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Abstract: We propose an amplitude shift keying-type asymmetric quantum communication (AQC)
system that uses an entangled state. As a first step toward development of this system, we evaluated
and considered the communication performance of the proposed receiver when applied to the AQC
system using a two-mode squeezed vacuum state (TSVS), the maximum quasi-Bell state, and the
non-maximum quasi-Bell state, along with an asymmetric classical communication (ACC) system
using the coherent state. Specifically, we derived an analytical expression for the error probability of
the AQC system using the quasi-Bell state. Comparison of the error probabilities of the ACC system
and the AQC systems when using the TSVS and the quasi-Bell state shows that the AQC system using
the quasi-Bell state offers a clear performance advantage under specific conditions. Additionally, it
was clarified that there are cases where the universal lower bound on the error probability for the
AQC system was almost achieved when using the quasi-Bell state, unlike the case in which the TSVS
was used.

Keywords: entanglement; quasi-Bell state; asymmetric communication system; error performance

1. Introduction

Entanglement [1] is an important phenomenon for quantum protocols. Entanglement
is a nonlocal correlation that works with multiple quantum systems. This correlation can
be maintained regardless of the distance between these multiple quantum systems. The
quantum cryptographic protocol called E91 [2], quantum superdense coding [3], and quan-
tum teleportation [4], which were all proposed in the 1990s, are well known as quantum
communication protocols that apply entanglement. In addition, quantum illumination [5] and
quantum reading [6], which are quantum metrology protocols based on entanglement and
were proposed around 2010, have also been attracting increasing attention in recent years.

Many of the quantum communication protocols described above that use entangle-
ment belong to the class of symmetric communication systems. Symmetric communication
systems have the same transmission capability, regardless of the direction of commu-
nication. In contrast, asymmetric communication systems have different transmission
capabilities that depend on the direction of communication (e.g., [7,8]). The differences
in transmission capability in this case are caused by the differences between the physical
resources that can be used on the two sides of the communication process. However, as
far as we know, there are no asymmetric communication systems which essentially utilize
quantum mechanical phenomena such as entanglement. With this in mind, we define the
following: asymmetric systems using quantum and classical communication protocols
are called asymmetric quantum communication (AQC) systems and asymmetric classical
communication (ACC) systems, respectively. In this paper, we consider the quantum
communication protocols with entanglement. Typical examples of ACC systems include
terrestrial-to-satellite communications, communication between a mobile device and a
cellular base station, and communication between an Internet of Things (IoT) device and
an IoT base station. For example, in an IoT-based ACC system, there is a major difference
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between the transmission capabilities of a small battery-driven IoT device—where the
battery is replaced once every few years and the microprocessor unit can only perform
simple calculation processes—and that of a base station with an abundant power supply
and high processing capacity. In this work, the side with the low transmission capability,
e.g., satellites, mobile phones, and IoT devices, is called Alice, and the side with the high
transmission capability, e.g., ground base stations, mobile phone base stations, and IoT
base stations, is called Bob. Taking an IoT-based ACC system as an example, the usage
scenario of that is considered as a simple model in this paper follows: (1) Bob (the IoT base
station) tells Alice (the IoT device) whether to sense the physical environment; (2) if yes,
Alice senses the physical environment and transmits the corresponding data to Bob. In
general, information leakage is prone to occur in the channel of (2), and the system must
perform some communication protocols, such as lightweight cryptography. One of the
security problems for the asymmetric communication system can be described as follows:
the low processing capacity struggles to always provide a high security level for the data
transmitted from such an IoT device, because the frequency of upgrading the device may
be low and the development of code breaking technique is fast. We aimed to develop a new
AQC system to improve the reliability and security of communications from Alice to Bob,
and also to reduce Alice’s energy costs by introducing entanglement into the asymmetric
communication system. This paper represents the first step in this research.

To develop the required AQC system, it will be necessary to clarify the effects of dete-
rioration of the quantum effects in the various channels with respect to the entangled state.
Reference [9] dealt with the quantum channel discrimination problem using beam splitters
with reflectivities of R0 and R1(0 ≤ R0 < R1 ≤ 1). In this channel model, a quantum state
source (i.e., a light source) produces an entangled state, and these two modes are labeled S
(signal mode: mode S) and A (ancilla mode: mode A). Light corresponding to mode S is
directed toward one beam splitter with a reflectivity of either R0 or R1; the subsequently
reflected light is then collected using a detector. The other beam, which corresponds to
mode A, is sent to the detector directly. The detector then distinguishes the two channels
that correspond to R0 and R1 by performing optimum quantum measurements (i.e., joint
measurements) of the two light beams. In reference [9], the Einstein–Podolsky–Rosen
(EPR) state, which consists of the m-fold tensor product of the two-mode squeezed vacuum
state (TSVS) [10], was used as the light source, and the performance with regard to the
error probability when using the EPR state was evaluated using its upper bound, which
is defined by the Chernoff bound [11], and the lower bound, which is defined by the
fidelity. As a result, it was found that the lower bound on the error probability when using
the EPR state may almost reach the universal lower bound. In fact, if we consider that
the communication system is used in such a manner that Alice operates the two beam
splitters to transmit binary information to Bob based on differences in reflectivity (i.e.,
the differences in the amplitudes of the reflected light beams when subjected to different
energy attenuation levels), the model in reference [9] would be an amplitude shift keying
(ASK)-type AQC system. Therefore, it can be said that the work in this paper uses the same
model for a different purpose to that of reference [9].

When considering aspects of the communication performance, it is necessary to per-
form instantaneous performance evaluations, but not using the Chernoff bound that corre-
sponds to the case in which m-shot optical pulses are applied; instead, the error probability
when a one-shot optical pulse is used here. In this case, the TSVS, i.e., the EPR state when
m = 1, is considered, rather than the EPR state. In addition, there is a quasi-Bell state [12]
that is constructed using nonorthogonal quantum states such as coherent states, but it
becomes the maximum entangled state (maximum quasi-Bell state). It has been shown
that the attenuation resistance of this state is strong, depending on application protocols,
and it has been studied actively (e.g., [13,14]) since the publication of reference [12]. In
addition, study of the application of a quasi-Bell state that is not the maximum entangled
state (i.e., a non-maximum quasi-Bell state) has advanced, and it has been reported that
the non-maximum quasi-Bell state is superior to the maximum quasi-Bell state for use in
certain protocols, such as quantum teleportation [15]. In particular, it was recently clarified
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that the quasi-Bell state is superior to both the TSVS and conventional laser radar in terms
of its performance for quantum illumination with attenuation (i.e., the model used in this
paper with R0 = 0) [16–19].

Based on the discussion above, we aim to clarify Bob’s communication performance
based on the error probability criterion as a first step toward development of an ASK-type
AQC system (hereinafter referred to simply as the AQC system). Specifically, by using
the Schrödinger picture to describe the time evolution of both the quasi-Bell state and
the TSVS, we evaluate and compare the error probabilities that occur when using these
states, and thus consider the basic characteristics, i.e., the error performance, of the AQC
system. We also compare these results with the error probability characteristics of an ACC
system which was constructed using a coherent state source and an optimum classical
measurement approach, along with the universal lower bound on the error probability
when the use of any multimode quantum state is allowed. As the main results of this
analysis, we derive an analytical expression for the error probability of the AQC system
when using the quasi-Bell state. Then, by investigating the numerical characteristics of the
system using this analytical expression with various reflectivities and the average number
of photons, we demonstrate that the AQC system using the quasi-Bell state is not only
always superior to the ACC system, but also is asymptotically superior to the same AQC
system using the TSVS. Additionally, in contrast to reference [9], which shows that using
the EPR state asymptotically outperforms using the coherent state, this paper shows that
the ACC system asymptotically outperforms the AQC system when using the TSVS. Finally,
we show that the AQC system using the quasi-Bell state may almost reach the universal
lower bound on the error probability, unlike the AQC system using the TSVS.

The rest of this paper is organized as follows. Section 2 describes the TSVS, the quasi-
Bell state, and the ACC system. Section 3 describes the model of the AQC system when
using the entangled states, and also provides a description of Bob’s received quantum states
in the AQC system. Section 4 presents an analytical expression for the error probability
of the AQC system when using the quasi-Bell state. In Section 5, by using the analytical
expression obtained in Section 4, the system error performance is given and is compared
numerically with the error probabilities of both the ACC system and the AQC system when
using the TSVS and the universal lower bound on the error probability.

2. Basic Theory
2.1. Quantum State

The state of a quantum system (i.e., the quantum state ρ) is expressed using a density
operator. This density operator is a nonnegative Hermitian operator on Hilbert space
and satisfies

ρ ≥ 0, Tr ρ = 1. (1)

Originally, ρ was called the density operator of the quantum state, but it has become
customary for ρ also to be called a quantum state.

2.2. Photon Number State

The most typical quantum state of light is the photon number state |n〉, which represents
a state in which the number of photons is n, and it forms the following orthonormal basis:

∞

∑
n=0
|n〉〈n| = I, 〈n|m〉 = δmn, (2)

where I is the identity operator on Hilbert space, and δmn is the Kronecker delta.

2.3. Coherent State

This paper considers a quasi-Bell state that has been constructed using coherent
states that are nonorthogonal quantum states. The coherent state is known as the most
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fundamental quantum state of light, and this state is very important because it can be
realized approximately using laser light. The coherent state is expressed as

|α〉 =
∞

∑
n=0

αn
√

n!
e−

1
2 |α|

2 |n〉, (3)

where α is the complex amplitude of the coherent state, and the average number of photons
of the state is 〈n〉Coh = |α|2.

The inner product of the two coherent states corresponding to the amplitudes α and β is

〈α|β〉 = eα∗β− |α|
2

2 −
|β|2

2 . (4)

If both α and β are real numbers, then the value of 〈α|β〉 is also a real number. In addition,
the coherent state that is reflected from a beam splitter with reflectivity R is subjected to
energy attenuation, causing it to become another coherent state, represented by |

√
Rα〉.

2.4. Quasi-Bell State

The quasi-Bell state [12] is an entangled state that is constructed using nonorthogonal
quantum states but has maximum entanglement. The two modes of the quasi-Bell state
can be labeled S and A. In this paper, we use two coherent states as the nonorthogonal
quantum states, where the coherent states with amplitudes α and β are denoted by |α〉 and
|β〉. The quasi-Bell states are represented as the quantum states of the composite system SA
as follows:

|Ψ1〉SA = h1(|α〉S|β〉A + |−α〉S|−β〉A), (5)

|Ψ2〉SA = h2(|α〉S|β〉A − |−α〉S|−β〉A), (6)

|Ψ3〉SA = h3(|α〉S|−β〉A + |−α〉S|β〉A), (7)

|Ψ4〉SA = h4(|α〉S|−β〉A − |−α〉S|β〉A), (8)

where

h1 = h3 =
1√

2(1 + κSκA)
, (9)

h2 = h4 =
1√

2(1− κSκA)
, (10)

κS = 〈α| − α〉 = 〈−α|α〉 = e−2|α|2 , (11)

κA = 〈β| − β〉 = 〈−β|β〉 = e−2|β|2 , (12)

and α and β are nonnegative real numbers.
|Ψ2〉SA has the maximum entanglement, and the amount of entanglement is 1 ebit

when α = β. Therefore, we treat |Ψ2〉SA with α = β as the maximum quasi-Bell state
in this paper. The average number of photons in mode S is 〈n〉Max = |α|2 coth(2|α|2),
and the minimum average number of photons is 0.5 because 〈n〉Max → 0.5 when α → 0.
Additionally, we treat |Ψ1〉SA with α = β as the non-maximum quasi-Bell state in this paper.
Note that the amount of entanglement in this case is smaller than 1 ebit. The average
number of photons in mode S is 〈n〉NonMax = |α|2 tanh(2|α|2), and the minimum average
number of photons is 0 because 〈n〉NonMax → 0 when α→ 0.
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2.5. TSVS

In reference [9], an m-fold tensor product of the following TSVS was used as an
EPR state:

|ψ〉SA =
∞

∑
n=0

√
Nn

S
(NS + 1)n+1 |n〉S|n〉A, (13)

where 〈n〉TSVS = NS represents the average number of photons in mode S. In this paper,
we set m = 1 and analyze the TSVS.

The TSVS is one of the most important entangled states and has been discussed in numer-
ous studies as a basic quantum state in both quantum illumination [20] and quantum reading [6]
protocols. In particular, the amount of entanglement of the TSVS, which is given by

ETSVS = (NS + 1) log2(NS + 1)− NS log2 NS, (14)

can exceed 1 ebit. A larger average number of photons causes a greater amount of entan-
glement because limNS→∞ ETSVS = ∞.

2.6. Asymmetric Classical Communication

In this paper, we also compare the proposed system with an ACC system that has no
mode A—mode A can be considered to be the vacuum state |0〉A in an AQC system without
entanglement. Here, the coherent state |α〉 is prepared by Bob as the light source and is
directed toward one of the two beam splitters operated by Alice. By switching the two beam
splitters with their reflectivities of R0 and R1(R0 < R1), Alice encodes binary information
using the different reflectivities. The reflected light collected by Bob thus becomes the
binary coherent state signal {|

√
R0α〉, |

√
R1α〉}, and this can be considered to be an ASK

modulation scheme. Assuming that the binary signal has equal a priori probabilities and
that the measurement in Bob’s detector, which we call an optimum classical receiver, is a
homodyne measurement, the error probability for Bob is then given as follows:

P(Hom)
e =

1
2

{
1 + erf

(√
R0|α|2 −

√
R1|α|2√

2

)}
. (15)

3. Model of an ASK-Type AQC System

In this section, we describe the model of the AQC system that is constructed using the
entangled states and the description of Bob’s received quantum states in the AQC system.

A diagram of the model of the AQC system using the entangled state is shown in
Figure 1. Binary information is sent from Alice to Bob. The dashed and solid arrows in the
figure represent mode S and mode A of the entangled state, respectively. The AQC system
protocol is given as follows:
Protocol of an AQC system (Figure 1).

1. Bob (receiver) inputs the light corresponding to mode A directly into their detector.
2. Bob radiates the light corresponding to mode S toward one of the two beam split-

ters operated by Alice (sender); Alice then switches the two beam splitters with
reflectivities of R0 and R1 (R0 < R1) to encode the binary information.

3. The subsequently reflected light with reflectivity of either R0 or R1 is then collected
by Bob’s detector.

4. Bob decodes the binary information received at their detector by performing an opti-
mum quantum measurement, i.e., a joint measurement of both light beams.
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Figure 1. Protocol of an amplitude shift keying-type asymmetric quantum communication system.

In this paper, we use the same model for a different purpose than that of reference [9],
and therefore must first clarify the differences in this case when compared with the basic
characteristics presented in [9]. We focus on investigation of Bob’s error performance as
the basic characteristic of the ASK-type AQC system. In addition, the AQC system is
characterized as an “ASK-type” system because Alice encodes information using different
reflectivities, i.e., the differences in the amplitude of the reflected light corresponding to
mode S.

3.1. Description of Received Quantum State

In this section, we describe the received quantum state corresponding to each entan-
gled state. However, based on consideration of the prospect of the discussion, we analyze
the quasi-Bell state using a Stinespring representation, and analyze the TSVS using a Kraus
representation. Note that the light that corresponds to mode A is assumed to pass through
an ideal channel because it is propagating inside Bob.

3.1.1. Quasi-Bell State with Stinespring Representation

When a Stinespring representation is used, the loss incurred by an attenuated channel
can be expressed using the interaction with the vacuum field as an environment mode
E. In other words, the unitary evolution of the composite system SE can be described by
applying the unitary operator U(η)

SE to the SE, where the results represent the interaction
between modes S and E:

U(η)
SE |α〉S|0〉E = |√ηα〉S|

√
1− ηα〉E, (16)

U(η)
SE |−α〉S|0〉E = |−√ηα〉S|−

√
1− ηα〉E, (17)

where η is the energy transmissivity. The reduced state of the composite system SAE on SA,
i.e., the received quantum state, can be acquired by performing a partial trace over mode E,
because only the composite system SA is actually measured by the detector.
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For the case where b ∈ {0, 1}, we now consider the received quantum states Ψ(b)
SA

when the binary information that was recorded using the reflectivities Rb is denoted by “0”
and “1”. Suppose that the transmitted quantum state at the light source is the maximum
quasi-Bell state. Then, the received quantum state Ψ(b)

SA can be represented by

Ψ(b)
SA = Tr E

{(
U(Rb)

SE ⊗ IA
)(
|Ψ2〉SA〈Ψ2| ⊗ |0〉E〈0|

)(
U(Rb)

SE ⊗ IA
)†
}

. (18)

The same supposition can be applied to the non-maximum quasi-Bell state.

3.1.2. TSVS with Kraus Representation

In the TSVS case, a Kraus representation is used to express the attenuation channel.
This Kraus representation allows us to describe the relationship between the transmitted
and received quantum states, and can be expressed without use of an external system,
unlike the Stinespring representation. If the transmitted and received quantum states are
ρ(in) and ρ(out), respectively, then the Kraus representation of the attenuation channel is
given as follows:

ρ(out) =
∞

∑
k=0

E(η)
k ρ(in)E(η)

k

†
, (19)

where

E(η)
k = ∑

n

√(
n
k

)√
ηn−k(1− η)k|n− k〉〈n| (20)

is the Kraus operator [21] for the attenuation channel with respect to the energy transmis-
sivity η.

For the case where b ∈ {0, 1}, we now consider the received quantum states ψ
(b)
SA when

the binary information recorded using the reflectivities Rb is denoted by “0” and “1”. The
received quantum state ψ

(b)
SA can then be represented by

ψ
(b)
SA =

∞

∑
k=0

{(
E(Rb)

k
)

S ⊗ IA

}
|ψ〉SA〈ψ|

{(
E(Rb)

k
)

S ⊗ IA

}†
. (21)

3.2. Error Probability Determined by Optimum Quantum Measurement

The error probability is an important performance evaluation index for communica-
tion systems. In this paper, it is assumed that Bob has no information about the a priori
probabilities ξb ∈ {ξ0, ξ1} that correspond to the binary information b ∈ {0, 1}. If the a
priori probabilities of the quantum states are unknown, it is known that use of the Bayes
decision criterion with equal a priori probabilities under the quantum minimax criterion
is the optimum approach from quantum detection theory [22]. If we suppose that the
received quantum states are ρ

(0)
SA and ρ

(1)
SA , and that the corresponding a priori probabilities

are equal, i.e., ξ0 = ξ1 = 1/2, then the error probability given by the optimum quantum
measurement [23] is

Pe =
1
2

(
1− ∑

λi>0
λi

)
, (22)

where {λi} are the eigenvalues of ρ
(0)
SA − ρ

(1)
SA .

4. Derivation of Analytical Expression for the Error Probability of the Quasi-Bell State

In this section, we derive an analytical expression for the error probability of the AQC
system when using the quasi-Bell state. As an example of the quasi-Bell state, we consider
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the case where the maximum quasi-Bell state is used. To calculate the error probability of
given by Equation (22), it is necessary to obtain eigenvalues for the difference between the
two received quantum states Ψ(0)

SA −Ψ(1)
SA . The coherent state is represented using either an

infinite dimensional vector or an infinite matrix (i.e., the density operator). The maximum
quasi-Bell state used here is constructed from the coherent states, and its density operator is
thus infinite. The eigenvalues of Ψ(0)

SA −Ψ(1)
SA also take the form of an infinite matrix and are

generally difficult to calculate. However, in this paper, we find that the received quantum
states Ψ(0)

SA and Ψ(1)
SA can be represented by an 8× 8 matrix when a special orthonormal

basis is used. Additionally, by deriving the eigenvalues for the 8× 8 matrix of Ψ(0)
SA −Ψ(1)

SA ,
we can also derive an analytical expression for the error probability of the AQC system
using the quasi-Bell state.

There are four steps that must be considered in the derivation of this analytical
expression. Each step is explained individually below.

4.1. Step 1: Representation of the Received Quantum States by an 8× 8 Matrix

First, if we focus on mode A in the received quantum states Ψ(0)
SA and Ψ(1)

SA , we can
see that the mode is constructed using the two coherent states {|±α〉A}. In the two-
dimensional subspace of a Hilbert space that is spanned by {|±α〉}, the orthonormal
basis {|ω0〉, |ω1〉} used in references [24,25] is the measurement state of the square-root
measurement (SRM) [26], which is often applied to the representation of the numerical
vector of the quasi-Bell state and to the representation of its density operator. It is known
that this approach improves the prospects of the discussion (e.g., [27]). The SRM for
{|±α〉A} is an optimum quantum measurement that minimizes the error probability, and
use of these measurement states means that {|±α〉A} can be expressed as:

|±α〉A =
1

ε+ − ε−
(
√

ε±|ω0〉A −
√

ε∓|ω1〉A). (23)

Therefore, {|±α〉A} can be represented by a two-dimensional vector, as follows:

|±α〉A =
1

ε+ − ε−

[ √
ε±

−√ε∓

]
, (24)

where κA = κS =: κ and ε± is given as follows:

ε± =
1±
√

1− κ2

2(1− κ2)
. (25)

Next, if we focus on mode A in the received quantum states Ψ(0)
SA and Ψ(1)

SA , we can see
that the mode is constructed using the following four coherent states: {|−

√
R1α〉S, |−

√
R0α〉S,

|
√

R0α〉S, |
√

R1α〉S}(=: {|α0〉, |α1〉, |α2〉, |α3〉}). In the four-dimensional subspace of a
Hilbert space that is spanned by these coherent states, we also consider the measurement
state of the SRM to be an orthonormal basis. The representation of a four-dimensional vector
of these coherent states in the four-dimensional subspace can be obtained immediately from
the square root of their Gram matrix. In general, the Gram matrix for {|α0〉, |α1〉, |α2〉, |α3〉}
is constructed as follows [28]:

〈α0|α0〉 〈α0|α1〉 〈α0|α2〉 〈α0|α3〉
〈α1|α0〉 〈α1|α1〉 〈α1|α2〉 〈α1|α3〉
〈α2|α0〉 〈α2|α1〉 〈α2|α2〉 〈α2|α3〉
〈α3|α0〉 〈α3|α1〉 〈α3|α2〉 〈α3|α3〉

 =


1 b c d
b 1 a c
c a 1 b
d c b 1

, (26)

where

a = e−2R0|α|2 , b = e
√

R0R1|α|2− 1
2 |α|

2(R0+R1),
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c = e−
√

R0R1|α|2− 1
2 |α|

2(R0+R1), d = e−2R1|α|2 . (27)

However, because the representation of the square root of the Gram matrix is complicated,
the method described in references [29–31] is applied in this paper. In references [29–31],
the order of these coherent states was rearranged to be {|−

√
R0α〉S, |

√
R0α〉S, |−

√
R1α〉S,

|
√

R1α〉S(=: {|α′0〉, |α′1〉, |α′2〉, |α′3〉)} to take advantage of the partial symmetry of the coher-
ent state signal, and the Gram matrix Γ then became as follows:

Γ =


〈α′0|α′0〉 〈α′0|α′1〉 〈α′0|α′2〉 〈α′0|α′3〉
〈α′1|α′0〉 〈α′1|α′1〉 〈α′1|α′2〉 〈α′1|α′3〉
〈α′2|α′0〉 〈α′2|α′1〉 〈α′2|α′2〉 〈α′2|α′3〉
〈α′3|α′0〉 〈α′3|α′1〉 〈α′3|α′2〉 〈α′3|α′3〉

 =


1 a b c
a 1 c b
b c 1 d
c b d 1

. (28)

Through observation of Γ, we found that it can be divided into four blocks using a
2× 2 real symmetric matrix with the common structure of

M(2)(u, v) =
[

u v
v u

]
. (29)

The eigenvalues and corresponding orthonormal eigenvectors of M(2)(u, v) are given by

x1 = u + v, x2 = u− v (30)

and

|x1〉 =
1√
2

[
1
1

]
, |x2〉 =

1√
2

[
1
−1

]
, (31)

respectively (Although |x1〉 and |x2〉 are not vectors in the Hilbert space of a quantum
system, and in fact are numerical vectors, we use Dirac’s notation for convenience). We
then obtain the spectral decomposition form of M(2)(u, v), which is expressed as

M(2)(u, v) = (u + v)|x1〉〈x1|+ (u− v)|x2〉〈x2|. (32)

Using M(2)(u, v), Γ can then be divided into blocks, as follows:

Γ =

[
M(2)(1, a) M(2)(b, c)
M(2)(b, c) M(2)(1, d)

]
. (33)

By substituting the spectral decomposition form into the equation above, we obtain

Γ = M(+) ⊗ |x1〉〈x1|+ M(−) ⊗ |x2〉〈x2|, (34)

where

M(+) =

[
1 + a b + c
b + c 1 + d

]
, M(−) =

[
1− a b− c
b− c 1− d

]
. (35)

Both M(+) and M(−) have the common structure of

M(±) =

[
p q
q r

]
, (36)

and the eigenvalues λ±(p, q, r) and the corresponding orthonormal eigenvectors |λ±(p, q, r)〉
of this structure can be expressed as:

λ±(p, q, r) =
1
2

(
p + r±

√
(p− r)2 + 4q2

)
(37)
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and

|λ±(p, q, r)〉 =
|λ′±(p, q, r)〉√

〈λ′±(p, q, r)|λ′±(p, q, r)〉
, (38)

respectively, where

|λ′±(p, q, r)〉 =
[

p− r±
√
(p− r)2 + 4q2

2q

]
. (39)

Based on the derivation above, the analytical expressions for the eigenvalues {λi} and
the corresponding orthonormal eigenvectors {λi} of Γ can be expressed as

λ1 = λ+(1 + a, b + c, 1 + d), (40)

λ2 = λ−(1 + a, b + c, 1 + d), (41)

λ3 = λ+(1− a, b− c, 1− d), (42)

λ4 = λ−(1− a, b− c, 1− d) (43)

and

|λ1〉 = |λ+(1 + a, b + c, 1 + d)〉 ⊗ |x1〉, (44)

|λ2〉 = |λ−(1 + a, b + c, 1 + d)〉 ⊗ |x1〉, (45)

|λ3〉 = |λ+(1− a, b− c, 1− d)〉 ⊗ |x2〉, (46)

|λ4〉 = |λ−(1− a, b− c, 1− d)〉 ⊗ |x2〉, (47)

respectively. Therefore, the spectral decomposition form of Γ is given as follows:

Γ =
4

∑
i=1

λi|λi〉〈λi|. (48)

Here, {|λi〉} forms an orthonormal basis, which means that the square root of the Gram
matrix, Γ

1
2 , can be derived immediately as:

Γ
1
2 =

4

∑
i=1

√
λi|λi〉〈λi| =


γ
(+)
11 γ

(−)
11 γ

(+)
13 γ

(−)
13

γ
(−)
11 γ

(+)
11 γ

(−)
13 γ

(+)
13

γ
(+)
13 γ

(−)
13 γ

(+)
33 γ

(−)
33

γ
(−)
13 γ

(+)
13 γ

(−)
33 γ

(+)
33

, (49)

where each element of the 4× 4 matrix Γ
1
2 can be obtained directly via substitution of

Equations (40)–(47) into ∑4
i=1
√

λi|λi〉〈λi|. See Appendix A for details. The four-dimensional
vector representation of {|−

√
R0α〉S, |

√
R0α〉S, |−

√
R1α〉S, |

√
R1α〉S} is given as follows:

|−
√

R0α〉S =


γ
(+)
11

γ
(−)
11

γ
(+)
13

γ
(−)
13

, |
√

R0α〉S =


γ
(−)
11

γ
(+)
11

γ
(−)
13

γ
(+)
13

,

|−
√

R1α〉S =


γ
(+)
13

γ
(−)
13

γ
(+)
33

γ
(−)
33

, |
√

R1α〉S =


γ
(−)
13

γ
(+)
13

γ
(−)
33

γ
(+)
33

. (50)
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Finally, by substituting Equations (24) and (50) into Equation (18), we obtain

Ψ(b)
SA = Tr E

{(
U(Rb)

SE ⊗IA
)(
|Ψ2〉SA〈Ψ2|⊗|0〉E〈0|

)(
U(Rb)

SE ⊗IA
)†
}

= h2
2

(
|
√

Rbα〉S〈
√

Rbα|⊗|α〉A〈α| − Lb|
√

Rbα〉S〈−
√

Rbα|⊗|α〉A〈−α| (51)

−Lb|−
√

Rbα〉S〈
√

Rbα|⊗|−α〉A〈α|+ |−
√

Rbα〉S〈−
√

Rbα|⊗|−α〉A〈−α|
)

,

where Lb = e−2(1−Rb)|α|2 , and by taking the difference between the two received quantum
states, Ψ(0)

SA −Ψ(1)
SA(=: U), we then obtain an 8× 8 matrix that can be expressed as:

U = Ψ(0)
SA −Ψ(1)

SA =



A B C D G H I J
B E F C K L M N
C F E B N M L K
D C B A J I H G
G K N J O P Q R
H L M I P S T Q
I M L H Q T S P
J N K G R Q P O


. (52)

The 8× 8 matrix U is a real symmetric matrix, and each element of this matrix can be
obtained directly by substituting Equations (24) and (50) into Equation (52) and then taking
the difference between Ψ(0)

SA and Ψ(1)
SA . See Appendix B for details of this procedure.

4.2. Step 2: Similar Transformation of 8× 8 Matrix

Next, we consider the derivation of the eigenvalues of the 8× 8 real symmetric matrix
U. In this paper, we derive the eigenvalues for the 8× 8 real symmetry matrix U by using
its symmetrical structure, although there is no general solution for the eigenvalues of a
square matrix with an order of five or more because of the Abel–Ruffini theorem. To use
the symmetrical structure of U, we must first convert U into a more tractable form.

When the eigenvalues of U and U′ become equal when U is converted into V−1UV := U′

using a regular matrix V; this is known as similarity transformation. Here, if such a
similarity transformation of U is performed using the regular matrix

V = V−1 =



1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1


, (53)

we then obtain the matrix U′ after the similarity transformation as follows:

U′ = V−1UV =



A D C B I H G J
D A B C H I J G
C B E F L M N K
B C F E M L K N
I H L M S T Q P
H I M L T S P Q
G J N K Q P O R
J G K N P Q R O


. (54)
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4.3. Step 3: Spectral Decomposition Form of the 8× 8 Matrix

Through observation of U′, we see that this matrix can be divided into 16 blocks using
the 2× 2 real symmetric matrix (29). We perform a spectral decomposition operation on U′

in the same manner as Equation (34), and we then obtain

U′ = U(+) ⊗ |x1〉〈x1|+ U(−) ⊗ |x2〉〈x2|, (55)

where

U(+) =


A + D C + B I + H G + J
C + B E + F L + M N + K
I + H L + M S + T Q + P
G + J N + K Q + P O + R

,

U(−) =


A− D C− B I − H G− J
C− B E− F L−M N − K
I − H L−M S− T Q− P
G− J N − K Q− P O− R

 (56)

are also real symmetric matrices. Let the eigenvalues and eigenvectors of U(+) and U(−) be
written as {τ(+)

i }, {τ(−)
i } and {|τ(+)

i 〉}, {|τ(−)
i 〉}, respectively; then, we obtain:

U(+) =
4

∑
i=1

τ
(+)
i |τ(+)

i 〉〈τ(+)
i |, U(−) =

4

∑
i=1

τ
(−)
i |τ(−)

i 〉〈τ(−)
i |, (57)

because any real symmetric matrix can be spectrally decomposed. Substitution of these
expressions into U′ allows the spectral decomposition form of U′ to be expressed as

U′ =
4

∑
i=1

τ
(+)
i |τ(+)

i 〉〈τ(+)
i | ⊗ |x1〉〈x1|+

4

∑
i=1

τ
(−)
i |τ(−)

i 〉〈τ(−)
i | ⊗ |x2〉〈x2|, (58)

where the eigenvalues of U′ are given as follows:

τ
(+)
i , τ

(−)
i , i = {1, 2, 3, 4}. (59)

4.4. Step 4: Eigenvalues of 4× 4 Matrix

To determine the eigenvalues given by Equation (59), we must find the eigenvalues
{τ(+)

i } and {τ(−)
i } of the 4× 4 real symmetric matrices U(+) and U(−). All these eigen-

values must be real numbers because U(+) and U(−) are real symmetric matrices. The
eigenvalues for U(+) and U(−) can be derived as follows.

The eigenvalues {τ(+)
i } for the 4× 4 real symmetric matrix U(+) are the solutions to

the eigenvalue equation det (U(+) − τ
(+)
i I) = 0, where I is the identity matrix. We have

det (U(+) − τ
(+)
i I) = τ

(+)
i

2
(

τ
(+)
i

2
+Aτ

(+)
i + B

)
= 0, (60)

where U(+)
ij is element (i, j) of U(+), and
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A =−U(+)
11 −U(+)

22 −U(+)
33 −U(+)

44

=− (L0 + 1)(aκ − 1) + (1 + L1)(1− dκ)

2(κ2 − 1)
, (61)

B =−U(+)
12

2
−U(+)

13

2
−U(+)

14

2
+ U(+)

11 U(+)
22 −U(+)

23

2
−U(+)

24

2
+ U(+)

11 U(+)
33

+ U(+)
22 U(+)

33 −U(+)
34

2
+ U(+)

11 U(+)
44 + U(+)

22 U(+)
44 + U(+)

33 U(+)
44

=− (L0 + 1)(L1 + 1){(aκ − 1)(dκ − 1)− (b− cκ)2}
4(κ2 − 1)2 . (62)

We confirm directly that two of the eigenvalues {τ(+)
i } are 0, and let τ

(+)
3 = τ

(+)
4 = 0. To

determine the signs of the other eigenvalues τ
(+)
1 and τ

(+)
2 for τ

(+)
i

2
+Aτ

(+)
i + B = 0, we

prove that τ
(+)
1 τ

(+)
2 = B < 0 (see Appendix C for this proof), and we then know that these

two eigenvalues have opposite signs: τ
(+)
1 = −A+

√
A2−4B

2 > 0, and τ
(+)
2 = −A−

√
A2−4B

2 < 0.

Note that the corresponding eigenvalues {τ(−)
i } for U(−) can be obtained in the same manner.

4.5. Derivation of Analytical Expression

The eigenvalues {τ(+)
i } ∪ {τ(−)

i } of U′ (i.e., U) that were obtained from the analysis

above can be substituted into Equation (22). Here, it can be confirmed that τ
(+)
1 , τ

(−)
1 > 0,

and thus the error probability P(Max)
e of the AQC system when using the maximum quasi-

Bell state is finally given as follows:

P(Max)
e =

1
2

{
1− 1

2

(√
Λ(+)

M

2
− 4Ξ(+)

M −Λ(+)
M

)
− 1

2

(√
Λ(−)

M

2
− 4Ξ(−)

M −Λ(−)
M

)}
, (63)

Λ(±)
M = − (L0 ± 1)(aκ ∓ 1) + (1± L1)(1∓ dκ)

2(κ2 − 1)
, (64)

Ξ(±)
M = − (L0 ± 1)(L1 ± 1){(aκ ∓ 1)(dκ ∓ 1)− (b∓ cκ)2}

4(κ2 − 1)2 . (65)

The error probability P(NonMax)
e for the AQC system when using the non-maximum

quasi-Bell state can also be obtained using steps 1 to 4 as per the case for the maximum
quasi-Bell state. As a result, the corresponding probability is given by:

P(NonMax)
e =

1
2

{
1− 1

2

(√
Λ(+)

N

2
−4Ξ(+)

N −Λ(+)
N

)
− 1

2

(√
Λ(−)

N

2
−4Ξ(−)

N −Λ(−)
N

)}
, (66)

Λ(±)
N = − (L0 ∓ 1)(aκ ∓ 1)− (1∓ L1)(1∓ dκ)

2(κ2 + 1)
, (67)

Ξ(±)
N = − (L0 ∓ 1)(L1 ∓ 1){(aκ ∓ 1)(dκ ∓ 1)− (b∓ cκ)2}

4(κ2 + 1)2 , (68)

where

a = e−2R0|α|2 , b = e
√

R0R1|α|2− 1
2 |α|

2(R0+R1), c = e−
√

R0R1|α|2− 1
2 |α|

2(R0+R1),

d = e−2R1|α|2 , κ = e−2|α|2 , L0 = e−2(1−R0)|α|2 , L1 = e−2(1−R1)|α|2 . (69)

5. Error Performance

In this section, we present the results that were obtained numerically when using
the error probability (15) for the ACC system and the analytical expression for the error
probabilities (63) and (66) for the AQC system when using the quasi-Bell states. When
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using the TSVS, the calculation of the error probability P(TSVS)
e in the case in which the

average number of photons is small (〈n〉TSVS ≤ 5) is performed based on the conventional
numerical calculation method, i.e., using an equation that approximates Equation (13) to a
finite value of n. In other words, as described in references [32,33], the calculation should
be performed after suitable truncation of the Hilbert space by taking both the average
number of photons and the order of the error probability into consideration. However, in
the case where the average number of photons is large (i.e., 〈n〉TSVS > 5), it is difficult to
treat the eigenvalue problem in Equation (22) numerically because the dimensions of the
received quantum state (i.e., its density operator) are large. Therefore, the AQC system’s
performance is evaluated using the upper bound P(TSVS)

UB and the lower bound P(TSVS)
LB on

the error probability P(TSVS)
e given in reference [9] when the TSVS is used, as follows:

P(TSVS)
LB =

1
2

1−

√
1−

{(
1−

√
R0R1 −

√
(1− R0)(1− R1)

)
NS + 1

}−2
, (70)

P(TSVS)
UB =

{
1
2
{(

1−
√

R0
)

NS + 1
}−2

(R1 = 1)
1
2 (Σσz −Θθz)−1 (R1 6= 1)

, (71)

where

σ =
(1− R0)NS + 1
(1− R1)NS + 1

, (72)

θ =
1− R0

1− R1
, (73)

Σ =

{(
1−
√

R0R1
)

NS + 1
}2

(1− R0)NS + 1
, (74)

Θ = (1− R1)NS, (75)

z =

{
0
(
(Σ−Θ)−2(ln θΘ − ln σΣ) ≥ 0

)
1
(
(Σ−Θ)−2(ln θΘ − ln σΣ) < 0

) . (76)

This paper also provides a comparison with the universal lower bound PU−LB on
error probability given in reference [9] when the use of any multimode pure input state is
permitted, as follows:

PU−LB =
1
2

1−

√
1−

(√
R0R1 +

√
(1− R0)(1− R1)

)2N′S
, (77)

where 〈n〉U−LB = N′S is the average number of photons in mode S.

5.1. Performance Comparison of Use of Maximum and Non-Maximum Quasi-Bell States

Figure 2 plots the error probabilities for the AQC system versus the reflectivities
R0 and R1 (R0 < R1), which are changed from 0 to 1 when the transmitted average
number of photons in the maximum and non-maximum quasi-Bell states is fixed at
〈n〉Max = 〈n〉NonMax = 1. The error probability when the maximum quasi-Bell state is
used is represented by the green curved surface, and the error probability when the
non-maximum quasi-Bell state is used is represented by the orange curved surface.

Figure 2 shows that the error probability P(Max)
e when the maximum quasi-Bell state is

used tends to decrease when R1 − R0 increases. In particular, the figure shows reasonable
results that confirm that the maximum error probability is achieved when R0 ≈ R1, and
that the minimum error probability is achieved when R0 = 0 and R1 = 1. Comparison of
the error probabilities of the AQC system when using the maximum and non-maximum
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quasi-Bell states shows that the maximum quasi-Bell state is superior in most cases, but
there is no significant difference between the two cases. Furthermore, use of the maximum
quasi-Bell state does not always provide superior results, because the AQC system using
the non-maximum quasi-Bell state is superior to the corresponding system using the
maximum quasi-Bell state in the extreme case in which R1 − R0 is very small and R0 ≈ 1
or R0 ≈ 0. The details can be seen in Figure 3 regarding the contour plot of the ratio,
P(NonMax)

e /P(Max)
e , of the error probability when using the non-maximum state to that

when using the maximum quasi-Bell state. Figure 3 shows that the ratio is between 1 and
1.1 in most cases, but the ratio may be less than 1 in the extreme case.

Figure 2. Error probability characteristics with respect to the reflectivities {R0, R1} when using the
maximum quasi-Bell state (green curved surface) and the non-maximum quasi-Bell state (orange
curved surface). The average number of photons is fixed at 1.

Figure 3. Contour plot of the ratio of the error probability when using the non-maximum quasi-Bell

state (P(NonMax)
e ) to that when using the maximum quasi-Bell state (P(Max)

e ). The average number of
photons is fixed at 1.

Actually, there are several studies comparing the performance between the maximum
and non-maximum quasi-Bell states, such as quantum teleportation [15], quantum super-
dense coding [34], quantum reading [33], and quantum illumination [18,19]. Reference [15]
showed that the non-maximum quasi-Bell state offers an advantage over the maximum
quasi-Bell state at small coherent amplitudes, and may offer more resistance to attenuation
than the maximum quasi-Bell state. References [18,19,33,34] showed that the non-maximum
quasi-Bell state offers more resistance to attenuation and phase noise than the maximum
quasi-Bell state, in some special cases, and the result of this paper is one more piece of evi-
dence in terms of that. That evidence also reveals a fact that the maximum quasi-Bell state
offers better performance than the non-maximum quasi-Bell state in ideal cases, such as
cases with large coherent amplitudes or environments without noise, but the opposite may
be true in some unideal cases. Therefore, for some applications using the quasi-Bell state at
small coherent amplitudes or environments with noise, the non-maximum quasi-Bell state
which offers more resistance to noise may play an important role. We must be careful not to
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dismiss the value of using the non-maximum quasi-Bell state, although the reason in terms
of its superiority has not yet been elucidated. We consider the issue to be an interesting
topic that has value as a future subject.

5.2. Performance Comparison Using Each Quantum State

Figure 4a,c,e,g shows the error probabilities obtained when the average number
of photons 〈n〉(:= 〈n〉U−LB = 〈n〉TSVS = 〈n〉Max = 〈n〉NonMax = 〈n〉Coh), which is re-
garded as the signal energy, is varied from 0.5 to 5 for the AQC system when using the
TSVS, the maximum quasi-Bell state, and the non-maximum quasi-Bell state, and the
ACC system using the coherent state, for which the reflectivities {R0, R1} were fixed at
{0.5, 1}, {0.3, 0.6}, {0.2, 0.8}, and {0, 0.3}, respectively. The pink chain line represents the
error probability P(Hom)

e for the ACC system, and the blue and orange dotted lines rep-
resent the error probabilities P(Max)

e and P(NonMax)
e for the AQC system when using the

maximum and non-maximum quasi-Bell states, respectively. The black dashed line rep-
resents the error probability P(TSVS)

e for the AQC system when using the TSVS, and the
green and red dashed lines represent the upper bound P(TSVS)

UB and the lower bound P(TSVS)
LB ,

respectively, for P(TSVS)
e . The gray solid line represents the universal lower bound on the

error probability, PU−LB. The horizontal axis represents the average number of photons,
and the vertical axis represents the error probability in each case. The minimum average
number of photons that can be considered is 0.5 because the minimum average number of
photons in the maximum quasi-Bell state is 〈n〉Max = 0.5, and cases smaller than that are
not defined. If the average number of photons is greater than 5, it then becomes difficult
to calculate the error probability P(TSVS)

e ; therefore, only the upper bound P(TSVS)
UB and the

lower bound P(TSVS)
LB are used for the evaluation of this probability. Figure 4b,d,f,h shows

the error performances corresponding to those shown in Figure 4a,c,e,g, respectively, when
the average number of photons 〈n〉 is increased from 0.5 to 100.

These figures confirm that the AQC system using the quasi-Bell state always maintains
a clear performance advantage over the ACC system, despite increases in the average
number of photons 〈n〉. Although the error probability of the AQC system when using the
quasi-Bell state is similar to that of the ACC system, in that it decreases exponentially in
tandem with the increase in 〈n〉, the AQC system can achieve the same error probability
when using only half of the average number of photons used by the ACC system. Con-
versely, Figure 4b,d,f,h shows the error probability for the AQC system using the TSVS
approaches that of the ACC system with increasing 〈n〉. In particular, as shown in Figure 4f,
the ACC system provides superior performance to the AQC system using the TSVS when
〈n〉 > 35. Figure 4g,h shows that the performance of the ACC system exceeds that of the
AQC system using the TSVS when the average number of photons is smaller, i.e., when
〈n〉 ≈ 5. This is contrary to the results presented in reference [9], which indicated that the
performance obtained when using the m-shot EPR state exceeds that of the coherent state
as the average number of photons increases, and this performance is considered to be a
characteristic unique to the one-shot pulse case. Consideration of these figures together
with Figure 4b,d shows that the ACC system exceeds the performance of the AQC system
using the TSVS with smaller average number of photons when R0 is small or when R1− R0
is large. Otherwise, the latter system can maintain its performance superiority over the
former within the range of the small average number of photons. In addition, as shown in
Figure 4f, the AQC system using the quasi-Bell state demonstrates superior performance to
the same system using the TSVS when 〈n〉 > 10. Figure 4g,h shows that the AQC system
using the quasi-Bell state has an error probability that is the same as or lower than that
of the system using the TSVS. Consideration of these figures together with Figure 4b,d
shows that the performance of the AQC system using the quasi-Bell state exceeds that of
the system using the TSVS with smaller average number of photons when R0 is small or
when R1 − R0 is large. Otherwise, the former system requires a larger average number of
photons to surpass the performance of the latter.
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(a) R0 = 0.5, R1 = 1, 〈n〉 ≤ 5. (b) R0 = 0.5, R1 = 1, 〈n〉 ≤ 100.

(c) R0 = 0.3, R1 = 0.6, 〈n〉 ≤ 5. (d) R0 = 0.3, R1 = 0.6, 〈n〉 ≤ 100.

(e) R0 = 0.2, R1 = 0.8, 〈n〉 ≤ 5. (f) R0 = 0.2, R1 = 0.8, 〈n〉 ≤ 100.

(g) R0 = 0, R1 = 0.3, 〈n〉 ≤ 5. (h) R0 = 0, R1 = 0.3, 〈n〉 ≤ 100.

Figure 4. Error probabilities with respect to the average number of photons 〈n〉 when using the
coherent state (denoted by Coherent), the maximum quasi-Bell state (denoted by Max Quasi-Bell),
the non-maximum quasi-Bell state (denoted by NonMax Quasi-Bell), and the two-mode squeezed
vacuum state (denoted by TSVS) with reflectivities {R0, R1} = {0.5, 1}, {0.3, 0.6}, {0.2, 0.8}, {0, 0.3}.
〈n〉 ranges up to either 5 or 100. Universal LB, TSVS UB, and TSVS LB present the universal lower
bound on the error probability, the upper bound on the error probability for the TSVS case, and the
lower bound on the error probability for the TSVS case, respectively.
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5.3. Performance Comparison with Universal Lower Bound

Finally, we consider a performance comparison with the universal lower bound on
the error probability. For example, when the average number of photons is small, the AQC
system using the TSVS almost reaches the universal lower bound, as illustrated in Figure 4c.
However, as Figure 4d shows, the gap between the lower bound on the error probability for
the TSVS and the universal lower bound increases when the average number of photons
increases. This differs from the results reported in reference [9], which stated that when the
m-shot EPR state is used, the universal lower bound is almost always reached, and this is
considered to be a characteristic unique to the one-shot pulse case. The characteristics of
Figure 4b,f,h become more outstanding and the gap between the lower bound on the error
probability for the TSVS and the universal lower bound increases rapidly as the average
number of photons increases. In addition, Figure 4b shows that gap between the error
probability for the AQC system using the quasi-Bell state and the universal lower bound
may also increase rapidly in the same manner as the TSVS. However, Figure 4f shows
that the error probability of the AQC system using the quasi-Bell state differs from that
of the system using the TSVS in that the gap with respect to the universal lower bound
only increases slowly as the average number of photons increases. Furthermore, as shown
in Figure 4h, the error probability for the AQC system using the quasi-Bell state almost
reaches the universal lower bound even when the average number of photons increases in
the case where both R0 and R1 are small.

To see these details of this characteristics in greater detail, Figure 5 shows the error per-
formance when {R0, R1} = {0, 0.08}, {0, 0.03} in addition to that when {R0, R1} = {0, 0.3}.
As shown in Figure 5, R0 is fixed at 0, and as R1 decreases, the error probability for the AQC
system using the quasi-Bell state becomes closer to the universal lower bound. To clearly
demonstrate the trend of the gap between the error probability when using the quasi-Bell
state and the universal lower bound, Figure 6 shows the ratio PU−LB/P(Max)

e with respect to
R1 when fixing R0 at 0. (Note the special case where the maximum quasi-Bell state becomes
a Bell state when 〈n〉Max = 0.5 [13].) As is evident in Figure 6, the ratio approaches 1 as R1
decreases in spite of increasing 〈n〉. This performance characteristic makes it possible to
use the quasi-Bell state to almost reach the universal lower bound in the AQC system, even
if severe attenuation—where energy attenuation in the channel can be considered to be
included in R1—occurs in an ultra-long distance channel. (If energy attenuation associated
with energy transmissivity η occurs in the channel, then just substitute ηRb into Rb in the
results. For an example, Figure 4c expresses the error performance when R0 = 0.3, R1 = 0.6,
and η = 1; and when R0 = 0.5, R1 = 0.75, and η = 0.8.)

Figure 5. Error probabilities with respect to the average number of photons 〈n〉 when using the maxi-
mum quasi-Bell state (denoted by Max Quasi-Bell), the non-maximum quasi-Bell state (denoted by
NonMax Quasi-Bell), and the two-mode squeezed vacuum state (denoted by TSVS) with reflectivities
of {R0, R1} = {0, 0.3}, {0, 0.08}, {0, 0.03}. 〈n〉 ranges up to 100. Universal LB and TSVS LB represent
the universal lower bound on the error probability and the lower bound on the error probability for
TSVS, respectively.
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Figure 6. Ratio of the universal lower bound on the error probability to the error probability when
using the maximum quasi-Bell state with respect to reflectivity R1, where R0 is fixed at 0.

6. Conclusions

In this paper, we have proposed an ASK-type AQC system as a step toward develop-
ment of a new asymmetric communication system. In this AQC system, Bob, who has a
high transmission capability, transmits one of the entangled light beams, which acts as a
communication medium, to Alice, who has a low transmission capability; Alice operates
on the light beam to encode the information that she wants to send to Bob, and then sends
the light beam back to Bob. Bob then decodes the information received from Alice by
performing an optimum quantum measurement (i.e., a joint measurement) of the other
entangled light beam and the light beam that returned from Alice.

As a first step toward evaluation of the system performance, we focused on the
communication performance from Alice to Bob, and investigated the basic performance
characteristics based on the error probability criterion. First, using the quasi-Bell state as
the light source, we derived an analytical expression for the error probability by using an
8× 8 matrix representation to express the density operators of the two received quantum
states affected by the reflectivities {R0, R1}, which corresponded to the binary information
that Alice wants to send. Then, using this analytical expression, we compared the superior
performances of the AQC systems using the TSVS, the maximum quasi-Bell state, and
the non-maximum quasi-Bell state with that of the asymmetric classical communication
(ACC) system in terms of their error probabilities. As a result, it was clarified that the
error probabilities of the AQC systems using the maximum and non-maximum quasi-Bell
states differed only slightly. In addition, the error probability of the AQC system using the
quasi-Bell state is always lower than that of the ACC system, regardless of the reflectivity
setting, and the AQC system using the quasi-Bell state also shows a clear performance
advantage over the system using the TSVS when a sufficiently large average number of
photons is used. In fact, as described in Section 2, when the average number of photons
is large, the amount of entanglement of the TSVS is overwhelmingly greater than that of
the quasi-Bell state, but the results in this paper show that the performance of the AQC
system using the quasi-Bell state is overwhelmingly better than that of the same system
using the TSVS. Therefore, the performance of the AQC system should be determined by
selecting a type of entangled state that is suitable for the system, rather than by considering
the amount of entanglement. The conclusion above is strengthened by the fact that the
performance of the ACC system surpassed that of the AQC system using the TSVS when
the average number of photons was sufficiently large. What causes quasi-Bell state to work
better than the TSVS? Unfortunately, as far as we know, there are no studies in terms of
the comparison between the quasi-Bell state and the TSVS, except for references [18,19],
although the reason for the superiority of the quasi-Bell state and some related potential
properties of that have not been elucidated. These studies also reveal the fact that there
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are some entanglement-based systems or protocols that require a suitable entangled state
rather than a large amount of entanglement to improve its performance. Additionally, we
believe the advantage of the quasi-Bell state over the TSVS comes from the robustness of
coherent states against attenuation. However, a perfect explanation is not yet available. We
consider the issue to be a very challenging topic that has value as a future subject. Getting
back to the main topic, when R0 is small or when R1 − R0 is large, the AQC system using
the quasi-Bell states shows a clear advantage when only a small average number of photons
is used. In particular, when R0 = 0, the AQC system using the quasi-Bell state has the
same or a lower error probability than the corresponding system using the TSVS. However,
when R1 = 1, a large average number of photons is required to enable the AQC system
using the quasi-Bell state to exceed the performance of the system using the TSVS. Finally,
we compared the error probability for the AQC system using the quasi-Bell state, the lower
bound on the error probability for the AQC system using the TSVS, and the universal lower
bound on the error probability, and found that performance closer to the universal lower
bound was achieved using the quasi-Bell state when compared with the system with TSVS
in the case when R0 and R1 are very small. As a result, it is expected that the AQC system
using the quasi-Bell state will be applicable even in ultra-long distance channels, in which
severe attenuation can occur.

In this paper, we evaluated the performance based on the error probability results
for the AQC system and clarified the basic performance characteristics. In fact, if an
eavesdropper Eve was present between Alice and Bob, one of the simplest attack methods
for Eve would be to intercept the light corresponding to mode S, which is reflected from
Alice. However, Eve cannot access the light corresponding to mode A, which remains
inside Bob, and thus there would be a difference in reception performance between Eve
and Bob. This reception performance difference creates the security of the AQC system.
In addition, the AQC system discussed in this paper is expected to have various security
applications, e.g., quantum cryptographic conferencing [35]. Future work will include
security evaluation of this system, including the case of information leakage when an
eavesdropper is present, and security enhancement for this system by performing some
quantum communication protocols.
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AQC Asymmetric quantum communication
ACC Asymmetric classical communication
IoT Internet of Things
EPR state Einstein–Podolsky–Rosen state
TSVS Two-mode squeezed vacuum state
ASK Amplitude shift keying
Max Quasi-Bell Maximum quasi-Bell state
NonMax Quasi-Bell Non-maximum quasi-Bell state
Coherent Coherent state
LB Lower bound
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Appendix C

The proof that B < 0 is presented as follows:

Proof. To prove that B = − (L0+1)(L1+1){(aκ−1)(dκ−1)−(b−cκ)2}
4(κ2−1)2 < 0, it is necessary to prove that

(aκ − 1)(dκ − 1)− (b− cκ)2 > 0, (A25)

because − (L0+1)(L1+1)
4(κ2−1)2 < 0. This inequality can be rewritten as follows using a

hyperbolic function:
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We then rewrite W using a sum-to-product formula and we then obtain

W = 2 sinh
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The first term on the right-hand side (RHS) is negative, and the second term on the RHS
is positive because 0 ≤ R0 < R1 ≤ 1. Furthermore, the absolute value of the first term is
greater than that of the second term because (1 + R0)(1 + R1) > (1 +

√
R0R1)

2, and sinh
is odd and increases monotonically. Therefore, W < 0, and thus B < 0.
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