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Abstract—In this paper, we analyze the bit error rate (BER)
of the diffusive molecular communication (DMC) systems em-
ploying on-off keying (OOK) modulation. We also analyze the
BER of the OOK-modulated DMC systems with inter-symbol
interference cancellation (ISIC). Our main motivation is to
introduce alternative tools for analyzing and efficiently computing
the BER of the DMC systems without or with ISIC. Specifically,
for the OOK-modulated DMC systems without ISIC, we first
derive an exact BER expression based on the Poisson modeling of
DMC systems. Then, the Gaussian- and Gamma-approximation
approaches are introduced to approximate the discrete Poisson
distribution, and based on the approximation approaches, the
corresponding BER expressions are derived. Furthermore, in
order to reduce the computation complexity imposed by long
ISI, we propose the Monte-Carlo, simplified Poisson, simplified
Gaussian and the simplified Gamma approaches for BER compu-
tation. In the context of the OOK-modulated DMC systems with
ISIC, we consider both the Poisson and Gaussian-approximation
approaches for BER analysis. Again, exact and approximate
BER expressions are derived under the Poisson, Gaussian-
approximation, simplified Poisson and simplified Gaussian ap-
proaches. Finally, the considered approaches are compared and
validated by a range of performance results obtained from
evaluation of the derived expressions or by simulations. Our
studies show that the alternative approaches are in general
effective for providing near-accurate BER estimation.

Index Terms—Molecular communications, diffusion, concen-
tration shift keying, on-off keying, inter-symbol interference
cancellation, performance analysis, Gaussian-approximation,
Gamma-approximation.

I. INTRODUCTION

In molecular communications (MC), information is con-

veyed between nano-machines with the aid of molecules [2,

3]. Recently, MC has been drawing an increasing attention

in terms of its research and implementation, as witnessed,

e.g., by the references [2, 4–8] and the references therein. In

MC, the diffusion-based molecular communications (DMC)

has been recognized as one of the most practical information

transmission methods, which relies on the law of diffusion

for molecule propagation from (nano-)transmitters to (nano-

)receivers [2, 6, 9].
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As in any existing communication systems, information

in DMC is delivered via the data modulation operated at

transmitters and the signal demodulation (detection) carried

out at receivers, and both of which are critical for achieving

high-efficiency and high-reliability. Hence in literature, there

are many references dedicated to the design of DMC data mod-

ulation, signal detection and transceiver optimization schemes,

based on the proposed channel models and noise statistics in

DMC. To be more specific, for data modulation, there are

typically three basic types. The first type relies on the molecule

concentration, referred to as the concentration shift keying

(CSK) [10–18], which divides the molecule concentration into

some levels for information configuration. The second type

belongs to the pulse position modulation (PPM) [19], which

delivers information by the positions of the pulses of molecule

concentration. In the above two types, one type of molecules

is usually used. By contrast, the third type uses multiple

types of molecules, forming the so-called molecule shift key-

ing (MoSK) [3, 14, 15, 20]. Based on these basic modulation

schemes, hybrid and improved modulation schemes [21–23]

may be designed for different purposes, e.g., for achieving

higher data rate, interference control, etc. In DMC, a typical

phenomenon severely affecting communication is the inter-

symbol interference (ISI) generated by the long delay spread

of molecular diffusion in liquid medium [8, 24]. Hence in

literature, a range of advanced detection algorithms have been

proposed to mitigate the effect of ISI [1, 25–29].

Regardless of which data modulation scheme and detection

scheme are employed, it is always important to predict the

achievable performance of DMC systems. Hence, in this paper,

we motivate to provide some approaches for analysis and

evaluation of the error performance of DMC systems. More

importantly, we motivate the approaches that are feasible for

computation and are capable of providing accurate or near-

accurate estimation of the error performance of the DMC

systems experiencing strong ISI.

In literature, there are a number of references dedicated

specifically to the error rate analysis of the DMC systems with

different modulation and detection schemes. Specifically, in

[21], the error performance of the DMC systems with respec-

tively three modulation schemes, namely, CSK, MoSK and

the proposed so-called molecule concentration shift-keying

(MCSK), all in binary forms, has been analyzed based on

Poisson modeling. In its analysis for CSK and MoSK, a current

symbol is assumed only to experience ISI from one previously

sent symbol, while for MCSK it is assumed that there is
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no ISI. Poisson modeling has also been introduced in [27,

30] for deriving the probability density function (PDF) and

cumulative density function (CDF) of the DMC systems with

CSK modulation. In [17, 31], the authors have analyzed the

false-alarm probability, detection probability, and ultimately

the error probability of the DMC systems with binary and M -

ary CSK modulations, when the counting noise and ISI are

both modeled as Gaussian noise. In [32], the authors have

analyzed the error performance of the DMC systems with

pulse-based modulation, and energy or amplitude detection,

and some closed-form expressions have been derived also by

approximating both the counting noise and ISI as Gaussian

noise. In [33], the authors have analyzed the error performance

(also capacity) of the DMC systems employing an M -ary

amplitude modulation or an extended modulation scheme. In

their analysis, molecules transmitted associated with different

symbols are assumed to arrive at the receiver according to the

binomial distributions, which are then approximated by the

Gaussian distributions for deriving the error probability. Very

recently, the authors of [34] have carried out the analysis for

the DMC systems with both CSK and MoSK modulations,

when modeling the number of molecules hitting the receiver

at any time as the binomial distribution.

Against the background, in this paper, we focus on the bit

error rate (BER) analysis of the DMC systems with binary

CSK modulation, which we refer to as the on-off keying

(OOK) modulation. According to the results established in

[35] as well as the analysis and theory in [27, 36], when

the number of molecules appearing in a DMC environment

is large, the number of molecules within an observation space

can be accurately modelled by the Poisson distribution. Hence,

based on the Poisson modeling, we first derive an exact BER

expression under the Poisson modeling. In our analysis, both

counting noise and ISI are considered, and furthermore, we

assume that the length of ISI is arbitrary, and varies according

to the transmission distance, data rate, etc. However, it shows

that the BER expression derived from the Poisson modeling

in some cases may be too complicated to evaluate, which

is mainly the responsibility of two aspects. The first one is

due to the discrete Poisson distribution, while the second

one is resulted from the long ISI. In order to cope with

the first aspect, we consider two continuous distributions

for approximating the Poisson distribution, which are the

Gaussian- and Gamma-approximation. Based on these two

approximation approaches, we then derive the correspond-

ing closed-form BER expressions. In order to mitigate the

computational complexity resulted from long ISI, we also

propose two approaches. The first one is the Monte-Carlo

approach, which computes the BER by randomly generating

a sufficient number of binary bits imposing ISI, instead of

considering all the possible sequences that may be extreme

in practice. In the second approach, we divide the ISI into

two components. The first ISI component is generated by a

number of bits sent in the front of the reference bit being

detected, and all the possible combinations of these bits are

considered in the BER computation. By contrast, the second

ISI component consists of all the bits other than those included

in the first component. The ISI imposed by these bits is

approximated as a Poisson (or Gaussian, etc.) random variable

that is independent of the specific bit sequence. Both the above

approaches are then integrated with the Poisson, Gaussian- and

Gamma-approximation approaches, and correspondingly, the

formulas for BER evaluation are provided. Following the BER

analysis of the DMC systems with OOK modulation, we then

analyze the BER of the OOK-modulated DMC systems with

ISI cancellation (ISIC) [1, 26]. In our analysis, the Poisson

modeling, Gaussian-approximation, and the two approaches

for ISI handling are considered. Correspondingly, the closed-

form BER expressions are derived. Finally, our analytical

approaches are compared and validated by a range of nu-

merical and simulation results. The BER performance of the

OOK-modulated DMC systems without/with ISIC is studied

and compared by considering the impact of different system

parameters. The accuracy of various approximation approaches

is demonstrated via comparison of the BER evaluated from

the analytical expressions and/or obtained by simulations. Our

studies and performance results demonstrate that all the BER

expressions derived are valid for predicting the BER of the

OOK-modulated DMC systems without/with ISIC. Further-

more, in some communication scenarios, employing the low-

complexity ISIC scheme is capable of improving the error

performance of DMC systems.

We should note that, although in this paper we consider only

the OOK modulation, the analytical approaches considered

in Sections III and IV may be extended straightforwardly to

the DMC systems with other types of modulation schemes,

including M -ary CSK [10–18], MoSK [3, 14, 15, 20], etc.

The rest of the paper is organized as follows. In section II,

we describe the DMC system model and state the main as-

sumptions. Section III analyzes the BER of the DMC systems

employing OOK modulation, while Section IV deals with

the BER of the OOK-modulated DMC systems with ISIC.

In Section V, we demonstrate the BER performance results

obtained from numerical computation and particle-based as

well as Monte-Carlo simulations. Finally, in Section VI, we

summarize the main observations obtained from the studies.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a typical DMC system [13, 25–27], which

consists of a transmitter, a molecular diffusion channel and

a receiver. At the transmitter, information is emitted via

molecular release patterns, which propagate over a molecular

diffusion channel. The receiver is a passive observer [30],

which recovers information according to the time-varying

molecule concentration measured within a detection space.

For convenience of study, some typical assumptions generally

used in references, such as, [13, 26], are applied. In detail,

the transmitter is assumed to be a point molecule source

with released molecules not interacting with the transmitter.

The receiver is assumed to be able to ideally measure the

molecule concentration within a spherical detection space with

a radius of ρ. We assume that ρ is small with respect to

the communication distance, yielding a near-uniform con-

centration within the detection space. In other words, the

receiver is idealized as a point receiver. During a transmission,
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Fig. 1. Pulse functions of molecule concentration with respect time and
distance.

the positions of both transmitter and receiver are assumed

at fixed locations. Furthermore, we assume that molecules

at transmitter are released as impulses of molecules. Based

on these assumptions, then, according to the Fick’s law of

diffusion [13], when an impulse of Q molecules are released

by a transmitter at t = 0, the molecule concentration measured

at a point having a distance r from the transmitter can be

expressed as [13, 26]

c(t) =
Q

(4πDt)
3
2

exp

(

− r2

4Dt

)

, t > 0 (1)

where D is medium’s diffusion coefficient, and t > 0 is the

observation time at receiver.

The molecule concentration c(t) is a time-domain pulse

function, having a shape as shown in Fig. 1, when assuming

that an impulse of molecules is released at t = 0. It can

be shown [13] that the concentration at a point having a

fixed distance r from the transmitter reaches its maximum

at the instant td = r2

6D , and the peak value of c(t) is

cmax = cmax(r) =
(

3
2πe

) 3
2 Q

r3 .

A. DMC Employing On-Off Keying Modulation

DMC with OOK modulation has been investigated in many

references, such as in [13, 15, 25–27]. Its principle can be

briefly described as follows. Let {bj} = {b0, b1, . . . , bj , . . .}
be a binary information sequence, where bj ∈ {0, 1}. When

the OOK modulation is employed, the transmitter emits an

impulse of molecules to send bj = 1, but releases no molecules

for sending bj = 0. Therefore, after sending the uth bit, the

molecule concentration measured by the receiver within its

detection space can be expressed as [25]

z(t) =
u∑

j=0

bj [c(t− jT ) + nj(t)], uT ≤ t < (u+ 1)T (2)

where T represents the symbol interval, which is also the bit

interval when binary OOK modulation is considered. Hence,

the information rate is R = 1/T bits per second (bps). In

(2), u = ⌈t/T ⌉ is the largest integer not exceeding t/T , with

(u+1) representing the total number of bits transmitted within

[0, t). Finally, nj(t) in (2) is due to the particle counting noise

associated with the process of sending bj . According to [35],

counting noise is the result of the (random) Brownian motions

of molecules, which cause an unwanted perturbation to the

concentration predicted by the Fick’s diffusion law.

As shown in Fig. 1, when an impulse of molecules is sent

at t = 0, it would be desirable for the receiver to sample at

t = td for the maximum molecule concentration, in order to

make most reliable detection. Therefore, in order to detect the

uth bit, we assume that the receiver samples for the molecule

concentration at t = uT + t̂d, where t̂d represents the estimate

to td. This gives the decision variable for detection of the uth

bit as

Zu =z(t = uT + t̂d)

=

u∑

j=0

bj
[
c([u− j]T + t̂d) + nj(uT + t̂d)

]
, u = 0, 1, . . .

(3)

Let us define cu−j = c([u−j]T + t̂d) and nju = nj(uT + t̂d).
Then, the above equation can be rewritten as

Zu =

u∑

j=0

bj [cu−j + nju] , u = 0, 1, . . . (4)

Explicitly, the detection of bit u experiences ISI. Let us assume

that the maximum length of ISI is L bits. Then, upon applying

the variable transform of i = u− j, we can express Zu of (4)

in the form of

Zu =

u∑

j=max{0,u−L}

bj [cu−j + nju]

=

min{L,u}
∑

i=0

bu−i

[
ci + n(u−i)u

]
, u = 0, 1, . . . (5)

where ci = c(iT + t̂d). Furthermore, for convenience, we may

also write (5) as

Zu =

min{L,u}
∑

i=0

bu−ici + nu, u = 0, 1, . . . (6)

where nu =
∑min{L,u}

i=0 bu−in(u−i)u.

Let VR = 4
3πρ

3 be the volume of the spherical de-

tection space. Then, as given in [25, 27, 35], Yu = VRZu

can be accurately modeled as a Poisson distributed random

variable with both the mean and variance given by µY =
VR

∑min{L,u}
i=0 bu−ici, which is expressed as Yu ∼ P(µY ).

Furthermore, when µY is sufficiently large, making the Gaus-

sian approximation applicable, Yu can be approximated as a

Gaussian random variable with both the mean and the variance

given by µY , which is expressed as Yu ∼ N (µY , µY ).
Correspondingly, Zu in (6) obeys the Gaussian distribution of

Zu ∼ N (µZ , σ
2
Z) [26], where the mean and variance are given

by µZ =
∑min{L,u}

i=0 bu−ici and σ2
Z = V −1

R

∑min{L,u}
i=0 bu−ici.

Hence, the PDF of the noise samples {nu} seen in (6) is

nu ∼ N (0, σ2
Z).

Let CT be a threshold used by the OOK modulation for

decision making. Considering that the concentration presenting

at the receiver has a function as shown in Fig. 1, it is
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sometimes convenient to set the threshold relative to the peak

cmax as

CT = αcmax (7)

where 0 ≤ α ≤ 1 can be referred to as the normalized

threshold. Consequently, the receiver makes the decision for

a bit by comparing the measured concentration with the

threshold according to the rules of

b̂u =

{

1, when Yu > VRCT , Zu > CT , or Zu

Cmax
> α

0, when Yu ≤ VRCT , Zu ≤ CT , or Zu

Cmax
≤ α

(8)

Here we should note that Yu represents the number of

molecules counted within the detection space with a volume

of VR, hence it is an integer.

As seen, e.g., in (5), the detection of bu experiences ISI,

which becomes severer as the data rate becomes higher,

resulting in a reduced symbol duration. Without ISI mitigation,

the performance of DMC may be severely degraded. Below

we consider the ISI mitigation in the OOK-modulated DMC

systems.

B. Inter-Symbol Interference Cancellation

In [26], a simple ISIC method has been proposed, when the

DMC with OOK modulation is assumed. In this method, the

receiver forms decision variables as

Zu =z(t = uT + t̂d)− z(t = uT ) (9)

=
u∑

j=0

bj
[
c([u− j]T + t̂d) + nj(uT + t̂d)

]

−
u∑

j=0

bj [c([u− j]T ) + nj(uT )] , u = 0, 1, . . . (10)

which is the difference between the two observations, z(t =
uT + t̂d) and z(t = uT ), obtained at t = uT + t̂d and t = uT ,

respectively. With the aid of Fig. 1, we can know that the first

observation measures the molecule concentration peak after

sending bit bu. By contrast, the second observation obtained

at the start of sending bu provides a reference for the ISI

imposed on bu at t = uT + t̂d. Therefore, after the subtraction

operation as seen in (9) and (10), most of the ISI will be

cancelled. From Fig. 1 we can be implied that this approach

is in particular effective, when the transmission rate R = 1/T
is relatively low, resulting in that the ISI measured at t = uT
is nearly the same as that measured at t = uT + t̂d.

However, when the transmission rate becomes high, the ISI

obtained at t = uT may be very different from that at t =
uT + t̂d, as implied by Fig. 1. This becomes even severer,

when bu−1 = +1 is sent before bu. Let us rearrange (10) to

express the decision variable as

Zu =buc(t̂d) +
u−1∑

j=0

bj
[
c([u− j]T + t̂d)− c([u− j]T )

]

+

u∑

j=0

bj
[
nj(uT + t̂d)− nj(uT )

]
, u = 0, 1, . . .

(11)

where c(0) = 0 is assumed. Furthermore, we also have

nu(uT ) = 0, as it is the counting noise contributed by the

uth bit that has not yet sent at t = uT . At the righthand side

(RHS) of (11), the first term is the desired observation, the

second term is the residue ISI due to non-ideal ISIC, while

the last term is the counting noise presenting at t = uT+t̂d and

at t = uT . Assume that the transmission rate is high, resulting

in that the symbol duration T is only slightly larger than td.

Then, with the aid of Fig. 1, we can be implied that the ISI at

t = uT can be much larger than the ISI at t = uT + t̂d, due

to the fast decrease of molecule concentration resulted from

the impulses of molecules sent most recently. In this case,

the ISIC based on (9) results in over cancellation, yielding

a large residue ISI given by the second term at the RHS of

(11). Furthermore, as seen in (11), the counting noise after the

ISIC is contributed by both the counting noise presenting at

t = uT and that at t = uT + t̂d. According to [35], provided

that t̂d > ρ2/D, two adjacent samples of the counting noise

process can be regarded as statistically independent. In this

case, the ISIC operation of (9) enhances the noise, which may

further degrade the achievable performance of DMC.

In order to improve the performance of the ISIC, a more

accurate estimate to the ISI at t = uT + t̂d is desirable, while

simultaneously mitigating the impact from noise enhancement.

With this motivation, in [1], we have proposed an improved

ISIC scheme, which forms the decision variable according to

the formula

Zu =z(t = uT + t̂d)− λuz(t = uT ) (12)

where 0 ≤ λu ≤ 1 is used to scale the ISI measured at t = uT .

Following (11), we can express (12) in detail as

Zu =buc(t̂d) +
u−1∑

j=0

bj
[
c([u− j]T + t̂d)− λuc([u− j]T )

]

+

u∑

j=0

bj
[
nj(uT + t̂d)− λunj(uT )

]
, u = 0, 1, . . .

(13)

Explicitly, at the RHS of (13), the desired term is not affected

by the ISIC, while the noise enhancement in the third term is

mitigated due to λu < 1.

Furthermore, in [1], we have proposed the approaches for

estimating the scaling factor in (12). For completeness, these

approaches are also detailed below. First, the optimum value

of λu for given transmission rate and pulse shape may be

obtained via numerical/simulation approaches. Second, we

may estimate the scaling factor with the motivation to fully

cancel the ISI presenting at t = uT + t̂d as follows. Let the

average ISI at t be expressed as ISI(t). Then, we can find an

estimate to λu by solving the equation of

λuISI(uT ) = ISI(uT + t̂d) (14)

where both ISI(uT ) and ISI(uT + t̂d) can be calculated,

once we know the correct estimates of b̂0, b̂1, . . . , b̂u−1 for

the transmitted bits b0, b1, . . . , bu−1. However, considering all

the past symbols results in high complexity and possibly

degraded performance due to error propagation and noise
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enhancement, as above-mentioned. Furthermore, in practice, it

may not be necessary to consider all the past symbols, as the

ISI contributed by a pulse becomes nearly flat after some time,

as shown in Fig. 1. When taking all these into account, we may

estimate λu as follows. Let us consider J (J < u) most recent

bits. Then, we can compute J coefficients corresponding to the

most recent J bits as

βu−1 =
c(T + t̂d)

c(T )
, . . . , βu−J =

c(JT + t̂d)

c(JT )
(15)

if the pulse c(t) presenting at the receiver is known. The value

of J can be chosen, so that the remaining ISI at uT and that

at uT + t̂d satisfy

CJ(u) =

J−1∑

j=0

bjc([u− j]T + t̂d) ≈
J−1∑

j=0

bjc([u− j]T ) (16)

which can be evaluated as

CJ(u) = z(t = uT )−
J∑

l=1

b̂u−lc(lt) (17)

Alternatively, we may simply use the average value of CJ(u),
which can be estimated as

C̄J =
1

N

J+N∑

u=J+1

CJ (u) (18)

Finally, with the aid of (15) and (16), as well as the

estimated bit values, (14) can be expressed as

λ̂u





J∑

j=1

b̂u−jc(jT ) + CJ(u)



 =

J∑

j=1

b̂u−jβu−jc(jT ) + CJ(u)

(19)

from which λu can be expressed as

λ̂u =

∑J
j=1 b̂u−jβu−jc(jT ) + CJ(u)
(
∑J

j=1 b̂u−jc(jT ) + CJ (u)
) (20)

In the above equation, if CJ(u) ≈ 0, we have

λ̂u =

∑J
j=1 b̂u−jβu−jc(jT )
∑J

j=1 b̂u−jc(jT )
(21)

According to above analysis, if detection is highly reliable,

we may expect that the ISIC seen in (12) (and (13)) is fully

removed or significantly reduced. If the detection becomes less

reliable, the ISIC results in error propagation. As seen in (21),

λ̂u is dependent on the J bits received before the uth bit.

If a bit is detected in error, it will affect the detection of its

following J bits. In order to mitigate the error propagation, in

practice, the value of λu in (12) may be adjusted according to

the detection reliability. When the detection reliability is low,

a λu smaller than λ̂u of (21) may be employed, in order to

mitigate the effect of error propagation. By contrast, when the

detection reliability increases, the value of λu can be gradually

increased towards the value of λ̂u estimated by (21), in order to

further enhance the detection reliability. However, we should

note that the ISIC results in additional noise, which increases

as λu increases. Therefore, for a given λu, there exists a trade-

off between ISIC and noise enhancement.

In the following two sections, we will analyze the bit

error rate (BER) of the DMC systems employing or without

employing the ISIC. Specifically in Section III, we address

the BER performance of the DMC systems employing OOK

modulation, while in Section IV, the BER performance of the

OOK-modulated DMC systems with ISIC is analyzed.

III. BER ANALYSIS OF DMC SYSTEMS EMPLOYING OOK

MODULATION

We analyze the BER of the DMC systems employing the

OOK modulation based on the decision variable given by (5).

In our analysis, we assume that the DMC process is in its

static state, meaning that u >> L, here L is the maximum

length of ISI. Correspondingly, the decision variable of (5) can

be written as

Zu =

L∑

i=0

bu−i

[
ci + n(u−i)u

]
(22)

Furthermore, we assume that the sampling duration, which is

the bit duration T , satisfies the condition of T > ρ2/D [35].

Hence, adjacent noise samples are independent. Additionally,

we assume that the transmitted binary bits obey the distribution

of P (1) = P (0) = 0.5.

A. Poisson Approach: Exact BER Analysis

Let us first analyze the exact BER of the DMC systems

employing OOK modulation based on the Poisson distribution

of Yu = VRZu, which for convenience is referred to as the

Poisson approach. Note that in literature, the Poisson approach

has been employed by a number of references, e.g., [21, 27,

30], for performance studies, as detailed in the literature review

in Section I. As shown in Section II-A, the decision variable Yu

obeys the Poisson distribution with the probability mass func-

tion (PMF) given by P(µY ), where µY = VR

∑L
i=0 bu−ici.

Explicitly, µY is dependent on the transmitted data sequence.

Let us define a vector bbbL = [bu−L, . . . , bu−1]
T

containing the

L bits imposing ISI on bu. Then, when bu = 1, we express

the Poisson PMF as [36]

fYu
(n|bbbL, bu = 1) =

µn
Y1
e−µY1

n!
, n = 0, 1, 2, . . . (23)

where µY1
= VR

(

c0 +
∑L

i=1 bu−ici

)

. When bu = 0, the

Poisson PMF can be expressed as

fYu
(n|bbbL, bu = 0) =

µn
Y0
e−µY0

n!
, n = 0, 1, 2, . . . (24)

associated with µY0
= VR

∑L
i=1 bu−ici. The BER of the DMC

systems employing the OOK modulation is given by

Pb =
1

2
P (b̂u = 0|bu = 1) +

1

2
P (b̂u = 1|bu = 0)

=
1

2
(PM + PFA) (25)

where PM = P (b̂u = 0|bu = 1) is the probability of detecting

b̂u = 0 for an actually transmitted bu = 1, which is usually
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referred to as the miss-probability, while PFA = P (b̂u =
1|bu = 0) is the probability of detecting b̂u = 1 for an

actually transmitted bu = 0, which is called as the false-alarm

probability. Let us below derive these probabilities in detail.

First, given a detection threshold CT with respect to the

molecule concentration, the miss-probability can be expressed

as

PM =P (b̂u = 0|bu = 1)

=P (Yu ≤ VRCT |bu = 1)

=
∑

bbbL∈BL

P (bbbL)P (Yu ≤ VRCT |bbbL, bu = 1) (26)

where B = {1, 0}, P (bbbL) is the probability of the occur-

rence of a specific sequence of bbbL. When assuming that

P (1) = P (0) = 0.5, we have P (bbbL) = 1/2L. Finally,

P (Yu ≤ VRCT |bbbL, bu = 1) is the probability conditioned on

a given data sequence of bbbL and bu = 1. With the aid of the

PMF given by (23), we have [36]

P (Yu ≤ VRCT |bbbL, bu = 1) =

⌈VRCT ⌉
∑

n=0

µn
Y1
e−µY1

n!
(27)

Upon substituting this result into (26), we obtain the miss-

probability of

PM =
1

2L

∑

bbbL∈BL

⌈VRCT ⌉
∑

n=0

µn
Y1
e−µY1

n!
(28)

For the false-alarm probability, we have the relationships of

PFA =P (b̂u = 1|bu = 0)

=P (Yu > VRCT |bu = 0)

=1− P (Yu ≤ VRCT |bu = 0)

=1−
∑

bbbL∈BL

P (bbbL)P (Yu ≤ VRCT |bbbL, bu = 0) (29)

Similar to (27), we can obtain

PFA =1− 1

2L

∑

bbbL∈BL

⌈VRCT ⌉
∑

n=0

µn
Y0
e−µY0

n!
(30)

Finally, applying both (28) and (30) into (25), the BER

of the DMC systems employing OOK modulation can be

expressed as

Pb =
1

2
+

1

2L+1

∑

bbbL∈BL





⌈VRCT ⌉
∑

n=0

µn
Y1
e−µY1 − µn

Y0
e−µY0

n!





(31)

B. Gaussian-Approximation

From (31), we can see that evaluating the BER has the

complexity of O
(
⌈VRCT ⌉2L

)
contributed by the two sum

in the formula, where 2L is due to the L-length binary

data sequence imposing ISI, while ⌈VRCT ⌉ is the result

of the discrete Poisson distribution. If the discrete Poisson

distribution can be approximated by a continuous distribution,

the second sum in (31) can be replaced by an integration,

which may be simplified to obtain a closed-form convenient

for evaluation.

It is well-known that the Poisson distribution has the

property [36] that it can be approximated by a Gaussian

distribution, if the Poisson parameter (µ) is sufficiently large,

e.g., µ > 20. Therefore, in literature, the performance of

some DMC systems has been studied under the Gaussian

modeling of counting noise [17, 27, 31, 32]. In our case, if

µY1
in (23) and µY0

in (24) are sufficiently large, then both

fYu
(n|bbbL, bu = 1) and fYu

(n|bbbL, bu = 1) can be approx-

imated by the Gaussian distributions. In this case, we can

derive the BER directly from the concentration-based decision

variable Zu given by (22). Therefore, when assuming u >> L,

the PDFs of Zu conditioned on bbbL, bu = 1 or 0 can be

expressed as [36]

fZu
(y|bbbL, bu = 1) =

1√
2πσZ1

exp

(

− [y − µZ1
]2

2σ2
Z1

)

,

fZu
(y|bbbL, bu = 0) =

1√
2πσZ0

exp

(

− [y − µZ0
]2

2σ2
Z0

)

(32)

where −∞ < y < ∞, by definition, we have

µZ1
=c0 +

L∑

i=1

bu−ici; σ2
Z1

=
c0
VR

+
1

VR

L∑

i=1

bu−ici

µZ0
=

L∑

i=1

bu−ici; σ2
Z0

=
1

VR

L∑

i=1

bu−ici (33)

which are all functions of bbbL. Therefore, following the analysis

in (26), the miss-probability PM can be expressed as

PM =
1

2L

∑

bbbL∈BL

P (Zu ≤ CT |bbbL, bu = 1)

=1− 1

2L

∑

bbbL∈BL

P (Zu > CT |bbbL, bu = 1)

=1− 1

2L

∑

bbbL∈BL

1√
2πσZ1

∫ ∞

CT

exp

(

− [y − µZ1
]2

2σ2
Z1

)

dy

=1− 1

2L

∑

bbbL∈BL

Q

(
CT − µZ1

σZ1

)

(34)

where Q(x) is the Gaussian Q-function [37] defined as

Q(x) = (2π)−1/2
∫∞

x
e−t2/2dt, which is the built-in func-

tion of many software packages, e.g., Matlab, for numerical

computation.

Similarly, the false-alarm probability PFA can be derived

as

PFA =
1

2L

∑

bbbL∈BL

P (Zu > CT |bbbL, bu = 0)

=
1

2L

∑

bbbL∈BL

1√
2πσZ0

∫ ∞

CT

exp

(

− [y − µZ0
]2

2σ2
Z0

)

dy

=
1

2L

∑

bbbL∈BL

Q

(
CT − µZ0

σZ0

)

(35)

Finally, when substituting both (34) and (35) into (25),

the BER of the OOK modulated DMC systems under the

Gaussian-approximation can be obtained.
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C. Gamma-Approximation

In comparison to (31), the BER expression obtained from

the Gaussian-approximation may be slightly advantageous

for evaluation. However, in order to apply the Gaussian-

approximation, the mean µY1
= VR

(

c0 +
∑L

i=1 bu−ici

)

and µY0
= VR

(
∑L

i=1 bu−ici

)

need to be relatively large,

typically, exceed 20. Since VR is usually a very small value in

comparison to the diffusion space of molecules, the above con-

ditions may not be satisfied, unless the number of molecules

Q per transmission impulse is very big. This situation often

means that the signal-to-noise ratio (SNR) for DMC is high.

In a nutshell, the Gaussian-approximation is only suitable for

high SNR scenarios. Furthermore, as seen in (32), the Gaus-

sian distributions are defined in the range of (−∞,∞), which

makes the Gaussian-approximation for the Poisson distribution

defined in (0,∞) insensible, especially when the mean of µY1

or µY0
is relatively small. Considering the above issues, in

this section, we propose the Gamma-approximation [38] to

approximate the Poisson distribution as a Gamma-distribution

with the PDF in the form of [39]

fY (y) =
1

Γ(m)Ωm
ym−1 exp

(

− y

Ω

)

, 0 ≤ y < ∞ (36)

where m is the shape parameter and Ω is the scale parameter,

while Γ(x) is the gamma function. It can be shown that the

Gamma distributed variable Y has the mean and variance

given by [39]

E[Y ] = mΩ, Var[Y ] = mΩ2 (37)

From these relationship, we can readily know that

m =
E2[Y ]

Var[Y ]
, Ω =

Var[Y ]

E[Y ]
(38)
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Fig. 2. Comparison between the Poisson PMF and the corresponding Gamma
PDF.

Assume a Poisson PMF of f(n|λ) = λne−λ/n!. Then, it

can be shown that for the corresponding Gamma PDF of (36),

we have m = λ and Ω = 1. The comparison between the

Poisson PMF and Gamma PDF are shown in Figs. 2 for some

λ, m values and Ω = 1. Explicitly, the Gamma distribution

is capable of providing a good approximation for the Pois-

son distribution for all the considered λ values, and more

closer approximation presents, as the value of λ increases.

In fact, from the research of radio communication channel

modeling [40–43], the Gamma distribution (or the Nakagami

distribution for the square-roots of Gamma distributed random

variables) usually fits well the measurement data in terms of

SNR (or magnitude) from practical experiments. This might

imply that the Nakagami and Gamma distributions are also

the good tools for describing the statistical properties of DMC

channels, especially in the case when continuous distribution

functions are required.

Let us now return to derive the BER of the OOK-modulated

DMC systems under the Gamma-approximation. In this case,

we can express the Gamma PDFs conditioned on bu = 1 and

bu = 0 respectively as

fZu
(y|bbbL, bu = 1) =

1

Γ(m1)Ω
m1
1

ym1−1 exp

(

− y

Ω1

)

,

fZu
(y|bbbL, bu = 0) =

1

Γ(m0)Ω
m0
0

ym0−1 exp

(

− y

Ω0

)

(39)

where 0 ≤ y < ∞. With the aid of (33), the shape and scale

parameters in (39) are given by

m1 =
µ2
Z1

σ2
Z1

, Ω1 =
σ2
Z1

µZ1

m0 =
µ2
Z0

σ2
Z0

, Ω0 =
σ2
Z0

µZ0

(40)

Then, by following (34), the miss-probability can be derived

as

PM =
1

2L

∑

bbbL∈BL

P (Zu ≤ CT |bbbL, bu = 1)

=
1

2L

∑

bbbL∈BL

1

Γ(m1)Ω
m1
1

∫ CT

0

ym1−1 exp

(

− y

Ω1

)

dy

(41)

Using the result of (3.381.1) in [44], we can simplify the above

expression to

PM =
1

2L

∑

bbbL∈BL

γ (m1, CT /Ω1)

Γ(m1)
(42)

where γ(α, x) is the lower incomplete gamma function

[44](8.350.1). Furthermore, when m1 is an integer, or when

it is approximated by an integer1, then, with the aid of

[44](8.352.6), (42) can be expressed as

PM =
1

2L

∑

bbbL∈BL

[

1− exp

(

−CT

Ω1

)m1−1∑

n=0

1

n!

(
CT

m1

)n
]

(43)

Similarly, corresponding to (42) and (43), the false-alarm

1When m1 is large, it usually can be approximated by an integer, as the
Gamma-distribution in this case is not very sensitive to value of m1.
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probability can be expressed as

PFA =1− 1

2L

∑

bbbL∈BL

γ (m0, CT /Ω0)

Γ(m0)
(44)

=1− 1

2L

∑

bbbL∈BL

[

1− exp

(

−CT

Ω0

)m0−1∑

n=0

1

n!

(
CT

m0

)n
]

(45)

respectively.

Finally, in the general cases, when substituting (42) and (44)

into (25), we can obtain the BER expression for the OOK-

modulated DMC systems under the Gamma-approximation.

By contrast, for the special cases of m1 and m0 being integers,

corresponding BER expression can be obtained by substituting

(43) and (45) into (25).

D. Monte-Carlo Approach

So far, we have considered some alternative approaches to

deal with the second sum in (31). In some cases, such as when

communicating at relatively high data rate, the ISI can be very

long, which makes exact evaluation of (31) impossible, due to

the involvement of the first sum of 2L items, as seen in (31).

In fact, provided that L ≥ 20, exact evaluating (31) is highly

involved, even without considering the second sum in (31).

In practice, however, the ISI length of L may be significantly

larger than 20. Therefore, in this and the next subsections,

we provide some approaches for reducing the terms to be

considered in the context of the first sum in (31), as well

as in the BER expressions obtained from the Gaussian- and

Gamma-approximation.

Specifically, in this subsection, we consider the Monte-Carlo

approach [45] to simplify the computation of the BER expres-

sions obtained under the Poisson, Gaussian-approximation and

Gamma-approximation approaches, when L is large. As seen

in (31), since bbbL is a L-length binary random vector distributed

in BL, we can randomly generate W number of binary

sequences for bbbL, which are expressed as {bbb(1)L , . . . , bbb
(W )
L }.

Then, corresponding to (31), the BER of the DMC systems

employing OOK modulation can be approximately evaluated

from the formula

Pb ≈
1

2
+

1

2W

∑

{bbb
(1)
L

,...,bbb
(W )
L

}

⌈VRCT ⌉
∑

n=0

(
µn
Y1
e−µY1 − µn

Y0
e−µY0

n!

)

(46)

Provided that W is sufficiently large, the BER estimated by

(46) should be close to that by (31).

Similarly, we can have the approximated BER expressions,

when the Gaussian- and Gamma-approximation are respec-

tively employed. As our results in Section V show, the Monte-

Carlo approach is capable of providing close approximation,

provided that W ≥ 105.

E. Simplified Poisson, Gaussian-Approximation and Gamma-

Approximation Approaches

From Fig. 1 we can see that the concentration becomes

flatter and lower, as the propagation time or/and propagation

distance increase. This implies that the ISI imposing on a

specific data bit is dominated by the several bits sent in the

front of the bit. Therefore, when L is large, and assuming that

u >> 1 and u > L, we may re-write the decision variable Zu

of (5) as

Zu =
I∑

i=0

bu−i

[
ci + n(u−i)u

]
+Xu, u = 0, 1, . . . (47)

where Xu =
∑L

i=I+1 bu−i

[
ci + n(u−i)u

]
. Since all ci in

Xu have small values and n(u−i)u in Xu are independent

random variables, when (L− I) is sufficiently large, we may

approximate Yu = VRXu as a Poisson distributed random

variable, with the mean and variance given by

µy = E [VRXu] = VRE{bu−i}

[
L∑

i=I+1

bu−ici

]

=
VR

2

L∑

i=I+1

ci

(48)

Therefore, Xu has the mean and variance given by

µx =
1

2

L∑

i=I+1

ci, σ2
x =

1

2VR

L∑

i=I+1

ci (49)

Consequently, when the Poisson approach is employed, the

PDFs of Yu conditioned on bu = 1 and bu = 0 are given by

(23) and (24), respectively, associated with

µY1
=VR

(

c0 +

I∑

i=1

bu−ici

)

+ µy,

µY0
=VR

I∑

i=1

bu−ici + µy (50)

Finally, following the derivation of (31), the BER of the

OOK-modulated DMC systems derived from the simplified

Poisson approach can be expressed as (31) with the parameter

L replaced by the parameter I , and bbbL ∈ BL replaced by

bbbI ∈ BI where, by definition, bbbI = [bu−I , . . . , bu−1].

When the simplified Gaussian-approximation is employed,

the conditional PDFs of Zu are respectively given in (32) for

bu = 1 and bu = 0, associated with

µZ1
=c0 +

I∑

i=1

bu−ici + µx; σ2
Z1

=
c0
VR

+
1

VR

I∑

i=1

bu−ici + σ2
x

µZ0
=

I∑

i=1

bu−ici + µx; σ2
Z0

=
1

VR

I∑

i=1

bu−ici + σ2
x (51)

Correspondingly, the BER of the OOK-modulated DMC sys-

tems can be derived by following that in Section III-B, which

can be expressed as

Pb =
1

2
+

1

2I+1

∑

bbbI∈BI

[

Q

(
CT − µZ0

σZ0

)

−Q

(
CT − µZ1

σZ1

)]

(52)

Finally, when the simplified Gamma-approximation is em-

ployed, following the analysis in Section III-B, we can show
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that the BER of the OOK-modulated DMC systems can be

formulated as

Pb =
1

2
+

1

2I+1

∑

bbbI∈BI

[
γ (m1, CT /Ω1)

Γ(m1)
− γ (m0, CT /Ω0)

Γ(m0)

]

(53)

where m1, m0 and Ω1, Ω0 are given in (40) with µZ1
, µZ0

and σ2
Z1
, σ2

Z0
given in (51).

In comparison to the BER formulas in Sections III-A, III-B

and III-C, which need to consider 2L terms for the first sum

at the RHS of the BER formulas, as seen, e.g., in (31), we

now only need to compute 2I terms. In Section V, we will

demonstrate the effect of the value of I on the accuracy of

evaluated BER, showing that we can choose I << L, when

L is large. Typically, I ≈ 10 is sufficient for obtaining near-

accurate BER evaluation, provided that the data rate is not too

high and, hence, the ISI imposed by any of the other (L− I)
data bits is insignificant. Hence, significantly reduced com-

putation is possible, while still achieving sufficiently accurate

evaluation.

IV. BER ANALYSIS OF DMC SYSTEMS WITH OOK

MODULATION AND ISI CANCELLATION

In this section, we analyze the BER of the OOK-modulated

DMC systems with the ISIC. Our analysis starts with the

decision variable Zu given by (12), and assumes that λu = λ̄ is

a constant. Furthermore, as in Section III, we assume that the

maximum ISI length is L bits, and that u > L is considered.

Then, Zu can be written as

Zu =
L∑

i=0

bu−i

[
c(iT + t̂d) + nu−i(uT + t̂d)

]

︸ ︷︷ ︸

Zud

− λ̄×
L∑

i=1

bu−i [c(iT ) + nu−i(uT )]

︸ ︷︷ ︸

Zu0

(54)

Let ci = c(iT + t̂d), n(u−i)u = nu−i(uT + t̂d) and c′i =
c(iT ), n′

(u−i)u = nu−i(uT ). Then, the above equation can

be re-written as

Zu =
L∑

i=0

bu−ici +
L∑

i=0

bu−in(u−i)u

︸ ︷︷ ︸

Zud

− λ̄×
[

L∑

i=1

bu−ic
′
i +

L∑

i=1

bu−in
′
(u−i)u

]

︸ ︷︷ ︸

Zu0

(55)

In order for the analysis to be manageable, we assume that

td > ρ2/D, so that the two noise samples obtained at t =
uT + t̂d and t = uT are independent [35].

In this section, we derive the BER formulas, when the

Poisson approach, simplified Poisson approach, Gaussian-

approximation, and simplified Gaussian-approximation are

considered. Unfortunately, the PDF for the difference of two

Gamma variates distributed with different shaping parameters

is unknown in public references, as claimed in [46], the

Gamma-approximation approaches will hence not be consid-

ered in this section.

A. Poisson and Simplified Poisson Approaches

Following our analysis in Section III-A, it can be shown

that, conditioned on bbbL and bu = 1, Yud = VRZud obeys the

Poisson PMF of

fYud
(n|bbbL, bu = 1) =

µn
Y1
e−µY1

n!
, n = 0, 1, 2, . . . (56)

where µY1
= VR

(

c0 +
∑L

i=1 bu−ici

)

. By contrast, condi-

tioned on bbbL and bu = 0, Yud obeys the Poisson PMF of

fYud
(n|bbbL, bu = 0) =

µn
Y0
e−µY0

n!
, n = 0, 1, 2, . . . (57)

where µY0
= VR

∑L
i=1 bu−ici. As seen in (55), Zu0 is only

dependent on bbbL but not on bu. Hence, the conditional PMF

of Yu0 = VRZu0 can be expressed as

fYu0
(n|bbbL) =

µn
Y e

−µY

n!
, n = 0, 1, 2, . . . (58)

where µY = VRλ̄
∑L

i=1 bu−ic
′
i.

Since the noise samples in Zud and Zu0 are independent, the

conditional PMFs of fYud
(n|bbbL, bu = 1) (or fYud

(n|bbbL, bu =
0)) and fYu0

(n|bbbL) are independent. According to the proper-

ties of the Poisson distribution, the difference of two indepen-

dent Poisson distributions obeys the Skellam distribution [47].

Hence, the PMF of Yu = VRZu conditioned on (bbbL, bu = 1)
and (bbbL, bu = 0) can be expressed as

fYu
(k|bbbL, bu = 1) = exp (−[µY1

+ µY ])

(
µY1

µY

)k/2

× Ik
(
2
√
µY1

µY

)
, −∞ < k < ∞

fYu
(k|bbbL, bu = 0) = exp (−[µY0

+ µY ])

(
µY0

µY

)k/2

× Ik
(
2
√
µY0

µY

)
, −∞ < k < ∞ (59)

respectively. In the above equations, Ik(z) is the modified

Bessel function [47].

Having obtained the PMFs of Yu, as shown in (59), then,

given a decision threshold CT in the sense of concentration,

the miss-probability can be derived as

PM =
1

2L

∑

bbbL∈BL

P (Yu ≤ VRCT |bbbL, bu = 1)

=
1

2L

∑

bbbL∈BL

exp (−[µY1
+ µY ])

×
⌈VRCT ⌉
∑

k=−∞

(
µY1

µY

)k/2

Ik
(
2
√
µY1

µY

)
(60)
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Similarly, for a given decision threshold CT , the false-alarm

probability can be derived as

PFA =1− 1

2L

∑

bbbL∈BL

P (Yu ≤ VRCT |bbbL, bu = 0)

=1− 1

2L

∑

bbbL∈BL

exp (−[µY0
+ µY ])

⌈VRCT ⌉
∑

k=−∞

(
µY0

µY

)k/2

× Ik
(
2
√
µY0

µY

)
(61)

Finally, the BER of the OOK-modulated DMC with ISIC

can be expressed as

Pb =
1

2
(PM + PFA)

=
1

2
+

1

2L+1

∑

bbbL∈BL

exp(−µY ) [exp (−µY1
)

×
⌈VRCT ⌉
∑

k=−∞

(
µY1

µY

)k/2

Ik
(
2
√
µY1

µY

)

− exp (−µY0
)

⌈VRCT ⌉
∑

k=−∞

(
µY0

µY

)k/2

Ik
(
2
√
µY0

µY

)





(62)

In the cases that L is large, the BER Pb can be evaluated

by the Monte-Carlo approach addressed in Section III-D or

the simplified Poisson approach analyzed in Section III-E.

Specifically, when the simplified Poisson approach is desired,

the BER has the expression of (62) with the following mod-

ifications. First, bbbL ∈ BL is replaced by bbbI ∈ BI , where

bbbI = [bu−I , . . . , bu−1], when assuming that there are I bits

dominating the ISI on the uth bit. Second, µY1
, µY0

and µY

are respectively replaced by the quantities of

µY1
=VR

(

c0 +

I∑

i=1

bu−ici +
1

2

L∑

i=I+1

ci

)

,

µY0
=VR

(
I∑

i=1

bu−ici +
1

2

L∑

i=I+1

ci

)

,

µY =VRλ̄

(
I∑

i=1

bu−ic
′
i +

1

2

L∑

i=I+1

c′i

)

(63)

B. Gaussian-Approximation and Simplified Gaussian-

Approximation

According to [48], when both (µY1
+ µY ) and (µY0

+ µY )
are relatively large, the Skellam PMFs in (59) can be approxi-

mated by the corresponding Gaussian PDFs. When we directly

deal with concentration and have the decision variable given

by (55), the conditional Gaussian PDFs can be respectively

expressed as

fZu
(y|bbbL, bu = 1) =

1√
2πσZ1

exp

(

− [y − µZ1
]2

2σ2
Z1

)

fZu
(y|bbbL, bu = 0) =

1√
2πσZ0

exp

(

− [y − µZ0
]2

2σ2
Z0

)

(64)

where −∞ < y < ∞, by definition,

µZ1
=

1

VR
(µY1

− µY ) = c0 +

L∑

i=1

bu−i(ci − λ̄c′i),

σ2
Z1

=
1

V 2
R

(µY1
+ µY ) =

1

VR

[

c0 +
L∑

i=1

bu−i(ci + λ̄c′i)

]

,

µZ0
=

1

VR
(µY0

− µY ) =

L∑

i=1

bu−i(ci − λ̄c′i),

σ2
Z0

=
1

V 2
R

(µY0
+ µY ) =

1

VR

[
L∑

i=1

bu−i(ci + λ̄c′i)

]

(65)

As seen from the above equations, when the ISI is ideally can-

celled, we have VRµZ1
= VRc0, which represents the average

number of molecules in the detection space, and VRµZ0
= 0.

Hence, for the Skellam distribution to be approximated by the

Gaussian distribution, it requires that VRµZ1
is sufficiently

large.

Explicitly, the PDFs in (64) have the same forms as those in

(32) in Section III-B. Hence, when given the decision threshold

of CT , the BER of the OOK-modulated DMC systems with

ISIC has the same expression as that in Section III-B, with

µZ0
, σZ0

and µZ1
, σZ1

replaced by the corresponding terms

given in (65).

Furthermore, when the simplified Gaussian-approximation

is employed, the BER of the OOK-modulated DMC systems

with ISIC can be expressed as (52), with µZ0
, σZ0

and

µZ1
, σZ1

provided by the formulas of

µZ1
=c0 +

I∑

i=1

bu−i(ci − λ̄c′i) +
1

2

L∑

i=I+1

(ci − λ̄c′i),

σ2
Z1

=
1

VR

[

c0 +
I∑

i=1

bu−i(ci + λ̄c′i) +
1

2

L∑

i=I+1

(ci + λ̄c′i)

]

,

µZ0
=

I∑

i=1

bu−i(ci − λ̄c′i) +
1

2

L∑

i=I+1

(ci − λ̄c′i),

σ2
Z0

=
1

VR

[
I∑

i=1

bu−i(ci + λ̄c′i) +
1

2

L∑

i=I+1

(ci + λ̄c′i)

]

(66)

As seen at the RHS of the above equations, these quantities

are dependent on bbbI containing only I data bits.

V. PERFORMANCE RESULTS

In this section, we demonstrate the BER performance of

the OOK-modulated DMC systems with or without ISIC,

and compare the results obtained by the various analytical

approaches considered in Sections III and IV. Furthermore,

some results obtained from both the particle-based simulations

and the Monte-Carlo simulations [49–51] are provided to

validate the analytical results. In order to demonstrate the

results, we define the SNR by following the convention in the

traditional wireless communications [37] as the ratio between

the power received from a single impulse of molecules and

the noise power, which is expressed as

γb =
c20

E[σ2
0 ]

=
c20

c0/VR
= VRc0 (67)
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Fig. 3. Comparison of the BER versus SNR performance of the OOK-
modulated DMC systems obtained by the particle-based simulations and
Poisson approach.

From this definition and the analysis in Section II, we can

know that, given the diffusion coefficient D and the transmis-

sion distance r, the SNR is only dependent on the number of

molecules Q emitted by one pulse and the volume VR of the

detection space. In our studies, we set D = 2.2× 10−9 m2/s
(squared meter/seconds). For Fig. 3 considering the particle-

based simulations, we assume relatively short communications

distance and set the radius of the spherical detection space

to ρ = 20 nm (nano meter), as the result that particle-

based simulation is difficult to cope with a big number of

molecules. By contrast, for all the other figures, we consider

relatively long communications distance, and set the radius of

the spherical detection space to ρ = 1 nm . Furthermore, in

our studies, the ISI length L is estimated as

L , argl {cl/c0 ≤ 0.1%} (68)

meaning that the ISI from the received pulses having their

peak concentration at least 1000 times lower than that of the

current pulse is ignored.

Additionally, we note that, for convenience, the parameters

used for generating the results are specified with the figures.

Furthermore, unless notified, such as in Figs. 9 and 10, the

results are obtained, when the optimum detection thresholds

are applied.

First, in Figs. 3 and 4, we compare the BER versus

SNR performance obtained from the analytical and simulation

approaches. Specifically, in Fig.3, the analytical results were

obtained from the Poisson approach of Section III-A, which

are compared with the corresponding results obtained from

the particle-based simulations. By contrast, in Fig. 4, we

demonstrate the BER versus SNR performance of the OOK-

modulated DMC systems, when the systems are operated with

different data rates reflected by the different bit-durations of T .

Correspondingly, the length of ISI in different cases is differ-

ent, as shown in the figure. In the figure, the analytical results

were obtained from the Poisson approach of Section III-A for

the cases of L = 10 and L = 20, while obtained from the

Poisson Monte-Carlo approach of Section III-D for the other

cases of L = 30−80. Note that here the Poisson Monte-Carlo

approach was used because, when L ≥ 30, it is very time-

D=2.2 10
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m
2
/s, r=400 10

-9
m
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B
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T = 6.5× 10−5s, L = 50
T = 5.4× 10−5s, L = 60
T = 4.6× 10−5s, L = 70
T = 4× 10−5s, L = 80

Analytical
Simulation

Fig. 4. Comparison of the BER versus SNR performance of the OOK-
modulated DMC systems obtained by the Monte-Carlo simulations and the
Poisson or Poisson (Monte-Carlo) approach.

consuming to compute the results by the Poisson approach of

Section III-A. The simulation results shown in Fig. 4 were

obtained from the Monte-Carlo simulations. From the results

of Figs. 3 and 4 we may have the following observations. First,

the analytical results agree closely with the simulation results

obtained from either the particle-based or the Monte-Carlo

simulations. Therefore, the Poisson modelling considered in

this paper is accurate and that the Poisson and Poisson Monte-

Carlo approaches are valid. Second, as shown in Fig. 4, when

the symbol duration decreases, i.e., the data rate increases, the

BER performance of the DMC systems degrades due to the

increased ISI.
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Fig. 5. Impact of parameter I on the accuracy of the BER versus
SNR performance of the DMC systems estimated by the simplified Poisson
approach.

In Fig. 5, we show the impact of the parameter I used in

the simplified Poisson (Gaussian, and Gamma) approach on

the accuracy of the estimated BER performance of the DMC

systems, when the OOK modulation without ISIC (Fig. 5(a))

and that with ISIC (Fig. 5(b)) are employed. Note that, here we

consider only the simplified Poisson approach, as our results

showed that the simplified Gaussian and Gamma approaches

appear the same behavior as the simplified Poisson approach.

From the results of Fig. 5, we observe that, for both the cases

of without/with ISIC, the BER performance evaluated by the

simplified approach converges to that obtained by the Monte-

Carlo approach, provided that I ≥ 6 in Fig. 5(a) and I ≥ 2 in

Fig. 5(b). This observation implies that, when L is relatively
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Fig. 6. Comparison of different approaches for the BER versus transmission
distance of the DMC systems with OOK modulation and without/with ISIC.

large, e.g., L > 20, those less dominate ISI can be effectively

approximated by a random variable without depending on the

specific bit sequence. Hence, the simplified approaches can be

efficiently employed for evaluating the error performance of

the DMC systems. We should note that in Figs. 5(a) and 5(b),

the Monte-Carlo Poisson approach was used instead of the

exact Poisson approach, because it is impossible to evaluate

the BER by the exact Poisson approach in the case of L = 80,

which corresponds to 280 combinations of bit sequences.

When comparing the results (red-colored lines) in Figs. 5(a)

and 5(b), we can observe that the ISIC is capable of providing

some performance gain, as shown also by the forthcoming

results.

Fig. 6 shows the BER performance of the DMC systems

without ISIC (top three curves) and that with ISIC (bot-

tom two curves) against the transmission distance, where

the results were evaluated by the different approaches as

specified in the figure. Explicitly, both the Gaussian- and

Gamma-approximation are accurate, which give nearly the

same performance results as the exact Poisson approach. As

shown in Fig. 6, the performance gain provided by the ISIC

becomes higher, as the transmission distance increases. The

reason behind is that, given the symbol duration T , the ISI

increases as the result that the increase of transmission distance

results in the expansion of the received pulse, as seen in

Fig. 1. There is no performance gain available by applying

the ISIC, when the transmission distance is below 300nm.

In fact, when the transmission distance is short, e.g., 200nm,

the ISIC generates negative performance gain. This is because

ISIC amplifies noise, as seen in (9), due to the randomness of

the noise samples.

In Fig. 7, we demonstrate the BER versus SNR performance

of the DMC systems without/with ISIC, estimated by the dif-

ferent approaches. Notice in the figures that the sets of curves

are distinguished by the transmission distances r and their

corresponding ISI length. When comparing the two figures,

we can see that the employment of ISIC results in more

reliable detection. More performance gain is available, as the

transmission distance increases, which follows the observation

in Fig. 6. In both figures, the BER performance degrades
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Fig. 7. Comparison of different approaches for the BER versus SNR
performance of the DMC systems without/with ISIC.
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Fig. 8. BER versus ISIC scaling factor λ̄ of the OOK-modulated DMC
systems with ISIC.

with the increase of transmission distance. Furthermore, all

the optional approaches provide near-exact results. However,

in the case of without ISIC, when the transmission distance

is short, e.g., 250 nm, the BER evaluated by the Gamma-

approximation yields marginal difference from the exact one.

This is more declared, when the SNR becomes lower. In the

case of Fig. 7(b) with ISIC, when the transmission distance

is relatively short, e.g., 250 nm, the result evaluated by the

Gaussian-approximation has a slight difference from the exact

one.

In Fig. 8, we show the effect of the ISIC scaling factor

λ̄ on the BER performance of the DMC systems with ISIC.

Explicitly, given the other system parameters, there is an

optimum value for λ̄, which results in the lowest BER. As

seen in Fig. 8, the optimum λ̄ value is depended on the SNR

and is around 0.6 for the cases considered. From these results

we are inferred that a good λ̄ value is around 0.6 for the SNR

practically interest, which results in the BER between 10−5

and 10−2. Furthermore, the achievable BER performance is

not very sensitive to the value of λ̄, and nearly the same BER

performance can be attained, provided that λ̄ changes within

a limited range around the optimum value.

Fig. 9 depicts the BER of the DMC systems versus the

detection threshold, when ISIC is not employed (Fig. 9(a)) or

employed (Fig. 9(b)). As shown in the figures, three symbol

durations are considered, which are T = 30µs, 50µs and 70µs,

which for a given transmission distance of 250nm yields ISI

length of L = 42, 24 and 17, respectively. Furthermore, in the
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Fig. 9. Comparison of different approaches for the BER versus detection
threshold performance of the DMC systems without/with ISIC.

two figures, we compare the BER evaluated by the different

approaches, as marked in the figures. From the results, we

may have the following observations. First, for given system

parameters, there is an optimum threshold, which yields the

lowest BER. Second, for the OOK-modulated DMC systems

without ISIC, the BER performance is highly sensitive to the

threshold. A threshold slightly different from the optimum

one might result in a significant increase of BER. Third,

when the OOK-modulated DMC systems employ the proposed

ISIC, the BER performance becomes less sensitive to the

detection threshold. Forth, for the DMC systems without ISIC

(Fig. 9(a)), when the optimum thresholds are invoked, both the

Gaussian- and Gamma-approximation provide near-accurate

approximation to the Poisson approach. By contrast, for the

DMC systems with ISIC (Fig. 9(b)), even when operated at

the optimum thresholds, the Gaussian-approximation yields a

BER higher than that given by the Poisson approach, which is

clearly seen in the cases of T = 50µs and 70µs. The reason

is that, in this case, the ISI is relatively short, resulting in

that the condition for applying the Gaussian approximation is

not well satisfied. Additionally, as seen in both the figures,

the ‘optimum threshold’ given by the Gaussian or Gamma

approach is actually optimum. There is an explicit difference

from the optimum threshold given by the Poisson approach.
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Fig. 10. Comparison of different approaches for the BER versus detection
threshold performance of the DMC systems without/with ISIC.

Finally, in Fig. 10, we depict the BER versus detection

threshold performance of the DMC systems with respect to

γb = 10dB, 14dB and 16dB, when without ISIC (Fig. 10(a)) or

with ISIC (Fig. 10(b)). Explicitly, we have similar observations

as those from Fig. 9(a) and Fig. 9(b). It is worthy of noting

again that the BER performance of the OOK-modulated DMC

systems without ISIC is very sensitive to the detection thresh-

old applied, and employing ISIC mitigates this sensitivity.

VI. CONCLUSIONS

We have proposed a range of approaches for analyzing and

computing the BER of the DMC systems without or with

ISIC, based on which exact and approximate BER expressions

have respectively been derived. Our studies and comparison

show that both the Gaussian- and Gamma-approximation are

capable of providing near-accurate BER estimation, provided

that the respective optimum thresholds are applied in detection.

However, the optimum detection threshold estimated by the

Gaussian- or Gamma-approximation is explicitly different

from that given by the Poisson modeling, and hence it is

practically not optimum. The BER performance of the OOK-

modulated DMC systems without ISIC is very sensitive to the

change of detection threshold, whereas, the ISIC is able to

mitigate the sensitivity to the variation of detection threshold.

Furthermore, the employment of ISIC is able to improve

the BER performance of the OOK-modulated DMC systems,

especially in the scenarios where transmission distance is

relatively long or/and transmission rate is high, both resulting

in long ISI. However, ISIC amplifies the counting noise, which

may result in performance degradation in the case of short

ISI. We have shown that, when ISI is long, the Monte-Carlo

approach or the different types of simplified approaches may

be employed for evaluating the BER of the DMC systems

without or with ISIC. The studies and performance results

show that all these approaches are effective approaches, and

are capable of providing near-accurate BER estimation.
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