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It is shown that a simplified version of the error correction code recently suggested by Shor@Phys. Rev. A
52, R2493~1995!# exhibits manifestation of the quantum Zeno effect. Thus, under certain conditions, protec-
tion of an unknown quantum state is achieved. Error prevention procedures based on four-particle and two-
particle encoding are proposed and it is argued that they have feasible practical implementations.
@S1050-2947~96!51308-9#

PACS number~s!: 03.65.Bz, 89.70.1c

Recently, Shor@1# obtained a surprising and even seem-
ingly paradoxical result: an unknown quantum state can be
kept unchanged in a noisy environment. His procedure was
optimized by others@2–5#, all trying to solve the problem of
decoherence in quantum computers. However, at the present
stage these results have more theoretical than practical im-
portance, since they assume the existence of a fairly sophis-
ticated quantum computer which has not been built yet.
Shor’s idea has another application which is closer to prac-
tical applications of today. Storing an unknown quantum
state for some period of time~a ‘‘quantum memory’’! is an
essential ingredient of various quantum cryptographic
schemes@6,7#. It also can improve the reliability of the trans-
mission of a quantum state@8#. The present technology is
very close to the practical realization of these ideas@9–13#.

The reason why one can see Shor’s result as paradoxical
is the following. The expectation value of an operator can be
measured using weak adiabatic measurements@14,15#. Even
if the coupling is very weak it can lead to a definite result,
provided it is applied for a long enough time. This weak
interaction with the measuring device can be considered as
an action of a noisy environment, and therefore Shor’s pro-
cedure performed frequently during the measurement should
apparently keep the quantum state unchanged. Consider two
eigenstates of an operatorA with the eigenvaluesa1, and
a2. If the initial state of the measured system isua1&, then the
outcome of the measurement will be^A&5a1; if, instead, the
initial state is ua2&, then the outcome of the measurement

will be ^A&5a2; and if the initial state is
1/A2(ua1&1ua2&), then the outcome of the measurement will
be ^A&51/2(a11a2). However, a pointer showing
1/2(a11a2) is a physical situation which is different from
the mixture of situations in which the pointer showsa1 and
a2. Therefore, we face a contradiction with the linearity of
quantum theory.

The solution to this apparent paradox is that the coupling
necessary for the adiabatic measurement ofA, even if it is
very weak, is different from the noise that can be dealt with
using Shor’s method. In the Shor procedure a qubit is en-
coded in nine particles, and the noise acting on each particle
is assumed to be independent. However, in general, the vari-
ableA is related to several particles, such that the measure-
ment requires coupling to some of them simultaneously. If
we bring the particles to the same location and perform the
adiabatic coupling with the measuring device, the indepen-
dence requirement is not fulfilled explicitly. For some non-
local variables there are measurement methods which can be
applied without moving the particles to the same location
@16#, but then the parts of the measuring device which inter-
act with the various particles must be in a correlated state
prior to the interaction. Again, this corresponds to a corre-
lated noise, and therefore Shor’s procedure is not applicable.

There is another aspect of Shor’s method which did not
get enough attention. Usually, Shor’s procedure and its
modifications are considered as errorcorrectionschemes. In-
deed, these methods correct the state completely if only one
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particle has decohered. But, Shor’s procedure is also a
scheme forpreventingerrors. For any system and any finite
time T, frequent enough performance of Shor’s procedure
will ‘‘freeze’’ the state, exhibiting manifestation of the quan-
tum Zeno effect. The use of the Zeno effect for correcting
errors in quantum computers was first suggested by Zurek
@17#, and it is a part of a scheme recently proposed by
Barencoet al. @18#.

The only assumptions required for freezing a state are the
boundness of the energy uncertainty of the system and the
environment, and the independence of the noise disturbing
each particle. If the energy uncertainty is bounded, then the
rate of change of the quantum state of the system plus the
environment is bounded. GivenN, the number of Shor’s tests
performed during the timeT, the evolution of a qubit and its
environmentue& during a short period of timeT/N can be
written in the following way:

u0&ue&→g1u0&ue&1d1u0&ue1&1d2u1&ue2&,

u1&ue&→g2u1&ue&1d3u1&ue3&1d4u0&ue4&, ~1!

where ^eue1&5^eue3&50, g i512O(1/N2), and
d j5O(1/N). This evolution differs from what was consid-
ered before in that that no change takes place in the zero
order in 1/N. We consider the situation in which all the par-
ticles evolve~independently! according Eq.~1! with different
coefficients and different final states of their local environ-
ments. We claim that if Shor’s tests are performed frequently
enough they will always yield the outcome ‘‘no error,’’ and,
in the same limit of large number of testsN, the state of the
system will not be changed during the finite timeT ~and this
is what led us see the apparent paradox of Shor’s scheme
described above!.

We propose to simplify Shor’s procedure. We keep the
encoding step and the measurement step, but we suggest that
we omit the correction step. Moreover, the last part of the
measurement step, the observation, can be omitted, too—the
coupling with the measuring device is enough. Clearly, a
protective device that only tests a system is significantly sim-
pler than one that also makes corrections. However, the most
important point is that we can reduce the number of particles
involved in the encoding of a quantum state. In the original
Shor procedure three triplets are used for determining which
particle was damaged: three particles or three triplets are
compared, and if one is different from the other two the state
is corrected. In the present procedure we do not have to
perform corrections, so two doublets are enough. Therefore,
we need only four particles instead of nine. The encoding is
given by the following transformation:

u0&→u0E&[ 1
2 ~ u00&1u11&)~ u00&1u11&),

u1&→u1E&[ 1
2 ~ u00&2u11&)~ u00&2u11&), ~2!

such that a qubitau0&1bu1& is encoded asau0E&1bu1E&.
The protection procedure consists of frequent tests that

the four-particle system has not left the subspace of the en-
coded states given by Eq.~2!. In order to see that an arbitrary
encoded stateau0E&1bu1E& is indeed frozen due to the
quantum Zeno effect we note that the two following condi-

tions are fulfilled: First, after the evolution for a short time
T/N the amplitude of the state outside the subspace of the
encoded states is of the order of 1/N. The probability for
getting the result ‘‘out of subspace’’ is of the order of
1/N2, and therefore, the probability of obtaining such an out-
come during the timeT is proportional to 1/N. TakingN, the
number of tests during the timeT, large enough we can
decrease the probability of such an error below any desired
level. Second, after the evolution of timeT/N the amplitude
of the stateb* u0E&2a* u1E&, which is the state inside the
subspace of the encoded states orthogonal to the initial en-
coded state, is of the order of 1/N2. Therefore, given that all
N projections yielded ‘‘inside the subspace,’’ the difference
between the final and the initial states is of the order of
1/N and can be neglected for largeN.

The required projection can be performed in several steps
which are, at least conceptually, simple. Each step is a cer-
tain nonlocalmeasurement in the sense that we measure a
nonlocal variable related to two or more particles. We can do
it without bringing the particles of the system together using
correlated particles of the measuring device@14#, but in fact,
since the simultaneity of the coupling with different particles
of the system is not crucial for our purpose, we can use even
single-particle measuring devices.

The first step is to test that there are no terms which
include the statesu01& and u10& for the first two particles.
The method is as follows: A test particle, prepared in a cer-
tain state, interacts with the first and then with the second
particle of the system. The interaction ‘‘flips’’ the state of the
test particle if the particle of the system is in the stateu1& and
does not flip it if the particle is in the stateu0&. The states
u0& and u1& of the particles of the system remain unchanged
by this procedure. Then we measure the final state of the test
particle. If this state is identical to the initial state we know
that the system has only terms of the formu00& and u11&. If
we perform our tests frequently enough the probability of
finding ‘‘wrong’’ terms during all the tests goes to zero. In
this case we can omit the last part of the procedure since the
quantum Zeno effect requires only correlation with some ex-
ternal system, and therefore, the observation of the state of
the test particle is not necessary. It is interesting to note that
it is also not necessary to prepare a well-defined initial state
of the test particle. Although there are certain initial states of
the test particle which end up uncorrelated to the system,
several test particles emerging from a truly random source
will work, too.

The next step is the same procedure performed with par-
ticles 3 and 4. After completing this test we know that the
state of the four-particle system has the form

a~ u00&1u11&)~ u00&1u11&)

1b~ u00&2u11&)~ u00&2u11&)

1c~ u00&1u11&)~ u00&2u11&)

1d~ u00&2u11&)~ u00&1u11&). ~3!

For completing the projection on the subspace of the en-
coded states in Eq.~2! we have to show that the coefficients
c andd vanish. In order to see how this can be achieved we
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rewrite the state in Eq.~3! using new local bases for all
particles,u 0̃&[1/A2(u0&1u1&) and u 1̃&[1/A2(u0&2u1&),

a~u0̃0̃&1u1̃1̃&!~u0̃0̃&1u1̃1̃&!

1b~u0̃1̃&1u1̃0̃&!~u0̃1̃&1u1̃0̃&!

1c~u0̃0̃&1u1̃1̃&!~u0̃1̃&1u1̃0̃&!

1d~u0̃1̃&1u1̃0̃&!~u0̃0̃&1u1̃1̃&!. ~4!

The final step of the procedure is similar to the first two
steps, but it involves interaction with all four particles of the
system. The test particle, prepared in a certain state, interacts
with all four particles one after the other in such a way that it
‘‘flips’’ if the particle is in the stateu 1̃& and does not ‘‘flip’’
if the particle is in the stateu 0̃&. We ‘‘look’’ on the test
particle only after it has interacted with all four particles. If
the final state of the test particle is identical to the initial one,
we know that the state of the system belongs to the desired
subspace. Again, observing the test particle at the end of the
process is not necessary for the Zeno effect to occur.

The Shor error correcting method was optimized such that
only five particles instead of nine are used@4,5#. Thus, one
might expect that the ideas of five-particle encoding proce-
dures can be used to reduce the number of particles neces-
sary for the Zeno-type error prevention method. However,
the simple counting argument used to show that five is the
minimal number of particles required for error correction
@4,8# suggests that three qubits are not enough for error pre-
vention. A necessary requirement for an error prevention
code is that at the first order, i.e., via one-particle decoher-
ence, the stateu0E& cannot evolve to the stateu1E&. If
we assume that each type of decoherence~flip, sign
change, and flip together with sign change! moves an en-
coded ‘‘0’’ to different orthogonal states, then there are
23212333522 available states for the encoded ‘‘1.’’
This, of course, is a meaningless statement since the assump-
tion of the orthogonality of the states created after various
one-particle decoherence actions is wrong. Nevertheless, the
general statement remains true and can be checked by a
straightforward analysis: all possible three-particle encodings
of one state generate, via single-particle decoherence,
enough states to cover the whole Hilbert space of the three-
particle system. Note that for four-particle encoding this na-
ive counting shows no problem; we have 2421243353
orthogonal states for encoding ‘‘1.’’

In fact, some single-particle errors create identical vectors
such that we have only six mutually orthogonal states ob-
tained from the stateu0E&. Moreover, one error yields only
four new states from the stateu1E&. So we still have
242126212454 states available. As pointed out by
Shor,@19# this allows us to encode one more qubit using the
same four particles. The states of a system composed by two
qubits can be encoded as follows:

u00&→u0E&[ 1
2 ~ u00&1u11&)~ u00&1u11&),

u01&→u1E&[ 1
2 ~ u00&2u11&)~ u00&2u11&),

u10&→u2E&[ 1
2 ~ u01&1u10&)~ u01&1u10&),

u11&→u3E&[ 1
2 ~ u01&2u10&)~ u01&2u10&). ~5!

There is no single-particle error which can bring from one
encoded stateu i E& ( i50,1,2,3) to another. Thus, frequent
projections on the subspace generated by the four states
u i E& should protect an unknown state in four-dimensional
Hilbert space, i.e., two qubits. The realization of this projec-
tion is only slightly more difficult than the projection on the
two-state subspace. The last step~the four-particle measure-
ment! remains the same, but instead of the two two-particle
tests we need to perform one four-particle measurement
similar to that of the second step, but in the original basis.

We have shown that encoding one or two qubits in four
qubits is in principle enough for the error prevention proce-
dure. However, it is important to examine the type of noise
in our system. Our method relies on the Zeno effect so it can
deal only with ‘‘slow’’ noise. The characteristic time of the
noise coupling has to be larger than the time interval be-
tween the projection measurements. If the realistic model of
the noise is that molecules of the environment cause very
fast finite uncertain changes during rare collisions with the
particles, then our method is not applicable@20#. It also can-
not help if the main cause of the decoherence is some spon-
taneous decay process, since the quantum Zeno effect does
not take place when the time interval between the measure-
ments is larger than the characteristic time for which the
exponential decay approximation is applicable. However, if
the appropriate model is that the environment becomes
slowly entangled with the system, then our method works.

Even in this case the error correction codes have some
advantages over error prevention codes. The frequency of the
required procedures is significantly smaller in the error cor-
rection code; the error correction procedure has to be per-
formed before the time that the second-order disturbance be-
comes large, while the error prevention procedure has to be
performed before the time that the first-order disturbance be-
comes large. Thus, if we want to slow down the decoherence
by a factor ofN, we have to perform our error prevention
procedure by the same factorN more frequently than an
error correction code. However, since our procedure is much
more simple, it is very plausible that it will be more practical
in some cases. In particular, since the technology of handling
several qubits is just developing, it is most probable that the
first experiments will be performed with a minimal number
of entangled particles.

There are quantum systems for which the noise leads
mainly to dephasing, leaving the amplitude unchanged. This
happens when the orthogonal states in aparticular basis be-
come entangled with the environment. It has been shown
@8,21# that for this restricted type of decoherence there exist
three-particle error correction codes. The quantum Zeno ef-
fect can help in this case too: a two-particle error prevention
scheme exists@22#. The encoding is given by

u0&→u0E&[1/A2~ u00&1u11&),

u1&→u1E&[1/A2~ u01&1u10&). ~6!

The error prevention procedure is especially simple in this
case. We have to test that our state belongs to the subspace
generated by the two encoded statesu0E& andu1E&. This can
be implemented using just a single step of the type described
above. Again, the particle of the measuring device is pre-
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pared in a certain state, then it interacts with the two particles
of the system, one after the other. The interaction is such that
the state of the test particle flips if the particle is in the state
u 1̃& and does not flip if the particle is in the stateu0̃&. If the
state of the system belongs to the subspace of the encoded
states, which can be written in the formau0̃0̃&1bu1̃1̃&, the
state of the test particle will not be flipped after the two
interactions, while it will be flipped if the state of the two
particles does not belong to this subspace. This correlation
leads to the quantum Zeno effect, which effectively prevents
the system leaving the subspace of encoded states. More-
over, the state does not change significantly inside the sub-
space. The phase error after one such operation is of the
order of 1/N2, and therefore, for a large number of testsN
during the period of timeT the total error can be neglected.

Maybe in a somewhat pessimistic tone we want to con-
clude by saying that the real problem with error preventing
or correcting codes is the noise introduced by the procedure
itself. As was explained at the beginning, the type of inter-
action involved in the prevention-correction measurements
requires either bringing the particles of the system together,
or letting them interact with correlated particles or with a
single particle as proposed here. In all these cases the noise,
if present, cannot be considered independent, and therefore

the error correction or prevention effects of all the discussed
methods do not occur. This does not mean that the result of
Shor is not important—even the reduction of decoherence
between the measurements is an extremely important and
surprising effect.

Taking into account the price in the noise which we will
probably have to pay in every projection procedure, the fact
that we have to perform them more frequently is a significant
disadvantage of error prevention schemes over error correc-
tion schemes. But again, it is compensated for by the fact
that we need a smaller number of steps for each projection
procedure. Since our code seems to be the simplest code
proposed so far, it has a good chance to be the first imple-
mented in a real laboratory. The experimental observation of
the quantum Zeno effect reported by Itanoet al. @23# con-
tributes to our optimism. Thus, our scheme might serve as an
effective testbed for the robustness of quantum computers
and other quantum communication devices.
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