]. The transmitter and the receiver stations
share the entangled qubits of a singlet state,

, and the transmitter then ac-
cepts a message qubit, , leaving
the message mode, the transmitter, and the receiver in the
joint state . Making the Bell-state measure-
ments,

, on the joint message/transmitter
system then yields the two bits of classical information that the
receiver needs to transform its portion of the original singlet
into a reproduction of the message qubit.

An initial experimental demonstration of teleportation using
singlet states was performed by Bouwmeesteret al. [5], [6], but
only one of the Bell states was measured, the demonstration
was a table-top experiment, and it did not include a quantum
memory. The MIT/NU proposal for a singlet-based quantum
communication system, which is shown in Fig. 1, remedies all
of these limitations. It uses an ultrabright source of polariza-
tion-entangled photon pairs, formed by combining the outputs
from two coherently-pumped, type-II phase-matched optical
parametric amplifiers on a polarizing beam splitter. It transmits
one photon from each pair down standard telecommunication
fibers to a pair of trapped Rb-atom quantum memories for
storage and processing of this entanglement. One of these
memories serves as the transmitter station and the other as
the receiver station for qubit teleportation. We will devote the
rest of this section to describing these basic components and
their operation within the MIT/NU quantum communication
architecture.

1077-260X/03$17.00 © 2003 IEEE
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Fig. 2. Essential components of the singlet-state quantum communication system from Fig. 1. (a) Simplified energy-level diagram of the trapped rubidium atom
quantum memory. TheA-to-B transition occurs when a photon is absorbed. TheB-to-D transition is coherently driven to enable storage in the long-livedD

levels. TheA-to-C cycling transition is used for nondestructive verification of a loading event. (b) Ultrabright narrowband source of polarization-entangled photon
pairs. The polarizationŝx andŷ are denoted by arrows and bullets, respectively; PBS = polarizing beam splitter.

Fig. 3. Schematic diagram of quantum-state frequency conversion: a strong pump beam at 1570 nm converts a qubit photon received at 1608 nm (in the low-loss
fiber transmission window) to a qubit photon at the 795 nm wavelength of theRb quantum memory via a single-pass interaction in a second-order(� )
nonlinear crystal.

A. Ultrabright Source of Polarization-Entangled Photons

The Fig. 1 system requires a source of entangled photons
at the 795-nm line of its rubidium atom quantum memories.
Furthermore, only those pairs within a narrow frequency band
( 10 MHz) of the 795 nm line will successfully load the
memory, so the Fig. 1 system places a premium on source
brightness. Spontaneous parametric downconversion is the
standard approach for generating polarization-entangled
photons. It is so broadband , however, that its
pair-generation rate in the narrow bandwidth needed for
coupling into the rubidium atom is extremely low:15 pairs/s
in a 30-MHz bandwidth. The block in Fig. 1 represents
an ultrabright narrowband source [3], which is capable of
producing in a 30-MHz bandwidth by
combining the signal and idler output beams from two doubly
resonant type-II phase matched OPAs, as sketched in Fig. 2(b).

Quasi-phase-matching in periodically-poled nonlinear ma-
terials makes it possible to choose the OPA wavelength, for
our polarization-entanglement source, to suit the application
at hand. In particular, by using periodically-poled potassium
titanyl phosphate (PPKTP), a quasi-phase-matched type-II non-
linear material, we can produce at the 795 nm
wavelength of the rubidium memory for direct memory-loading
(i.e., local-storage) applications. For long-distance transmission
to remotely located memories, we can use a different PPKTP
crystal and pump wavelength to generate in the
1.55 wavelength low-loss fiber transmission window.
After fiber propagation we shift the entanglement to the
795 nm wavelength needed for the rubidium-atom memory via
quantum-state frequency conversion [7], [8], shown in Fig. 3.

In [3], we reported a lumped-element analysis for a contin-
uous-wave, doubly-resonant, dual-OPA system with ampli-
tude-matched, anti-phased, nondepleting pumps and no excess
losses. We used that analysis in [1] to demonstrate that such an
arrangement produces the high-brightness, narrowband singlet
states needed for qubit teleportation. More recently, we have
shown that a broadband traveling-wave treatment of a type-II
phase matched, doubly-resonant, dual OPA system reproduces
the lumped element results when the former is limited to a few
cavity linewidths about a double resonance [9]. Because the
trapped-atom quantum memory in the MIT/NU architecture will
only respond to that portion of the dual-OPAs output that lies
within a narrow spectral region about the 795 nm atomic line, we
shall employ the lumped-element source theory in what follows.
Because we are interested in the effects that pump amplitude,
phase, and frequency errors will have on the throughput and
fidelity of the teleportation system, we need to generalize
somewhat the dual-OPA source model from [1], [3].

Following [10], we have that the equations of motion gov-
erning the intracavity annihilation operators,

, of the signal and idler modes for theth OPA
are

(1)

(2)
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where are the positive-fre-
quency, photon-units input field and OPA-cavity loss operators
for the signal and idler fields, all of which are taken to be
in their vacuum states. In these equations we have assumed
that the two OPAs are phase matched at a double resonance
which occurs for signal frequency and idler frequency .
We have also assumed that all four OPA modes see identical
cavities, with common linewidth and output-coupling rate

. To capture the effects of pump amplitude, phase,
and frequency errors, we allow each OPA to have a different,
complex-valued normalized pump strength, where
equals the pump power divided by the threshold power for
oscillation, and we allow the center frequencies and
to be detuned from frequency degeneracy by and ,
respectively. The factors in these equations imply that

corresponds to the antiphased pumping
required for generating the polarization-entangled singlet state
which is needed in the Bennettet al. teleportation protocol.

The OPAs output fields are given by

(3)

(4)

and it is the statistics of these output fields that characterize the
quality of the dual-OPA as an entanglement source for use in
teleportation.

Equations (1)–(4) are easily solved, in the frequency domain,
yielding a pair of two-mode Bogoliubov transformations re-
lating the input and output field operators for each OPA. These
in turn imply that the OPAs produce signal and idler beams
in zero-mean, entangled Gaussian states, which are completely
characterized by the following normally ordered and phase-sen-
sitive correlation functions

(5)

and

(6)

B. Quantum-State Transmission Over Fiber

Successful singlet transmission requires that polarization
not be degraded by the propagation process. Yet, propagation
through standard telecommunication fiber produces random,
slowly-varying ( msec time scale) polarization variations, so
a means for polarization restoration is required. The approach
taken for polarization restoration in the MIT/NU architec-
ture, shown schematically in Fig. 4, relies on time-division
multiplexing (TDM). Time slices from the signal beams from
the two OPAs are sent down one fiber in the same linear
polarization but in nonoverlapping time slots, accompanied by

Fig. 4. Transmission of time-division multiplexed signal beams from OPAs
1 and 2 through an optical fiber.� = pilot pulse, WDM MUX = wavelength-
division multiplexer, WDM DEMUX = wavelength-division demultiplexer,
HWP = half-wave plate.

a strong out-of-band pulse. By tracking and restoring the linear
polarization of the strong pulse, we can restore the linear polar-
ization of the signal-beam time slices at the far end of the fiber.
After this linear-polarization restoration, we then reassemble a
time-epoch of the full vector signal beam by delaying the first
time slot and combining it on a polarizing beam splitter with the
second time slot after the latter has had its linear polarization
rotated by 90. A similar procedure is performed to reassemble
idler time-slices after they have propagated down the other
fiber. This approach, which is inspired by the Bergmanet al.
two-pulse fiber-squeezing experiment [11], common-modes
out the vast majority of the phase fluctuations and the polar-
ization birefringence incurred in the fiber, permitting standard
telecommunication fiber to be used in lieu of the lossier and
much more expensive polarization-maintaining fiber.

C. Trapped-Atom Quantum Memory

Each block in Fig. 1 is a quantum memory in which a
single ultra-cold atom ( 6 MHz linewidth) is confined by
a far-off-resonance laser trap (FORT) in an ultra-high-vacuum
chamber with cryogenic walls within a high-finesse (15-MHz
linewidth) single-ended optical cavity. This memory can absorb
a 795 nm photon, in an arbitrary polarization state, transferring
the qubit from the photon to the degeneratelevels of Fig. 2(a)
and thence to long-lived storage levels, by coherently driving the

-to- transitions. (We are using abstract symbols here for the
hyperfine levels of rubidium; see [4] for the actual atomic levels
involved as well as a complete description of the memory and its
operation.) With a liquid helium cryostat, so that the background
pressure is less than torr, the expected lifetime of the
trapped rubidium atom will be more than an hour. Fluctuations
in the residual magnetic field, however, will probably limit the
atom’s decoherence time to a few minutes.

By using optically off-resonant Raman (OOR) transitions, the
Bell states of two atoms in a single vacuum-chamber trap can be
converted to superposition states of one of the atoms. All four
Bell measurements can then be made, sequentially, by detecting
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Fig. 5. Signal and idler beams from the dual-OPA polarization entanglement source are transmitted down optical fibers for loading into remote quantum memories.

the presence (or absence) of fluorescence as an appropriate se-
quence of OOR laser pulses is applied to the latter atom [4]. The
Bell-measurement results in one memory can be sent to a distant
memory, where at most two additional OOR pulses are needed
to complete the Bennettet al. state transformation. The qubit
stored in a trapped rubidium atom can be converted back into
a photon by reversing the Raman excitation process that occurs
during memory loading.

III. FIBER TRANSMISSIONERRORMODEL

In this section, we develop a model for propagation loss
and imperfect polarization restoration in TDM transmission of
polarization-entangled photons through a pair of optical fibers;
see Fig. 5.

A. Propagation Loss

As suggested by Fig. 1, we will take the dual-OPA source to
be equidistant from the two quantum memories, and thus we
may assume that the signal and idler beams encounter the same
transmission factor, , in propagation to their respective
quantum memories. It is then easy to show that the effects of
this propagation loss can be lumped into the source model it-
self, i.e., we can consider the fibers to be lossless by changing
the dual-OPAs normally-ordered and phase-sensitive correla-
tion functions to be

(7)

(8)

in lieu of the expressions from (5) and (6).

B. Imperfect Polarization Restoration

The narrowband nature of the dual-OPAs signal and idler
beams, which obviates any issue of dispersive pulse spreading,

combined with the short duration ( [1]) of the TDM
sequence compared to the msec time scale over which fiber
fluctuations occur, imply that we need only concern ourselves
with simple, time-independent polarization transformations for

on one fiber and on the other fiber.1

In particular, suppose we use thepolarization as the input to
the fibers and

(9)

to denote the vector field operators for the signal and idler time
slots at the input to the fiber, where the-polarized operators,

, are all in vacuum states. The corresponding vector
field operators at the output of the fiber will then be given by

(10)

where we have suppressed the -sec propagation delay and
is the unitary polarization-transformation matrix for fiber

(11)

for and , , .

1Strictly speaking, we should use time-invariant polarization transforma-
tions, to account for the possible delay spread associated with polarization
mode dispersion (PMD) [12]. Because PMD causes pulse spreading that,
to first order, is independent of source bandwidth, it could pose a limiting
effect on our fiber-based approach to entanglement distribution. However,
recent experiments [13]—using polarization-entangled photons generated
in psec-duration pairs from a nonlinear-fiber Sagnac interferometer—have
successfully demonstrated entanglement transmission when the signal and
idler were propagated through different 25-km-long optical fibers. Thus, we
believe that PMD need not entail a serious restriction to the MIT/NU quantum
communication architecture, at least over the path lengths contemplated in
[1]. Moreover, by replacing the Fig. 4 setup with a more elaborate pilot-tone
system that tracks one of the fiber’s principal states of polarization (PSPs),
instead of an arbitrary linear polarization, the effects of PMD could be further
ameliorated, affording access to even longer path lengths.
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The pilot pulses in each fiber, which undergo these same po-
larization transformations, are sufficiently strong that they be-
have classically, thus affording high signal-to-noise ratio mea-
surements of but no information about

. Polarization restoration is then performed
on and using the putative inverse transforma-
tions

(12)

where are estimated values derived from
the pilot-pulse measurements. If these measurements are per-
fect, then the vector signal and idler fieldsafter polarization
restoration will be

(13)

hence accomplishing perfect restoration of the signal and idler
time slots, up to an unimportant pair of absolute phase factors.

Errors may occur in estimating the parameters of the fiber
transformations, in realizing inverse transformations based on
these estimates, in extracting the-polarized components from
the polarization-restored fiber outputs, and in reassembling
the polarization-entangled signal and idler fields. Collectively,
these errors can all be subsumed into the following input–output
transformations for lossless, imperfect polarization-restored
fiber propagation:

(14)

and

(15)

where we have omitted some absolute phase factors that do not
affect the cavity-loading analysis, given below, and

are now polarization-restorationerror phases, rather
than the fiberpropagationphases appearing in (11). Because
these input/output relations are linear and phase insensitive, it
follows, by combining the propagation loss and imperfect polar-
ization restoration models, that the vector output fields—which
serve as inputs to the quantum memories—are in zero-mean,
joint Gaussian states that are completely characterized by the
following correlation functions:

(16)

(17)

(18)

(19)

and

(20)

(21)

As expected, because produces entangled-polarized
signal and -polarized idler fields and independently pro-
duces entangled-polarized signal and-polarized idler fields,
these correlation functions show that the joint state (density
operator) of the vector signal and idler fields arriving at the
quantum memories factors according to,

(22)

IV. CAVITY -LOADING ANALYSIS

To derive the joint state of the quantum memories, we neglect
the atom-field coupling and treat the simpler cold-cavity system,
following the procedure introduced in [1]. Moreover, we will
postpone accounting for dual-OPA pump detuning by assuming
that , where is the pump
frequency, is the memory-cavity resonance, and is the

atomic line.
Let and be the internal annihilation operators

of the quantum memory cavities after a-second long loading
interval. Assume the memory cavities have input-coupling rate

and cavity linewidth . Then, the vector ( and )
internal annihilation operators are related to the external fields
by

(23)

for , where the initial internal annihilation operators
and memory-cavity loss operators are in
vacuum states. Once again we have a linear, phase-insensitive
transformation, which implies that are in a
zero-mean joint Gaussian state. The nonzero second moments
of these memory-cavity modes can be found from (17)–(21)
and (23) via standard techniques. When , as we shall
assume, the results of such moment calculations are

for (24)

for (25)
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(26)

(27)

with

(28)

(29)

(30)

(31)

(32)

(33)

and

(34)

for . In terms of these moments, we have that the
joint antinormally-ordered characteristic function for the

modes is the Gaussian form

(35)

V. SINGLE-PHOTON ERRORMODEL

The cold-cavity loading analysis includes the possibility that
more than one photon may be loaded into either memory, yet
this is clearly not possible for the actual trapped-atom memory.
As a result, the initial assessment of throughput versus fidelity,
reported in [1], treated the loading of a singlet state into the
two memories as asuccess, and any other event in which one
or more photons were loaded into each memory as anerror.
Load intervals in which one or both of the memories fail to
absorb a photon were considered to beerasures, because they
could be detected, nondestructively, by means of the-to-
cycling transition shown in Fig. 2(a), see [1] and [4] for de-
tails. Erasures reduce teleportation throughput in the Fig. 1 ar-
chitecture, but not its fidelity. A better approximation to per-
formance analysis for the Fig. 1 architecture was presented in
[14] (see also [15]), where multiple-atom arrays at each memory
location were used to convert multi-photon error events from

[1] into erasures. Both the analysis in [1] and that in [14] as-
sume amplitude matched, anti-phased pumping in the dual-OPA
source, viz., , and perfect polarization restora-
tion, i.e., . Our task, in this section, is to generalize
the single-photon error model of [14] to include amplitude and
phase errors in the dual-OPAs pumps as well as imperfect polar-
ization restoration. The results we obtain here will then enable
us to evaluate the impact these effects have on the teleportation
throughput and fidelity.

Define the computational basis of the quantum memories to
be and , for , where

denotes the memory state generated by absorption of
an -polarized signal photon, etc. To compute the entries of the
conditional density matrix for the memories, given that each has
absorbed a single photon, we first write the density operators

and in terms of their respective antinormally-or-
dered characteristic functions via the operator-valued inverse
Fourier transform relations

(36)

and

(37)

where, for the sake of brevity, we have suppressed thetime
argument of the cavity-mode annihilation operators. The char-
acteristic function associated with can be expressed as

(38)

where and
is the classical probability density of a zero-mean, complex-
valued Gaussian random vector with second-
moment matrices

(39)

(40)

Similarly, we have

(41)

where and
is the classical probability density of a zero-mean, complex-
valued Gaussian random vector with second-
moment matrices

(42)

(43)
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The conditional single-photon density matrix will be com-
puted in the standard basis, .
Define the quantities

(44)

(45)

(46)

(47)

Then, the ten density matrix entries we need to compute are

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

The right-hand side of the first equality in all these density ma-
trix evaluations has broken the calculational basis into its con-
stituent and photon-state components. Equa-
tions (62) and (71) were obtained via the Gaussian moment-fac-
toring theorem.

The conditional single-photon density matrix resulting from
the Gaussian state (35) in the standard basis, for fixed values of
the dual-OPA pump and fiber polarization-restoration parame-
ters, is the trace-normalized version of the preceding matrix el-
ements

(78)

where

(79)

(80)

(81)

(82)

(83)

and

(84)

The single-photon density matrixdepends on the normal-
ized pump magnitudes, , the differential-phase
error between the pumps, , and
the polarization-restoration error angles . Note that, in
general, is not a Bell-diagonal state. We can apply a change
of basis to show that the density matrix in the Bell basis,

, is 2 2 block diagonal,
viz.

(85)
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where

(86)

and

(87)

It will be useful to know the eigendecomposition of
the single-photon density matrix for the performance
analysis in the next section. The eigenvalues ofare

with corresponding unit-length eigenkets
, where

(88)

(89)

(90)

The eigenket coefficients , , , are found by converting
the following unnormalized eigenkets to unit length:

(91)

VI. PERFORMANCEANALYSIS

In this section, we will examine the effects of system errors on
the average fidelity of the Fig. 1 teleportation architecture. We
shall also give some consideration to the achievable throughput
that can be obtained when each quantum memory is capable of
loading a succession of singlet states by repeated application of
the memory-loading protocol, cf. [1] and [14].

A. Teleportation Fidelity

Suppose the qubit that we wish to teleport is
. If the received state that results from sending this state

via the Fig. 1 teleportation system is, then theconditionalfi-
delity, given that was teleported, is . Theaverage
fidelity is obtained by taking to be uniformly distributed
over the Bloch sphere and averaging the conditional fidelity
using this input distribution. We will calculate the average fi-
delity in the single-photon error model developed in Section V.
To do so, we first calculate four pure-state average fidelities: the
average fidelities realized when the quantum memories are in

one of the eigenkets of the single-photon-error density matrix,
. Multiplying each eigenket’s

fidelity by its associated eigenvalue and summing the results
then yields the average fidelity for the single-photon-error den-
sity matrix, .

Teleportation when the quantum memories are in either the
or states is equivalent to a channel that sends an

input qubit into the mixed state
, and hence a conditional fidelity of . Av-

eraging this expression over the Bloch sphere yields fidelity
.

Teleportation when the quantum memories are in the
state takes the input qubit to

the mixed state

(92)

and, hence, a conditional fidelity .
Averaging this expression over the Bloch sphere yields fidelity

. Similarly, teleportation when the
quantum memories are in the
state has average fidelity .

Performing the required eigenvalue weighting and summa-
tion on the preceding pure-state fidelities we obtain the average
fidelity for the single-photon-error model’s density matrix:

(93)

This is the average teleportation fidelity, with the input qubit
uniformly distributed over the Bloch sphere, for

fixed values of the error parameters.
To develop insight into how teleportation performance is de-

graded by errors in the dual-OPAs pump amplitudes and phases
as well as by imperfect polarization restoration, we shall ex-
amine these effects one at a time.

B. Imperfect Polarization Restoration

Here we assume the dual-OPAs pumps have equal magni-
tudes, , and are anti-phased, . In
this case, the single-photon-error density matrix is diagonal in
the Bell basis, and given by

(94)
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where is the success probability and is the error
probability,2 and

(95)

(96)

(97)

(98)

(99)

(100)

(101)

The density matrix (94) is a Werner state, so teleporting a qubit
with this state is equivalent to transmitting the qubit over a de-
polarizing channel with fidelity . The average teleportation
fidelity with this error model is

In Fig. 6, the teleportation fidelity is plotted versus the po-
larization-restoration error parameters, . The cal-
culations assume a source-to-memory path length
and the operating conditions listed in the caption. The perfor-
mance of the teleportation system is insensitive toand .
Maximum fidelity, , occurs at , and
minimum fidelity, , occurs at .

Although teleportation fidelity is insensitive to imperfect po-
larization restoration, these errors imply a significant loss of sin-
glet-state throughput, i.e., the number of singlets/sec that could
be stored by repeated application of the loading protocol at rate

using a bank of trapped-atom quantum memories [1].3 Fig. 7
plots the throughput versus , , assuming that the
loading protocol is run at . The other parameters
for this figure are the same as those for Fig. 6. We see from Fig. 7
that maximum throughput at is approximately 184
singlets/s and this occurs when the polarization restoration is
perfect, . The throughput decreases to zero when

or approaches . In essence, and
act as asymmetric loss factors on the signal and idler fiber chan-
nels, respectively. For small values of and it is possible to
obtain a simple analytic expression for the success probability,

, by means of a Taylor series expansion; we find that

(102)

where with and
. Thus, to lowest order, the throughput of the Fig. 1

teleportation system degrades with the sum of the squares of
the polarization-restoration errors and .

2The success event was defined in [1] to be the loading of a singlet state into
the two memories. Thus, strictly speaking,P is the conditional probability of
a success event, given that an erasure has not occurred. Likewise,P is the
conditional probability of a single-photon error event given there has not been
an erasure.

3Throughput equals h j�̂ j i R, i.e., theunconditionalprobability
that a singlet state is loaded times the memory cycling rate.

Fig. 6. Teleportation fidelity versus polarization-restoration error parameters
� , � 2 [0; �]. We assume the OPAs operate at 1% of oscillation threshold,
0.2-dB/km fiber loss, 5-dB excess loss in each source-to-memory link,� =� =
0:5 memory-cavity linewidth to source-cavity linewidth ratio, and source-to-
memory path lengthL = 25 km.

Fig. 7. Throughput of singlet states versus polarization-restoration error
parameters� , � 2 [0; �]. We assume the loading protocol operates at a
500-kHz cycling rate. The other parameters for this plot are the same as those
for Fig. 6.

C. OPA Pump-Phase Error

Here, we assume and , and
consider the impact of a pump-phase error, i.e., of having

. In this case, the single-photon-error
density matrix in the Bell basis is

(103)

where

(104)

(105)
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Fig. 8. Teleportation fidelity versus dual-OPA pump-phase error� 2

[0; 2�). At � = �, the dominant eigenket of̂� is the triplet state, so the
teleportation fidelity is approximately 1/3. We assume the same operating
conditions as in Fig. 6.

(106)

(107)

(108)

(109)

(110)

The density matrix is not Bell-diagonal. Its eigenkets are
, where

(111)

From (88), the eigenvalues associated with are
. From the expressions above we see that . Substi-

tuting the values , ,
and into the (93) gives the average teleportation
fidelity

(112)

We have plotted the fidelity from (112) versus the pump-phase
error in Fig. 8, assuming source-to-memory
path length and the same operating conditions as in Fig. 6. Fig. 8
shows that pump-phase errors have serious consequences: at

, the dominant eigenket equals the triplet state,
making the average fidelity close to the triplet-state value,

. For small values of the pump-phase error, we can use a
Taylor-series expansion to show that

(113)

where is the average fidelity for antiphased pumps, i.e., when
.

Fig. 9. Teleportation fidelity versus the variance of OPA pump-amplitude
fluctuations.G andG are taken to be statistically independent, identically
distributed, real-valued Gaussian random variables with means 0.1 and
variances� . We assume the same operating conditions as in Fig. 6.

D. OPA Pump-Amplitude Fluctuations

Now, we will study the effects of OPA pump-amplitude
fluctuations— and will be taken to be statistically inde-
pendent, identically distributed, real-valued Gaussian random
variables with mean values 0.1 and variances—when the
polarization restoration is perfect . In this case,
the single-photon-error density matrix, given , is

(114)

in the Bell basis, where, for

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

Fig. 9 shows simulation results for the average teleportation
fidelity in the presence of these pump-amplitude fluctuations.
The calculations assume an source-to-memory
path length and same operating conditions as in Fig. 6. We see
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from this figure that pump-amplitude fluctuations should not
be problematic: For 1% pump-power fluctuations with a mean
pump power that is 1% of oscillation threshold we have that

.

E. Detuning

At this juncture we turn to the effects of pump frequency er-
rors. Suppose that the pumps have equal amplitudes and are
antiphased with , and that the polar-
ization restoration is perfect. So far we have assumed that the
dual-OPAs signal and idler frequencies are equal and equal to
both the memory cavities’ resonance frequency and the
atomic line, i.e., . In this final assessment
of teleportation system errors, we shall consider two possible
cases of frequency detuning. In case 1, we shall assume that
the dual-OPA operates somewhat off frequency degeneracy, so
that the signal and idler frequencies are and

, with the frequency degeneracy point satis-
fying, , i.e., matched to the memory cavity
and the atomic line. In case 2 the dual-OPA operates at
frequency degeneracy, , but this frequency
degeneracy point is detuned from the memory cavity and the
atomic line, viz., .

It is not hard to study the effects of these two cavity detuning
cases within the construct of our single-photon-error model, be-
cause their resulting density matrices are both Werner states of
the form given in (94). In particular, their success probabilities
are given by

(125)

where

(126)

(127)

(128)

with

(129)

(130)

The average teleportation fidelity, for
, is plotted versus normalized detuning in Fig. 10(a). We

see that fidelity actually improves slightly as the normalized de-
tuning is increased. However, this modest fidelity improvement
is accompanied by a dramatic loss of singlet-state throughput, as
seen in Fig. 10(b), when the detuning exceeds the OPA cavity’s
linewidth.

(a)

(b)

Fig. 10. (a) Teleportation fidelity versus normalized detuning,�!=�. Case 1
assumes that the signal and idler center frequencies are detuned from! =2with
! =2matched to the memory cavity resonance,! , and the Rb atomic line,
! . Case 2 assumes the dual-OPA operates at frequency degeneracy,! =2, but
this frequency is detuned from! = ! . (b) Singlet-state throughput versus
normalized detuning. We assume the loading protocol operates at a 500 kHz
cycling rate. In both (a) and (b) the other parameters are the same as those for
Fig. 6.

VII. CONCLUDING REMARKS

The MIT/NU quantum communication architecture is de-
signed to enable long-distance high-fidelity qubit teleportation.
It relies on a novel ultrabright source of polarization-entangled
photon pairs and trapped-atom quantum memories. By means
of quantum-state frequency conversion and time-division mul-
tiplexed polarization restoration, it is able to employ standard
telecommunication fiber for long-distance entanglement trans-
mission. In this paper, we have developed error models for the
effects of pump amplitude, phase, and frequency errors and
imperfect polarization restoration on the throughput and fidelity
of the MIT/NU architecture. Our results show that this system’s
fidelity is not very sensitive to any of these errors. However,
significant loss of singlet-state throughput may be incurred in
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some circumstances even though there is no appreciable loss of
fidelity.

In parallel with the theoretical work reported here, the
MIT/NU team is actively working to implement its telepor-
tation architecture. Recent progress in this regard includes
demonstrations of: Total-flux polarization entanglement from a
bidirectionally pumped, degenerate parametric downconverter
[16]; polarization entanglement from a bidirectionally pumped,
highly nondegenerate parametric downconverter [17]; efficient
single-photon counting via frequency upconversion [18]; 50 km
end-to-end entanglement transmission over standard telecom-
munication fiber [13]. The degenerate downconverter operates
at 795 nm, hence providing polarization entangled pairs for local
memory-loading experiments, i.e., without fiber transmission.
The nondegenerate downconverter has one output at 795 nm and
the other at 1.61 in the low-loss fiber transmission window.
The short-wavelength photon from this source could be loaded
into a local Rb-atom memory, while the other was transmitted
through optical fiber to a distant memory. Resonated versions of
these sources are presently being constructed. The upconversion
system for 1.55 photon counting is the foundation for
the quantum-state frequency converter that is currently under
development. Work is also underway on the trapped Rb-atom
quantum memories. Here, an integrated cavity/FORT structure
has been built, and an atomic fountain scheme for loading this
structure has been demonstrated [19].
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