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A scheme is presented for protecting one-qubit quantum information against decoherence due to a general

environment and local exchange interactions. The scheme operates essentially by distributing information over

two pairs of qubits and through error-prevention procedures. In the scheme, quantum information is encoded

through a decoherence-free subspace for collective phase errors and exchange errors affecting the qubits in

pairs; leakage out of the encoding space due to amplitude damping is reduced by quantum Zeno effect. In

addition, how to construct decoherence-free states for n-qubit information against phase and exchange errors is

discussed.

DOI: 10.1103/PhysRevA.66.034301 PACS number~s!: 03.67.Lx, 03.65.Ta

Quantum computing has attracted much interest in cavity

QED, trapped ion systems, NMR systems, and solid state

systems using nuclear spins, quantum dots, superconducting

quantum interference devices, Josephson junctions, and
single-Cooper-pair devices. It is realized that one of the main
obstacles in realizing a quantum computer is the decoherence
resulting from the coupling of the system with environment.
Among methods designed to protect information, there are
theoretical proposals for preventing quantum information
against errors by using the quantum Zeno effect @1–4#. Com-
pared with conventional error-correction schemes, the
decoherence-reducing strategies based on the Zeno effect are
significantly simpler since they only require making tests on
a system and no error-correction steps are needed. The most
important point is that they can reduce the number of qubits
involved in the encoding of a quantum state.

Recently, using the Zeno effect, Hwang et al. @4# consid-
ered how to protect information in an error model where
phase errors are dominant but other errors are still non-
negligible. Their schemes are based on encoding one-qubit
information au0&1bu1& through a code u0L&5u01& and
u1L&5u10&. Without doubt, their schemes work perfectly if
there is no qubit-qubit exchange interaction @5,6#. However,
it is obvious that exchange interaction ~exchanging the qu-
bits! turns the encoded state au01&1bu10& into au10&
1bu01&, which leads to potentially fatal consequences @i.e.,
another term for bit-flipping error appears in the resulting
state ~8! of Ref. @4#, not only the phase errors as mentioned
there#. Therefore, their schemes cannot work in the presence
of exchange interaction.

In this paper, an alternative scheme is proposed for pro-
tecting one-qubit information against decoherence due to a
general environment and local exchange interaction, based
on the method of pairing qubits @7–9# and the Zeno effect. In
this scheme, the original message is encoded through two

pairs of qubits ~a four-qubit encoding!. The present code
forms a decoherence-free subspace ~DFS! @7,10–12# for col-
lective phase and exchange errors, if the following approxi-
mations apply: ~a! the exchange interaction between the two
pairs can be made negligible ~this is possible by setting the
two pairs apart, since the exchange effects generally decrease
rapidly as the qubit-qubit distance increases @6#!, and ~b! the
two qubits in each pair are close to each other so that each
pair undergoes collective decoherence.

Consider two separate pairs I and II each containing two
qubits. The four identical qubits are labeled by 1, 18, 2 and
28. Qubits 1 and 18 form the pair I while qubits 2 and 28

constitute the other pair II. The two qubits in either pair are
assumed to be close to each other so that they will undergo
collective decoherence. Under the assumption that the ex-
change interaction between the two pairs is small enough to
be negligible, the Hamiltonian for the qubit system and the
environment is therefore of the form

H5HS1HB1HSB1Hex , ~1!

where HS and HB denote the qubit system and the
environment-free Hamiltonians, respectively; HSB is the in-
teraction Hamiltonian, and the operator Hex corresponds to
local exchange interactions between the two qubits in either
pair. If the two pairs are physically identical, i.e., the sepa-
ration of the qubits in each pair is the same, the operator Hex

will act simultaneously and identically on both pairs of qu-
bits. In this case, Hex acts as a collective exchange operator
which has the following form:

Hex5J~E118
1E228

! ~2!

(J is a constant; E i j is an independent exchange operator for
two identical qubits i and j, which has the property
E i jue ie j&5ue je i& , e iP$0,1% @6#!. The expressions for HS and
HSB are as follows:

HS5e0~s I
z
1s II

z !,

*Email address: cpyang@floquet.chem.ku.edu
†Email address: sichu@ku.edu
‡ Email address: han@ku.edu

PHYSICAL REVIEW A, 66, 034301 ~2002!

1050-2947/2002/66~3!/034301~4!/$20.00 ©2002 The American Physical Society66 034301-1



HSB5l1
z s I

z
^ Vz1l1

1s I
1

^ V11l1
2s I

2
^ V21l2

z s II
z

^ Vz8

1l2
1s II

1
^ V

1
8 1l2

2s II
2

^ V
2
8 . ~3!

Here, s I
j
5s1

j
1s18

j
, s II

j
5s2

j
1s28

j
( j5z ,1 ,2); s i

j is

Pauli spin operators of the qubit i; V j and V j8 are the envi-

ronment operators coupled to these degrees of freedom. This
interaction Hamiltonian HSB applies to the following situa-
tion: the qubits inside each pair undergo collective decoher-
ence while the two pairs undergo independent decoherence

for the case of different V j and V j8 or imperfect collective

decoherence for the case of the same V j and V j8 .

Suppose that qubit 1 is the original information carrier,
which is initially in an arbitrary unknown state uc&5au0&
1bu1& . The encoding is

uc&enc5au0&L1bu1&L , ~4!

where

u0L&5~ u01&1u10&)118
~ u01&2u10&)228

,

u1L&5~ u01&2u10&)118
~ u01&1u10&)228

. ~5!

This encoding will protect the state ~4! against collective
phase errors taking place at either pair or both, since the
qubits 118 and 228 are paired up in the decoherence-free
state combinations u01& and u10&. Moreover, it is obvious
that the collective exchange operator ~2! has the property
Hexu0&L5(E118

1E228
)u0&L50 and Hexu1&L5(E118

1E228
)u1&L50, which shows that the independent exchange

errors for each pair cancel each other due to the cooperative
action between the local exchange interaction in one pair and
the local exchange interaction in the other pair, i.e., the code
also forms a DFS for exchange errors.

Suppose that the environment is initially in the state
ucb(0)&. During a finite time T0, perform a test N times. In
a short period of time T0 /N , under the Hamiltonian ~1!, the
encoded state ~4! will evolve into

uc~T0 /N !&'@12iH~T0 /N !#uc&enc ^ ucb~0 !&5@a~ u01&1u10&)118
~ u01&2u10&)228

1b~ u01&2u10&)118
~ u01&1u10&)228

]

^ @12iHB~T0 /N !#ucb~0 !&2i~T0 /N !u11&118
~ u01&2u10&)228

^ l1
1aV1ucb~0 !&2i~T0 /N !u00&118

~ u01&

2u10&)228
^ l1

2aV2ucb~0 !&2i~T0 /N !~ u01&2u10&)118
u11&228

^ l2
1bV

1
8 ucb~0 !&2i~T0 /N !~ u01&

2u10&)118
u00&228

^ l2
2bV

2
8 ucb~0 !&. ~6!

Equation ~6! shows that after evolution for a short time
T0 /N , if one performs a subsequent measurement to deter-
mine whether the four-qubit system has left the encoding
space spanned by Eq. ~5!, the probability for getting a result
‘‘out of the encoding space’’ is of the order of 1/N2, and
therefore the probability of obtaining such an outcome dur-
ing the time T0 is proportional to 1/N . Taking N, the number
of tests during the time T0, large enough one can decrease
the probability of such an error below any desired level. On
the other hand, after the evolution of time T0 /N the state
inside the encoding space remains the same as the initial
encoded state, and the probability of obtaining such an out-
come during the time T0 is proportional to 12O(1/N).

The required projection can be performed in two steps.
The first step is to prepare a test qubit ~labeled by t) in the
state u0&, make it interact with each of the two qubits in the
first pair I consecutively by a joint operation C1tC18t , and
then perform a measurement on the test qubit. The measure-
ment outcome u1& projects the whole system onto the state

uc~T0 /N !&85a@a~ u01&1u10&)118
~ u01&2u10&)228

1b~ u01&

2u10&)118
~ u01&1u10&)228

]1b~ u01&

2u10&)118
u11&228

1c~ u01&2u10&)118
u00&228

,

~7!

while u0& corresponds to the projection onto the state

uc~T0 /N !&95du11&118
~ u01&2u10&)228

1eu00&118
~ u01&2u10&)228

. ~8!

Under the condition of large N, the effects of the state ~8!,
which is outside the encoding space, can be negligible. Thus,
after this test step, the four qubits and the environment will
be in the state ~7!.

The second step follows the same procedure as described
above. One needs to have the test qubit ~in the zero state!
interact with each of the two qubits in the second pair II by a
joint operation C2tC28t and then make a measurement on the
test qubit. From Eq. ~7! one can see that the measurement
outcome u0& projects the whole system onto the state

b~ u01&2u10&)118
u11&228

1c~ u01&2u10&)118
u00&228

, ~9!

which is the wrong state out of the encoding space, and again
the effects of this state ~9! can be neglected if one frequent
enough performs, on the other hand, if the test qubit is mea-
sured in the state u1& , the four qubits will remain in the
original encoded state ~4!. Thus, after the time T0, the final
state for the whole system will be given by

uc~T0!&'uc&enc ^ uc̃b& , ~10!

where uc̃b& is the state of the environment. It is clear that no
errors in the encoded state ~4! occur after overall time evo-
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lution. Thus, one can protect one-qubit information against
decoherence without any other error-correction.

The present scheme works via the Zeno effect; thus it can
deal only with ‘‘slow’’ noise. The characteristic time of the
noise coupling has to be larger than the time interval between
the projection measurements. These limitations are also re-
quired by other error-prevention schemes based on the quan-
tum Zeno effect @1–4#.

One might envision using Vaidman et al.’s code @1#

u0L&5~ u00&1u11&)~ u00&1u11&),

u1L&5~ u00&2u11&)~ u00&2u11&) ~11!

to accomplish the goal. As long as the exchange interaction
between the left two qubits and the right two qubits is small
enough to be negligible, this code also forms a DFS for
exchange errors. It is noted that the code ~11! works for the
case of each qubit undergoing independent decoherence, i.e.,
the left or the right two qubits in Eq. ~11! do not need to be
set close. In this sense, the scheme of Vaidman et al. is better
than the present scheme since it has a less strict condition.
However, as was argued by Vaidman et al. @1#, after a short-
time evolution, the test qubit has to interact with all four

physical qubits of the system consecutively to detect phase
errors, as well as interacting with every two physical qubits
of the system to distinguish bit-flip errors. In contrast, since
the present code forms a DFS for collective phase errors, no
phase errors occur and thus no such step for detecting phase
errors is required. As shown above, the present scheme only
needs to detect bit-flip errors by a test qubit interacting with
two qubits for each test step. Therefore, the present error-
prevention procedures are much simpler.

Duan and Guo @2# have shown that one-qubit information
can be protected against decoherence due to a general envi-
ronment with only two qubits and the assistance of an exter-
nal driving field. The present scheme, however, focuses on
how to protect one-qubit information without using an exter-
nal driving field and how to reduce decoherence arising from
the qubit-qubit exchange interaction.

Another point may need to be made here. If there is no
exchange interaction, and if a general environment affects
qubits independently, u0L& and u1L& in Eq. ~4! could be the
logical zero and 1 of the five-qubit @13# or seven-qubit codes
@14#; or they could be the logical zero and 1 of the four-qubit
code @15#.

In what follows, our purpose is to show how to construct
DF states for n-qubit quantum information against collective
phase and exchange errors. The general state of n qubits is
expressed as

uc&5(
$i l%

c $i l%
u$i l%&, ~12!

where u$i l%& represents a computational basis state ui1&
^ ui2& ^ ••• ^ uin& with i l50 or 1. The state ~12! is encoded
into the following state of n12 pairs:

uc&enc5(
$i l%

c $i l%
u$i l%&L . ~13!

Here,

u$i l%&L5 )
k51

n12

u jkk8&

5u j118& ^ u j228& ^ ••• ^ u j (n12)(n12)8&. ~14!

In Eq. ~14!, u jkk8& indicates the encoded zero or one of the
kth pair, which is given by

u0kk8&→
1

2
~ u01&1u10&)kk8

,

u1kk8&→
1

2
~ u01&2u10&)kk8

, ~15!

where kk8 represents the two qubits in the kth pair. Clearly,
such an encoding ~15! on each pair ensures that the encoded
state ~13! is a DF state for collective phase errors if the two
qubits in each pair are close to each other.

Assume that the separation of the two qubits in each pair
is the same and that the exchange interaction between any
two pairs is negligible. Thus the collective exchange operator
Hex is

Hex5J (
k51

n12

Ekk8
. ~16!

It is worth noting that not all the DF states for phase errors
are DF states for exchange errors, since exchanging the two
qubits in each pair will make u0kk8&→u0kk8& while u1kk8&
→2u1kk8& ~for the latter, there is a phase-flip error!. How-
ever, one can still expect that the encoded state ~13! is a DF
state for exchange errors, through an appropriate encoding
on each pair and making the encoded state ~13! an eigenstate
of the collective exchange operator ~16!.

In order to have the encoded state ~13! an eigenstate of
the collective exchange operator ~16!, one needs to make
each logical state in the encoded state ~13! be an eigenstate
of the collective exchange operator ~16! with the same eigen-
value. In general, for n12 pairs of qubits, one can construct

Cn12
m orthogonal states. Each of them takes the form ~14!

and all of them are eigenstates of the collective exchange
operator ~16! with the same eigenvalue J(n22m12)
@where m51,2, . . . ,(n11)/2 for odd n and m

51,2, . . . ,n/211 for even n]. It is easy to see that ~a! Cn12
m

reaches maximum when m5(n11)/2 for odd n or m5n/2
11 for even n, and ~b! such a maximum satisfies the relation

n,log2 Cn12
m

,n11. The point ~a! means that in the case

when each orthogonal state is an eigenstate of the collective
exchange operator ~16! with the same eigenvalue J for odd n

or 0 for even n, the number of such orthogonal states is
maximal; the point ~b! implies that all these orthogonal
states, as logical states $u$i l%&L%, are sufficient to encode n

logical qubits. Thus, n12 pairs of qubits are sufficient to
encode an arbitrary state of n qubits into a DF state. For large
n, the efficiency of the encoding is approximately 1/2. On the
other hand, it is easy to show that n11 pairs of qubits are
not sufficient to do the above.

It is interesting to note that, for some kinds of entangled
state of n ~distant! qubits, the DF states for collective phase
and exchange errors can be obtained by pairing each en-
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tangled qubit with an ancilla qubit and applying local opera-
tion on each pair. For example, consider the following en-
tangled state:

uC& (1)
5a0u0&1,2, . . . ,(n21)u1&n

1 (
i51

n21

a iun22,1&1,2, . . . ,(n21)
(i) u0&n , ~17!

where the number of entangled qubits n>3, and un
22,1&1,2, . . . ,(n21)

(i) denotes the ith computational basis state

of the n21 entangled qubits involving n22 zeros and 1

ones. In the case of ua0u5ua iu51/An , the states ~17! are
known as the entangled W states @16#. If each entangled qubit
is paired with an ancilla qubit and then the two orthogonal
states u0& and u1& of the original kth entangled qubit are
encoded into the logical zero u0kk8& and one u1kk8& in Eq.
~15!, respectively, one can see that the resulting encoded
state for the state ~17! is an eigenstate of the collective ex-

change operator Hex5J(k51
n Ekk8

with an eigenvalue (n

22)J , i.e., the encoded state is a DF state for exchange
errors; and it is also a DF state for collective phase errors if
collective decoherence holds for each pair.

In addition, entangled states of the form

uC& (2)
5aui1 ,i2 , . . . ,in&1bu ī 1 , ī 2 , . . . , ī n& ~18!

~which, in the case uau5ubu51/A2, are known as entangled
Greenberger-Horne-Zailinger states @17#! are widely used in

information processing. Here, the i j are ones or zeros and ī j

are their complements. By pairing each entangled qubit with
an ancilla qubit and performing the same encoding on each
pair as above, one can see that the two components

ui1 ,i2 , . . . ,in&L and u ī 1 , ī 2 , . . . , ī n&L in the encoded state

uC&enc
(2)

5aui1 ,i2 , . . . ,in&L1bu ī 1 , ī 2 , . . . , ī n&L are eigen-

states of the collective exchange operator Hex

5(k51
n Jkk8

Ekk8
with an eigenvalue (k51

n (21) ikJkk8
for

ui1 ,i2 , . . . ,in&L while (k51
n (21) ī kJkk8

for

u ī 1 , ī 2 , . . . , ī n&L . It is easy to show that after evolving for
time t the n pairs of qubits will be in the state

aui1 ,i2 , . . . ,in&L1e iwbu ī 1 , ī 2 , . . . , ī n&L , ~19!

where w5t(k51
n @(21) ik2(21) ī k#Jkk8

. This accumulated
phase factor in the final state might not be significant for the
states ~18! in some applications. Furthermore, if ~a! the num-
ber of the originally entangled qubits is even, ~b! the number
of 1’s is the same as that of 0’s in each of the two basis states
of Eq. ~18!, ~c! Jkk8

5J , the phase factor w will be zero. In
this case, the encoded state is perfectly protected against col-
lective phase and exchange errors during the time evolution.

So far, a three-qubit error-correction code @18–20# and a
two-qubit error prevention code @1,3#, which protect one-
qubit information against phase damping and exchange er-
rors, have been proposed. Compared with these schemes, the
present method has the advantage of not requiring error cor-
rection or error detection. Moreover, compared with the
schemes @18–20#, the present method requires less qubit re-
source in protecting the entangled states ~17! and ~18!, or in
protecting n-qubit information (n>5). Thus, the present
method is more efficient, although one has to have the two
qubits in each pair close to each other and all the pairs well
separated.

Finally, according to the above description, for each pair
leakage out of the encoding subspace spanned by Eq. ~15!,
due to amplitude damping, can be suppressed by frequent
tests on each pair. Thus, for a general environment, n-qubit
information or above n-qubit entangled states can also be
protected by encoding them into the above DF states plus the
Zeno effect.

In conclusion, we have presented an error-prevention
scheme for protecting one-qubit information against decoher-
ence due to a general environment and local exchange inter-
actions. As shown above, the present error-prevention proce-
dures are relatively simple. We have discussed how to
construct DF states for n-qubit information protecting against
collective phase and exchange errors. Moreover, we have
shown that certain kinds of important entangled states of n

~distant! qubits can be protected, by pairing each entangled
qubit with only one ancilla qubit and applying only local
operations on each pair.
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