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Abstract—Error control coding can be used over free-space 

optical (FSO) links to mitigate turbulence-induced fading. In this 
paper, we derive error performance bounds for coded FSO 
communication systems operating over atmospheric turbulence 
channels, considering the recently introduced gamma-gamma 
turbulence model. We derive a pairwise error probability (PEP) 
expression and then apply the transfer function technique in 
conjunction with the derived PEP to obtain upper bounds on the 
bit error rate. Simulation results are further demonstrated to 
confirm the analytical results. 

Keywords—Atmospheric turbulence channel, free-space 
optical communication, pairwise error probability, error 
performance analysis.  

I. INTRODUCTION  

Wireless optical communications, also known as free-
space optical (FSO) communications, is a cost-effective and 
high bandwidth access technique and is receiving growing 
attention with recent commercialization successes [1]. With 
the potential high-data-rate capacity, low cost and particularly 
wide bandwidth on unregulated spectrum, FSO communica-
tions is an attractive solution for the “last mile” problem to 
bridge the gap between the end user and the fiber-optic infra-
structure already in place. Its unique properties make it also 
appealing for a number of other applications, including metro-
politan area network extensions, enterprise/ local area network 
connectivity, fiber backup, back-haul for wireless cellular 
networks, redundant link and disaster recovery. In FSO com-
munications, optical transceivers communicate directly 
through the air to form point-to-point line-of-sight links. One 
major impairment over FSO links is the atmospheric turbu-
lence, which occurs as a result of the variations in the refrac-
tive index due to inhomogeneties in temperature and pressure 
fluctuations. The atmospheric turbulence results in fluctua-
tions at the received signal, i.e. signal fading, also known as 
scintillation in optical communication terminology [2], se-
verely degrading the link performance, particularly over link 
distances of 1 km or longer.  

Error control coding as well as diversity techniques can be 
used over FSO links to improve the error rate performance [3-
6]. In [6], Zhu and Kahn studied the performance of coded 
FSO links assuming a log-normal channel model for atmos-
pheric turbulence. Specifically, they derived an approximate 
upper bound on the pairwise error probability (PEP) for coded 
FSO links with intensity modulation/direct direction (IM/DD) 
and provided upper bounds on the bit error rate (BER) using 
the transfer function technique. Although log-normal distribu-
tion is the most widely used model for the probability density 
function (pdf) of the irradiance due to its simplicity, this pdf 
model is only applicable to weak turbulence conditions [2]. As 
the strength of turbulence increases, multiple scattering effects 
must be taken into account. In such cases, lognormal statistics 
exhibit large deviations compared to experimental data. Fur-
thermore, it has been observed that lognormal pdf underesti-
mates the behavior in the tails as compared with measurement 
results. Since detection and fade probabilities are primarily 
based on the tails of the pdf, underestimating this region sig-
nificantly affects the accuracy of performance analysis. Due to 
the limitations of log-normal model, many statistical models 
have been proposed over the years to describe atmospheric 
turbulence channels under a wide range of turbulence condi-
tions, e.g. K distribution, I-K distribution, and log-normal Ri-
cian channel [2]. Error rate performance of coded FSO links 
assuming K distribution and I-K distribution have been already 
studied by the authors in [7]. 

In a recent series of paper on scintillation theory [8-10], 
Andrews et.al. introduced the modified Rytov theory and pro-
posed gamma-gamma pdf as a tractable mathematical model 
for atmospheric turbulence. This model is a two-parameter 
distribution which is based on a doubly stochastic theory of 
scintillation and assumes that small-scale irradiance fluctua-
tions are modulated by large-scale irradiance fluctuations of 
the propagating wave, both governed by independent gamma 
distributions. The gamma-gamma pdf can be directly related 
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to atmospheric conditions and provides a good fit to experi-
mental results.  

In this paper, we will investigate error rate performance of 
coded FSO links operating over atmospheric channels, where 
the turbulence-induced fading is described by the gamma-
gamma distribution. The organization of the paper is as fol-
lows: In Section II, we review the gamma-gamma channel 
model under consideration. In Section III, an approximate PEP 
expression is derived for an FSO communication system with 
on-off keying (OOK). In Section IV, we present numerical 
results to demonstrate the accuracy of the derived PEP in 
comparison to the exact PEP. Using transfer function tech-
nique in conjunction with the derived PEP expression, we also 
obtain bounds on the BER performance. Analytical results are 
further confirmed through Monte-Carlo simulation. Conclu-
sions are presented in Section V.   

II. ATMOSPHERIC TURBULENCE CHANNEL MODEL  

 In the classical Rytov theory [2], the optical field is repre-
sented by 

( ) ( ) ( )







= ∑

i
i LrLrULrU ,exp,, 0 ψ                                         (1) 

where r is the observation point in transverse plane at propa-
gation distance L, ( )LrU ,0  is the optical field in the absence 
of turbulence and ( )∑

i
i Lr,ψ  is the total complex phase per-

turbation of the field due to random inhomonegeties along the 
propagation path. Here, ( ) iii jLr ξχψ +=,  ,..2,1=i  represent 
ith-order perturbations, where ( )Lri ,χ and ( )Lri ,ξ  are the cor-
responding real and imaginary parts, respectively. Early stud-
ies in modeling the atmospheric turbulence consider a first-
order Rytov approximation, i.e. 

( ) ( ) ( ) ( )[ ]LrjLrLrULrU ,,exp,, 110 ξχ +=                             (2) 

and assume the  perturbation ( ) ( ) ( )LrjLrLr ,,, 111 ξχψ +=  is 
a complex Gaussian random process. The irradiance of the 
random field takes the form  

( )1
2

0 2exp χUI =                                                                 (3) 

where 0U is the amplitude of the unperturbed field. Using the 
first-order Rytov approximation, the irradiance is modeled as 
a log-normal distribution. This is fairly accurate for describing 
weak turbulence, but incurs a large discrepancy in strong tur-
bulence case due to the underweighing of multiple scattering 
effect. A common practice to mitigate this discrepancy is to 
employ a second-order Rytov approximation where the optical 
field and the corresponding irradiance are given by,   

( ) ( ) ( ) ( ) ( ) ( )( )[ ]LrLrjLrLrLrULrU ,,,,exp,, 21210 ξξχχ +++=

and ( )( ) ( )21
2

0 2exp2exp χχUI =                                          (5) 

respectively. Here the second term ( )22exp χ  acts like a ran-
dom modulation of the first term. The implication of (5) is that 
the irradiance can be described by a modulation process in-
volving first-order and second-order log-amplitude modula-
tion perturbations. However, this does not lead to a simple 
model where the perturbation terms can be related to atmos-
pheric parameters. Alternative models where the irradiance 
fluctuation is modeled as the result of two multiplicative ran-
dom processes include the Rician/Log-normal model [11], the 
Nakagami/Gamma model [12] and the Negative Exponen-
tial/Gamma model (also known as the K channel) [13] among 
others.  

More recently, Andrews et.al. proposed the modified Rytov 
theory [8-10], which defines the optical field as 

( ) ( ) ( ) ( )[ ]LrLrLrULrU yx ,,exp,, 0 Ψ+Ψ=                            (6) 

where ( )Lrx ,Ψ and ( )Lry ,Ψ  are statistically independent 
complex perturbations which are due only to large-scale and 
small-scale atmospheric effects, respectively. Put another way, 
the irradiance is now defined as the product of two random 
processes, i.e. yx III = , where Ix arises from large scale tur-
bulent eddies and Iy from small-scale eddies. Specifically, in 
[10], gamma pdf is used to model both small-scale and large-
scale fluctuations, leading to the so-called gamma-gamma pdf, 
i.e. 

( ) ( )( )

( ) ( ) ( )IKIIf αβ
βα

αβ
βα

βαβα
22 1

2
2/

−
−++

ΓΓ
= , 0>I                (7) 

where ( ).aK  is the modified Bessel function of the second 
kind of order a. Here, α  and β  are the effective number of 
small-scale and large scale eddies of the scattering environ-
ment. These parameters can be directly related to atmospheric 
conditions according to [10] 

( )
1

6/75/12
0

2

2
0 1
56.018.01

49.0
exp

−














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











++
=

β

βα
d

                     (8) 
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1

6/55/12
0
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exp

−
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
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
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


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++
=

β

ββ
dd

                   (9) 

 
where 6/116/722

0 5.0 LkCn=β  and ( ) 2/12 4LkDd = . Here, 
λπ2=k  is the optical wave number, λ  is the wavelength 

and D is the diameter of the receiver collecting lens aperture. 
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2
nC  stands for the index of refraction structure parameter and 

is altitude-dependent. Several 2
nC  profile models are available 

in the literature, but the most commonly used is the Hufnagle-
Valley model described by [2] 

( ) ( ) ( ) ( )
( ) ( )1000exp1500exp107.2

1000exp102700594.0
6

10522

hAh

hhvhCn

−+−×+

=
−

−
                  (10) 

where h is the altitude in meters (m), v is the rms windspeed in 
meters per second (m/sec) and A is a nominal value of ( )02

nC  
at the ground in m-2/3. For FSO links near the ground, 2

nC can 
be taken approximately 4107.1 −×  m-2/3 during daytime and 

15104.8 −×  m-2/3 at night. In general, 2
nC  varies from 10-13 m-2/3 

for strong turbulence to 10-17 m-2/3 for weak turbulence with 
10-15 m-2/3 often defined as a typical average value [14].  

III. DERIVATION OF PEP   

We consider intensity modulation and direct detection 
links using on-off keying (OOK). Following [6], we assume 
that the receiver signal-to-noise ratio is limited by shot noise 
caused by ambient light which is much stronger than the de-
sired signal and/or by thermal noise. In this case, the noise can 
be modeled as additive white Gaussian noise (AWGN) with 
zero mean and variance 2/0N , independent of the on/off state 
of the received bit.  

The PEP represents the probability of choosing the coded 
sequence ( )Mxxx ˆ,...,ˆ,ˆˆ

21=X  when indeed ( )Mxxx ,...,, 21=X  
was transmitted. Here, we assume that the turbulence-induced 
fading remains constant over one bit interval and changes 
from one interval to another in an independent manner. Such 
an assumption can be justified by the use of perfect interleav-
ing. Under the assumption of maximum likelihood soft decod-
ing with perfect channel state information (CSI), the condi-
tional PEP with respect to fading coefficients 

( )MIIII ,...,, 21=  is given as [6] 

( ) ( )












=

02

ˆ,ˆ,
N

QP XXIXX ε                                                 (11) 

where Q(.) is the Gaussian-Q function and ( )XX ˆ,ε  is the en-
ergy difference between two codewords. Since OOK is used, 
the receiver would only receive signal light subjected to fad-
ing during on-state transmission. Thus, we have 

( ) 









= ∑

Ω∈k
k

s I
N
E

QP 2

02
ˆ, IXX                                             (12) 

where sE  is the total transmitted energy and Ω  is the set of 
bit intervals’ locations where X and X̂ differ from each 
other. Defining the signal-to-noise ratio as 0NEs=τ and 

using the alternative form for Gaussian-Q function [15], i.e. 
( ) ( ) ( )∫ −= 2/

0
22 sin/exp21 π θπ xxQ , we obtain 

( ) θ
θ

τ
π

π
d

I
P

k

k∫ ∏
Ω∈ 










−=

2/

0
2

2

sin4
exp1ˆ, IXX .                         (13) 

To obtain unconditional PEP, we need to take an expectation 
of (13) with respect to kI . Using independency among fading 
coefficients kI , we write 

( )

( )∫ ∫

∫ ∏

Ω
∞

Ω∈






















−=






















−=

2/

0 0
2

2

2/

0
2

2

sin4
exp1              

sin4
expE1ˆ,

π

π

θ
θ

τ
π

θ
θ

τ
π

ddIIfI

d
I

P k

k
kIXX

              (14) 

where E(.) is the expectation operation and Ω  is the cardinal-
ity of Ω , which also corresponds to the length of error event. 
Here, ( )If  is the pdf for the gamma-gamma channel given by 
(7). A direct use of (7) in (14) yields an expression which un-
fortunately does not have a closed form solution. To get 
around with this, we exploit the fact that the underlying distri-
bution is a conditional gamma distribution with its mean µ  
following again a gamma distribution, and rewrite (14) as 

( ) ∫

Ω

















































−=

2/

0
2

2

sin4
exp1ˆ,

π

µµ θ
θ

τ
π

d
I

EEP IXX        (15) 

For the gamma-gamma channel, the inner expectation in (15) 
gives 

( )
dIIII

I
EI ∫

∞
−











−−

Γ
=

























−

0
2

2
1

2

2

sin4
exp

sin4
exp

µ
β

θ
τ

βµ
β

θ
τ β

β

β

µ

Using the result from [16, p.1093, Eq. 2.33], i.e. 

( ) ( ) ( ) 











Γ=−− −

−
∞

−∫
a

bD
a

bvadzbzazz v
vv

28
exp2exp

2
2/2

0

1  

where ( ).pD  is the parabolic cylinder function, we obtain 

 


























=






















−

−

−

θ
τµ
β

τµ
θβ

θ
τ

µ
β

θ
τ

β

β

β

β

µ

sin2
2

sinexp
sin

1
2

sin4
exp

2

222

2

2

2

D

IEI

   (16) 

Since the operation of expectation over µ  does not yield a 
closed form, we resort to the asymptotic expansion of the 
parabolic cylinder function given as [17- p. 689, Eq.19.9] 

( ) ( )





Ο−





 +−






 +Γ

= −





 +−







 +−

22/34
1

2

2
1 16

1exp2

24
3

zzaa
a

zD
a

a

π
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where ( )nzΟ  represents the terms with power equal or higher 
than n. The above holds for az <<2 and this condition is eas-
ily satisfied in our case for high SNR values. Replacing the 
asympotic expression in (16) and using the resulting expres-
sion in (15), we have  

( ) ( )∫ ∫




=

∞
−−−2/

0 0

12
1 sin1ˆ,

π
βαβ

β

µθτ
π

cP XX                          (17) 

( ) θµµµ
τ

θαµ ddc
Ω

−−
















Ο−−−× 21

2
sin2exp                                   

where 

( ) 




 +ΓΓ

=

2
11 βα

βαπ βα
c  , 





















 −+−=

−
2
3

2 2
1

16
1

2
1 βββc     (18) 

Neglecting the higher order components in (17), the inner in-
tegral can be solved with the help of  [16- p. 384, Eq. 3.471.9] 

( )abK
a
bdz

z
bazz v

v
v 221exp

2/

0

1 




=





 −−∫

∞
− , 0,0 >> ba .      

This yields the final form for PEP as 

( ) ∫



















≅

+−+−2/

0

222
1

4
4 sin21ˆ,

π
βαβαβα

τ
θ

απ
ccP XX               (19)     

                                θ
τ

θα
βα d

c
K

Ω

−















×

sin
2 24/5  

It should be emphasized that (19) is an approximation since 
the higher order components in the asymptotic expansion of 
the parabolic cylinder function are neglected. A union bound 
on the average BER can be found as [15] 

( )( ) θθ
π

π
dNDT

Nn
P

N
b ∫ 








∂
∂≤

=

2/

0 1
,11 ,                                (20) 

where N is an indicator variable taking into account the num-
ber of bits in error and ( )θD  is defined based on the underly-
ing PEP expression.  

IV. NUMERICAL RESULTS  

In this section, we will first compare the derived approxi-
mate PEP with the exact PEP expression. Then, as an exam-
ple, we will consider a convolutionally coded FSO system and 
will use our PEP results to compute upper bounds on the BER 
of the considered system.  

In Fig. 1, we plot the derived PEP approximation given by 
(19) for an error event of length 3, i.e. 3=Ω , using different 
values of channel parameters α and β . We also compute the 
exact PEP given by (14) using numerical integration and in-

clude it in the figures as a reference. It is observed from both 
figures that the derived PEP provides a good approximation 
and coincides with the exact PEP for high signal-to-noise ra-
tios. As a result of the neglected higher order terms in the ap-
proximation of parabolic cylinder function, the derived PEP 
behaves as a lower bound for the considered cases.  

10 15 20 25 30 35 40
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

Avg. SNR [dB]

P
E

P

Comparison of exact and derived PEPs for the gamma-gamma channel
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Exact   α=4 β=4
Approx. α=4 β=4

 
Fig. 1. Comparison of exact and derived PEPs for α=4 and β=1, 2, 4 (solid: 
exact, dashdot: derived) 

 In the following, we consider an FSO communication 
system  operating at nm1550=λ . We assume 

42 107.1 −×=nC  a typical value of refraction index for FSO 
links near the ground during daytime. A point receiver is used, 
i.e. LD <<  leading to d=0, therefore no aperture averaging is 
possible and system performance relies heavily on possible 
coding gains. We use a convolutional code, which has a code 
rate of 1/3 and constraint length of 3 [18-Fig.8.2.2]. The trans-
fer function of this code is found to be  

( )( ) ( ) ( )( )θθθ 26 21, NDNDNDT −=                                   (21) 

Replacing (21) in (20), we obtain 

( )
( )( ) θ
θ

θ
π

π
d

D

DPb ∫
−

≤
2/

0
22

6

21

1                                                 (22) 

where ( )θD is given by 

( )
( )23

sin
2sin2 24/5222

1
4

4






















= −

+−+−

τ
θα

τ
θ

α
θ βα

βαβαβα c
K

c
cD

based on the derived PEP with 1c and 2c  defined as in (18). In 
the case of exact PEP, ( )θD  is given by 

( ) ( )
( ) ( ) ( ) ( )242

sin4
exp2

2

21
2

0
dIIKIID αβ

θ
τ

βα
αβθ βα

βα

−
−+∞











−

ΓΓ
= ∫
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 The average BER results are computed based on (22) in 
conjunction with (23) as well as with (24) to allow comparison 
with the true upper bound. Both of them are illustrated in the 
Fig. 2 for the FSO scenario under investigation. Specifically, 
we present BERs for three different link distances L=2600m, 
L=3000m and L=3400m, which yield the channel parameters  
( ) ( )41.2,79.3, =βα , ( ) ( )25.1,73.2, =βα , ( ) ( )65.0,26.2, =βα , 
respectively. For all three cases we considered, BER estimates 
based on the derived PEP yield a very good approximation to 
the true upper bound. Although there is some discrepancy in 
the lower SNR region, it provides excellent agreement as SNR 
increases. Monte-Carlo simulation results are furthermore 
included as a reference. Due to the long simulation time in-
volved, we are able to give simulation results only up to 
BER=10-6. Simulation results are observed to be located 
slightly lower than the true upper bound and demonstrate an 
excellent agreement with the analytical results. Considering 
BER=10-9 is a practical performance target for an FSO link, 
our analytical results can serve as a simple and reliable 
method to estimate BER performance without resorting to 
lengthy simulations. 

15 20 25 30 35 40 45 50 55 60
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Upper bounds on BER for the gamma-gamma channel

Eq.(22)-(24)     (α , β)=(3.79,2.41)
Eq.(22)-(23)     (α , β)=(3.79,2.41)
Simulation       (α , β)=(3.79,2.41)
Eq.(22)-(24)     (α , β)=(2.73,1.25)
Eq.(22)-(23)     (α , β)=(2.73,1.25)
Simulation       (α , β)=(2.73,1.25)
Eq.(22)-(24)     (α , β)=(2.26,0.65)
Eq.(22)-(23)     (α , β)=(2.26,0.65)
Simulation       (α , β)=(2.26,0.65)

 
Fig. 2. Upper bounds on BER for the gamma-gamma channel (solid black: 
Eq. (22)-(24), dashed dot blue: Eq. (22)-(23), dashed red: Simulation) 
 

V. CONCLUSIONS  

In this paper, we investigate error rate performance of 
coded FSO systems operating over atmospheric turbulence 
channels, which are modeled with gamma-gamma distribu-
tion. Unlike the classically used log-normal assumption which 
is only accurate for modeling weak turbulence, the gamma-
gamma channel model works for a variety of turbulence con-
ditions. A PEP approximation is derived for the gamma-
gamma channel and the transfer function technique is em-

ployed to obtain upper bounds on the BER performance of 
coded FSO links with OOK. Simulation results are also in-
cluded to confirm the analytical results.  
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