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Error Rate Performance Analysis of

Coded Free-Space Optical Links over
Gamma-Gamma Atmospheric Turbulence Channels

Murat Uysal, Member, IEEE, Jing (Tiffany) Li, Member, IEEE, and Meng Yu, Student Member, IEEE

Abstract— Error control coding can be used over free-space
optical (FSO) links to mitigate turbulence-induced fading. In
this paper, we derive error performance bounds for coded FSO
communication systems operating over atmospheric turbulence
channels, considering the recently introduced gamma-gamma
turbulence model. We derive a pairwise error probability (PEP)
expression and then apply the transfer function technique in
conjunction with the derived PEP to obtain upper bounds on
the bit error rate. Simulation results are further demonstrated
to confirm the analytical results.

Index Terms— Atmospheric turbulence channel, free-space
optical communication, pairwise error probability, error perfor-
mance analysis.

I. INTRODUCTION

W IRELESS optical communications, also known as

free-space optical (FSO) communications, is a cost-

effective and high bandwidth access technique, which is

receiving growing attention with recent commercialization

successes [1]. With the potential high-data-rate capacity, low

cost and particularly wide bandwidth on unregulated spectrum,

FSO communications is an attractive solution for the “last

mile” problem to bridge the gap between the end user and the

fiber-optic infrastructure already in place. Its unique properties

make it also appealing for a number of other applications, in-

cluding metropolitan area network extensions, enterprise/local

area network connectivity, fiber backup, back-haul for wireless

cellular networks, redundant link and disaster recovery.

In FSO communications, optical transceivers communicate

directly through the air to form point-to-point line-of-sight

links. One severe impairment over FSO links is building-

sway as a result of wind loads, thermal expansion and weak

earthquakes. The effect of building-sway on the FSO link

reliability has been studied in detail [2], [3]. Another major

impairment is the atmospheric turbulence, which occurs as

a result of the variations in the refractive index due to
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inhomogeneities in temperature and pressure fluctuations. The

atmospheric turbulence results in fluctuations at the received

signal, i.e. signal fading, also known as scintillation in optical

communication terminology [4], severely degrading the link

performance, particularly over link distances of 1 km or longer.

Error control coding as well as diversity techniques can be

used over FSO links to improve the error rate performance

[5]–[8] . In [7], [8], Zhu and Kahn studied the performance

of coded FSO links assuming a log-normal channel model

for atmospheric turbulence. Specifically, they derived an ap-

proximate upper bound on the pairwise error probability (PEP)

for coded FSO links with intensity modulation/direct direction

(IM/DD) and provided upper bounds on the bit error rate

(BER) using the transfer function technique.

Although log-normal distribution is the most widely used

model for the probability density function (pdf) of the irradi-

ance due to its simplicity, this pdf model is only applicable

to weak turbulence conditions [4]. As the strength of tur-

bulence increases, multiple scattering effects must be taken

into account. In such cases, log-normal statistics exhibit large

deviations compared to experimental data. Furthermore, it has

been observed that log-normal pdf underestimates the behavior

in the tails as compared with measurement results. Since

detection and fade probabilities are primarily based on the tails

of the pdf, underestimating this region significantly affects the

accuracy of performance analysis. Due to the limitations of

log-normal model, many statistical models have been proposed

over the years to describe atmospheric turbulence channels un-

der a wide range of turbulence conditions, e.g. K distribution,

I-K distribution, and log-normal Rician channel [4]. Error rate

performance of coded FSO links assuming K distribution and

I-K distribution have been already studied by the authors in

[9].

In a recent series of papers on scintillation theory [10]–

[12], Andrews et.al. introduced the modified Rytov theory

and proposed gamma-gamma pdf as a tractable mathematical

model for atmospheric turbulence. This model is a two-

parameter distribution which is based on a doubly stochastic

theory of scintillation and assumes that small-scale irradiance

fluctuations are modulated by large-scale irradiance fluctua-

tions of the propagating wave, both governed by independent

gamma distributions. The gamma-gamma pdf can be directly

related to atmospheric conditions and provides a good fit to

experimental results. The performance analysis of an uncoded

FSO link over the gamma-gamma turbulence channel can be

already found in [4, p.235].

In this paper, we will investigate error rate performance of
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coded FSO links operating over atmospheric channels, where

the turbulence-induced fading is described by the gamma-

gamma distribution. The organization of the paper is as

follows: In Section II, we review the gamma-gamma channel

model under consideration. In Section III, an approximate

PEP expression is derived for an FSO communication system

with on-off keying (OOK) and in Section IV, we describe

how BER performance can be obtained using transfer function

technique in conjunction with the derived PEP expression. In

section V, we present numerical results to demonstrate the

accuracy of the derived PEP in comparison to the exact PEP

and also present bounds on the BER performance. Analytical

results are further confirmed through Monte-Carlo simulations.

Conclusions are presented in Section VI.

II. ATMOSPHERIC TURBULENCE CHANNEL MODEL

There has been a significant research effort on finding an ac-

curate and efficient channel model for atmospheric turbulence

channels. Owing to its simplicity, log-normal distribution is

the most widely used channel model, however its applicability

is mainly restricted to weak turbulence conditions [4]. Alter-

native models where the irradiance fluctuation is modeled as

the result of two multiplicative random processes include the

Rician/Log-normal model [13], the Nakagami/Gamma model

[14] and the Negative Exponential/Gamma model (also known

as the K channel) [15] among others. Recently, Andrews et.al.

proposed the modified Rytov theory [10]–[12], which defines

the optical field as a function of perturbations which are due to

large-scale and small-scale atmospheric effects. Specifically,

the normalized irradiance is defined as the product of two

random processes, i.e. I = IxIy , where Ix and Iy arise

from large scale and small scale turbulent eddies and each of

them follows gamma distribution. This leads to the so-called

gamma-gamma pdf, i.e.

f(I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
I

α+β

2
−1Kα−β(2

√

αβI), I > 0 (1)

where Ka(·) is the modified Bessel function of the second kind

of order a. Here, α and β are the effective number of small-

scale and large scale eddies of the scattering environment.

Assuming spherical wave propagation, these parameters can

be directly related to atmospheric conditions according to [4,

p.237], [16]1

α =

[

exp

(

0.49χ2

(1 + 0.18d2 + 0.56χ12/5)7/6

)

− 1

]−1

(2)

β =

[

exp

(

0.51χ2(1 + 0.69χ12/5)−5/6

(1 + 0.9d2 + 0.62d2χ12/5)5/6

)

− 1

]−1

(3)

where χ2 = 0.5C2
nk7/6L11/6 and d = (kD2/4L)1/2. Here,

k = 2π/λ is the optical wave number, λ is the wavelength, D
is the diameter of the receiver collecting lens aperture and

L is the link distance in meters. C2
n stands for the index

of refraction structure parameter and is altitude-dependent.

Several C2
n profile models are available in the literature, but the

1There is a missing term in the formula for β given by Eq. 94 of [4-Chapter
7]. The correct formula should be read as in our Eq. 3 [16]

most commonly used is the Hufnagle-Valley model described

by [4]

C2
n(h) = 0.00594(v/27)2(10−5h)10exp(h/1000)

+2.7 × 10−6exp(−h/1500) + Aexp(−h/1000) (4)

where h is the altitude in meters (m), v is the rms wind-

speed in meters per second (m/sec) and A is a nominal value

of C2
n(0) at the ground in m−2/3. For FSO links near the

ground, C2
n can be taken approximately 1.7 × 10−14 m−2/3

during daytime and 8.4 × 10−15 m−2/3 at night. In general,

C2
n varies from 10−13 m−2/3 for strong turbulence to 10−17

m−2/3 for weak turbulence with 10−15 m−2/3 often defined

as a typical average value [17].

III. DERIVATION OF PEP

The PEP represents the probability of choosing the coded

sequence X̂ = (x̂1, x̂2, · · · , x̂M ) when X = (x1, x2, · · · , xM )
indeed was transmitted. We consider IM/DD links using on-off

keying (OOK). Following [8], we assume that the noise can

be modeled as additive white Gaussian noise (AWGN) with

zero mean and variance N0/2, independent of the on/off state

of the received bit. Under the assumption of perfect channel

state information (CSI), the conditional PEP with respect to

fading coefficients I = (I1, I2, · · · , IM ) is given as [8].

P (X, X̂|I) = Q

⎛

⎝

√

ǫ(X, X̂)

2N0

⎞

⎠ (5)

where Q(·) is the Gaussian-Q function and ǫ(X, X̂) is the

energy difference between two codewords. Since OOK is used,

the receiver would only receive signal light subjected to fading

during on-state transmission. Thus, we have

P (X, X̂|I) =

(

√

Es

2N0

∑

k∈Ω

I2
k

)

(6)

where Es is the total transmitted energy and Ω is the set

of bit intervals’ locations where X and X̂ differ from each

other. Defining the signal-to-noise ratio as τ = Es/N0 and

using the alternative form for Gaussian-Q function [18], i.e.

Q(x) = (1/2π)
∫ π/2

0 exp(−x2/ sin2 θ)dθ, we obtain

P (X, X̂ |I) =
1

π

∫ π/2

0

∏

k∈Ω

exp

(

−τ

4

I2
k

sin2 θ

)

dθ (7)

To obtain unconditional PEP, we need to take an expectation

of (7) with respect to Ik . Under the assumption of perfect

interleaving, we can exploit independency among fading co-

efficients Ik and write

P (X, X̂)=
1

π

∫ π/2

0

∏

k∈Ω

EIk

[

exp

(

−τ

4

I2
k

sin2 θ
)

)]

dθ

=
1

π

∫ π/2

0

[∫ ∞

0

exp

(

−τ

4

I2

sin2 θ

)

f(I)dI

]|Ω|

dθ (8)

where E(·) is the expectation operation and |Ω| is the car-

dinality of Ω, which also corresponds to the length of error

event. Here, f(I) is the pdf for the gamma-gamma channel

given by (1). A direct use of (1) in (8) yields an expression
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P (X, X̂) =
1

π

∫ π/2

0

[

c1τ
− β

2 (sin θ)β

∫ ∞

0

µα−β−1exp

(

−αµ − c2

√
2 sin θ√

τ
µ−1 − O(µ−2)

)

dµ

]|Ω|

dθ (14)

P (X, X̂) ∼= 1

π

∫ π/2

0

[

2
α−β+4

4 c1

(c2

α

)
α−β

2

(

sin θ√
τ

)
α+β

2

Kα−β

(

25/4

√

c2α sin θ√
τ

)]|Ω|

dθ (17)

which unfortunately does not have a closed form solution. To

get around with this, we exploit the fact that the underlying

distribution is a conditional gamma distribution with its mean

µ following again a gamma distribution, and rewrite (8) as

P (X, X̂) =
1

π

∫ π/2

0

{

Eµ

{

EI|µ

[

exp

(

−τ

4

I2

sin2 θ

)]}}|Ω|

dθ

(9)

For the gamma-gamma channel, the inner expectation in (9)

gives

EI|µ

[

exp

(

−τ

4

I2

sin2 θ

)]

=
ββ

µβΓ(β)

∫ ∞

0

Iβ−1exp

(

−τ

4

I2

sin2 θ
− βI

µ

)

dI (10)

Using the result from [19, p. 382, Eq. 3.462.1], i.e.

∫ ∞

0

zv−1exp(−az2 − bz)dz

= (2a)−v/2Γ(v)exp

(

b2

8a

)

D−v

(

b√
2a

)

(11)

where Dp(·) is the parabolic cylinder function, we obtain

EI|µ

[

exp

(

−τ

4

I2

sin2 θ

)]

=
ββ

µβ

(

τ

2

1

sin2 θ

)−β/2

·exp

(

β2sin2θ

2µ2τ

)

D−β

(√
2β

µ
√

τ
sin θ

)

(12)

Since the operation of expectation over µ required in (9) does

not yield a closed form, we resort to the asymptotic expansion

of the parabolic cylinder function given as [20, p.689, Eq.19.9]

D−(a+ 1
2 )

(z)=

√
π

Γ
(

3
4 + a

2

)2−( a
2
+ 1

4 )

·exp

(

−
(√

a +
1

16
a−3/2

)

z − O(z2)

)

(13)

where O(zn) represents the terms with power equal or higher

than n. The above holds for z2 ≪ a and this condition is

easily satisfied in our case for high SNR values. Replacing

the asymptotic expression in (12) and using the resulting

expression in (9), we have (14) at the top of the page, where

c1 =

√
πααββ

Γ(α)Γ
(

β + 1
2

)

c2 = β

(

√

β − 1

2
+

1

16

(

β − 1

2

)− 3
2

)

(15)

Neglecting the higher order components in (14), the inner

integral can be solved with the help of [19, p. 384, Eq. 3.471.9]

∫ ∞

0

zv−1exp

(

−az − b
1

z

)

dz = 2

(

b

a

)v/2

Kv

(

2
√

ab
)

(16)

where a > 0, b > 0. This yields the final form for PEP as

(17) at the top of the page. It should be emphasized that (17)

is an approximation since the higher order components in the

asymptotic expansion of the parabolic cylinder function are

neglected.

IV. BER PERFORMANCE

PEP is the basic tool for the derivation of union bounds on

the error rate performance of a coded communication system.

A union bound on the average BER can be found as [21]

Pb ≤ 1

n

∑

X

P (X)
∑

X �=X̂

q(X, X̂)P (X, X̂) (18)

where P (X) is the probability that the coded sequence X is

transmitted, q(X, X̂) is the number of information bit errors

in choosing another coded sequence X̂ instead of X and n is

the number of information bits per transmission. Using transfer

function bounding technique combined with the alternative

form for the Gaussian-Q function, an efficient method for the

computation of (18) is given in [18, p. 510] as

Pb ≤
1

n

∑

X

P (X)

∫ π/2

0

[

∂

∂N
T (D(θ), N)

∣

∣

∣

∣

N=1

]

dθ, (19)

where N is an indicator variable taking into account the num-

ber of bits in error. If we consider uniform error probability

(UEP) codes, a symmetry property exists for this code family

making the distance structure of a UEP code independent of

the transmitted sequence [18]. This eliminates the need for

averaging over all possible transmitted sequences. In this case,

(19) simplifies to

Pb ≤ 1

x

∫ π/2

0

[

1

n

∂

∂N
T (D(θ), N)

∣

∣

∣

∣

N=1

]

dθ. (20)

In (19)-(20), D(θ) is defined based on the underlying PEP

expression. In our case, using the integrand of PEP expression

given by (17), we have

D(θ)=2
α−β+4

4 c1

(c2

α

)
α−β

2

(

sin θ√
τ

)
α+β

2

·Kα−β

(

25/4

√

c2α sin θ√
τ

)

(21)
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Fig. 1. Comparison of exact and derived PEPs for the gamma-gamma
channel.

with c1 and c2 defined as in (15). In the case of exact PEP,

D(θ) is given by

D(θ)=

∫ ∞

0

2(αβ)

Γ(α)Γ(β)
I

α+β

2
−1exp

(

−τ

4

I2

sin2 θ

)

·Kα−β

(

2
√

αβI
)

dI (22)

V. NUMERICAL RESULTS

In this section, we will first compare the derived approxi-

mate PEP with the exact PEP expression. Then, as an example,

we will consider a convolutionally coded FSO system and will

use our PEP results to compute upper bounds on the BER of

the considered system.

In Fig. 1, we plot the derived PEP approximation given

by (17) for an error event of length 3, i.e. |Ω|=3, using

different values of channel parameters α and β. We also

compute the exact PEP given by (8) and include it as a

reference (illustrated by dashed lines). It is observed from

Fig.1 that the derived PEP provides a good approximation

and coincides with the exact PEP for high signal-to-noise

ratios. As a result of the neglected higher order terms in

the approximation of parabolic cylinder function, the derived

PEP behaves as a lower bound for the considered cases. In

this figure, PEP curves for log-normal channels with typical

standard deviation values of σ = 0.10, 0.15, 0.25, 0.35, 0.502

have been further included. It is observed that these plots cover

the (relatively) weak turbulence where error rate performance

decays very fast with increasing SNR. On the other hand,

our gamma-gamma results, with appropriate choices of α and

β, can be used effectively for a wider range of turbulence

conditions, including very strong turbulence. As revealed out

by the numerical results under strong turbulence assumption,

increasing SNR results in a relatively smaller change in the

2It should be noted that the PEP bounds presented in [8] for log-normal
channels are not valid for σ > 0.25 due to inefficiency of employed Taylor
series approximation [8, p.1235]. Here, we consider exact PEP calculations
for accuracy.
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Fig. 2. Upper bounds on BER for the gamma-gamma channel.

slope of performance curves. This motivates the employment

of powerful scintillation-mitigation techniques (in the form of

coding and/or diversity) since it is not practical and even not

feasible for many applications to increase the power margin

in the link budget to eliminate the deep fades observed under

strong turbulence.

In the following, we consider a convolutionally coded FSO

communication system operating at λ = 1550nm. We assume

C2
n = 1.7 × 10−14, which is a typical value of refractive

index for FSO links near the ground during daytime. A point

receiver is used, i.e. D ≪ L leading to d = 0, therefore no

aperture averaging is possible and system performance relies

heavily on possible coding gains. In this case, α and β are

simply functions of χ as reflected by (2) and (3). We use a

convolutional code, which has a code rate of 1/3 and constraint

length of 3. The convolutional code under investigation is

illustrated in Fig.8.2.2 of [21, p.471]. The transfer function

of this code is found to be

T (D(θ), N) =
D6(θ)N

1 − 2ND2(θ)
. (23)

Since the code satisfies the uniform error property, we can use

(20) for BER performance evaluation, which leads to

Pb ≤ 1

π

∫ π/2

0

D6(θ)N

(1 − 2ND2(θ))2
dθ (24)

where D(θ) is given by (21) and (22) for the derived approx-

imate PEP bound and exact PEP, respectively. The average

BER results are computed based on (24) in conjunction with

(21) as well as with (22) to allow comparison with the true

upper bound. Both of them are illustrated in the Fig. 2 for

the FSO scenario under investigation. Here, we consider three

different link distances L1 = 3000m, L2 = 4000m and

L3 = 5000m which correspond to χ2
1 = 1.031, χ2

2 = 1.747
and χ2

3 = 2.63, respectively. For all three cases we considered,

BER estimates based on the derived PEP yield a very good

approximation to the true upper bound. Although there is some

discrepancy in the lower SNR region, it provides excellent
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agreement as SNR increases. Monte-Carlo simulation results

are furthermore included in Fig. 2 as a reference. Due to the

long simulation time involved, we are able to give simulation

results only up to BER=10−6. Simulation results are observed

to be located slightly lower than the true upper bound and

demonstrate an excellent agreement with the analytical results.

VI. CONCLUSION

In this paper, we have investigated error rate performance

of coded FSO systems operating over atmospheric turbulence

channels, which are modeled with gamma-gamma distribution.

Unlike the classically used log-normal assumption which is

only accurate for modeling weak turbulence, the gamma-

gamma channel model works for a variety of turbulence con-

ditions. The parameters of this channel model are also easily

related to practical system parameters such as the operating

frequency, link distance, lens aperture giving valuable insights

into FSO system performance. Considering this recently in-

troduced channel model, we derived a PEP expression for

coded FSO links with OOK. As a result of the underlying

assumptions in the derivation, the derived PEP demonstrates

some discrepancy in the lower SNR range, however coincides

with the exact PEP for high SNRs. Adopting the transfer

function technique associated with our PEP expression for the

gamma-gamma channel, we have also obtained upper bounds

on the BER performance, which have been further verified

through Monte-Carlo simulations. Considering BER=10−9 is

a practical performance target for an FSO link, our analytical

results can serve as a simple and reliable method to estimate

BER performance without resorting to lengthy simulations.
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