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Abstract—Motivated by a recent surge of interest in convex
optimization techniques, convexity/concavity properties of error
rates of the maximum likelihood detector operating in the AWGN
channel are studied and extended to frequency-flat slow-fading
channels. Generic conditions are identified under which the
symbol error rate (SER) is convex/concave for arbitrary multi-
dimensional constellations. In particular, the SER is convex in
SNR for any one- and two-dimensional constellation, and also in
higher dimensions at high SNR. Pairwise error probability and
bit error rate are shown to be convex at high SNR, for arbitrary
constellations and bit mapping. Universal bounds for the SER
first and second derivatives are obtained, which hold for arbitrary
constellations and are tight for some of them. Applications of the
results are discussed, which include optimum power allocation
in spatial multiplexing systems, optimum power/time sharing to
decrease or increase (jamming problem) error rate, an implication
for fading channels (“fading is never good in low dimensions”) and
optimization of a unitary-precoded OFDM system. For example,
the error rate bounds of a unitary-precoded OFDM system with
QPSK modulation, which reveal the best and worst precoding,
are extended to arbitrary constellations, which may also include
coding. The reported results also apply to the interference channel
under Gaussian approximation, to the bit error rate when it can be
expressed or approximated as a nonnegative linear combination
of individual symbol error rates, and to coded systems.

Index Terms—Convexity/concavity, error rate, jamming, max-
imum-likelihood detection, OFDM, optimum transmission.

I. INTRODUCTION

O PTIMIZATION problems of various kinds simplify sig-
nificantly if the goal and constraint functions involved

are convex. Indeed, a convex optimization problem has a unique
global solution, which can be found either analytically or, with a
reasonable effort, by several efficient numerical methods (e.g.,
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interior point methods); its numerical complexity grows only
moderately with the problem dimensionality and required accu-
racy; convergence rates and required step size can be estimated
in advance; there are powerful analytical tools that can be used
to attack a problem and that provide insights into such prob-
lems even if solutions, either analytical or numerical, are not
found yet [1], [2]. Convex problems are almost as easy as liner
ones. Contrary to this, not only generic nonlinear optimization
problems do not possess these features, they are not solvable
numerically, i.e., their complexity grows prohibitively fast with
problem dimensionality and required accuracy [2]. Thus, there
is a great advantage in formulating or at least in approximating
an optimization problem as a convex one.

In the world of digital communications, one of the major per-
formance measures is either symbol or bit error rate (SER or
BER). Consequently, when an optimization of a communication
system is performed, either SER or BER often appears as goal
or constraint functions. Examples include optimum power/rate
allocation in spatial multiplexing systems (BLAST) [3]–[6], op-
timum power/time sharing for a transmitter and a jammer [7],
rate allocation or precoding in multicarrier (OFDM) systems
[8], [9], optimum equalization [10], optimum multiuser detec-
tion [11], [21], and joint Tx-Rx beamforming (precoding-de-
coding) in MIMO systems [12]. Symbol and bit error rates of
the maximum likelihood (ML) detector have been extensively
studied and a large number of exact or approximate analyt-
ical results are available for various modulation formats, for
both nonfading and fading AWGN channels [13]–[17]. One-
and two-dimensional (1-D and 2-D) constellations have been
studied in greater depth [30]–[34], and exact analytical expres-
sions for SER and BER of arbitrary PAM and QAM [18] as well
as efficient numerical techniques for arbitrary 2-D constellations
[19] are available. A generic parameterization of error rates in
fading channels at high SNR via diversity and coding gains have
been presented in [20].

While the error rates themselves have been a subject of in-
tensive studies, their convexity/concavity properties, which are
so important for optimization, have not been studied in depth;
the results in this area are very limited. Convexity/concavity
properties of the Q-function, ,
are well known: and are convex for [21]
(convexity in amplitude and SNR, respectively), from which
it follows that any combination of the form or

, where are constants, is also convex.
The last combination approximates well many modulation for-
mats, and the Q-function itself gives the error rate of coherent
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BPSK and QPSK, and also approximates the error rates of
several modulation formats (e.g., using the nearest neighbor
argument) [13], [15]–[17], [30], [31]. Non-coherent BPSK
and QPSK error rates are expressed via , which is
also convex; the same function or its combinations of the form

, which are also convex, approximate well a
few other modulation formats and also serve as an upper bound
(Chernoff or union bounds) for many more, including those
in MIMO systems1. Most known closed-from expressions for
error rates (e.g., in [13]–[17]) can be verified, by differentiation,
to be convex. Little is known besides that2. Is the SER/BER
convex for all 1-D or 2-D constellations of arbitrary shape?
What about arbitrary multidimensional constellations? Under
what conditions? In what variables, i.e., SNR, amplitude,
1/SNR (e.g., noise power), 1/amplitude (e.g., noise amplitude)?
What about fading channels in general? To make use of all
the important features and powerful algorithms of convex
optimization in digital communications (see, e.g., [43]) on a
rigorous footing, these questions have to be answered.

The present paper aims at answering these questions in a sys-
tematic way by developing a geometric method of the SER rep-
resentation specifically tailored for its convexity analysis. Con-
vexity properties of error rate for binary modulations in terms of
SNR and noise power have been studied in detail in [7]. Here,
we generalize the results in [7] to the constellations of arbi-
trary shape, order and dimensionality operating with the max-
imum likelihood detector in the AWGN channel, for both non-
fading and frequency-flat slowly fading channels. While most
of our results are derived for the SER, some of them also apply
to the BER when the later can be expressed or approximated
as a nonnegative linear combination of corresponding SER ex-
pressions; see [18] and [33] for details on such approximations.
With Gray encoding and when nearest neighbor errors domi-
nate, the BER can be approximated as [16], [17], where

is the number of constellation points, which obviously in-
herits the convexity property from the SER.

The paper is organized as follows. Section II introduces the
system model. We consider the maximum likelihood detector
that operates symbol-by-symbol (no memory) in the AWGN
channel, which is later extended to frequency-flat slow-fading
channels with a generic SNR distribution (e.g., not limited to
Rayleigh fading); no any specific assumptions about constella-
tion geometry, order or dimensionality are made.

Section III analyzes the convexity/concavity of error rates in
SNR, amplitude and noise power using a systematic geometric
method that does not rely on any constellation properties or ap-
proximations but rather exploits the spherical symmetry of the
Gaussian noise distribution. The SER is shown to be convex
in SNR for arbitrary 1-D and 2-D constellations. For 3-D and
higher-D constellations, the SER is convex at large SNR, con-

1Unfortunately, nothing can be said about convexity using this approach when
some � are negative. In this case, however, approximations are often obtained
that include only positive terms (see, e.g., [13]–[17], [32], [34]) to which this
approach applies. Furthermore, the BER can be presented as a positive linear
combination of pairwise error probabilities [33], which we exploit in Corollary
4.1.

2After this paper has been submitted, Conti et al. [29] has presented a log-con-
cavity property of the SER in SNR [dB] for the uniform square-grid constella-
tions.

cave at small SNR, and has an odd number of inflection points
in-between. It is shown in Section VII that this nonconvexity
can be used to reduce the SER of higher-D constellations via
a time/power sharing algorithm under the fixed average power
constraint, which is impossible for any 1- and 2-D constella-
tions3. Using the same approach, we show that the pairwise error
probability (PEP) and, thus, the BER are always convex at high
SNR, for any bit mapping. However, unlike the SER, the PEP
can be concave at low SNR, even for 1-D and 2-D constella-
tions. In the case of log-concave but otherwise arbitrary noise
density (e.g., Gaussian, Laplacian, exponential), the probability
of correct decision is shown to be log-concave, which suffices
for optimization problems that maximize/minimize this proba-
bility.

The study of the convexity property of SER in the noise power
is motivated by the jammer optimization problem [7]. The SER
is shown to be concave in the noise power at low SNR (large
noise), convex at high SNR (small noise) and has an odd number
of inflection points in-between. This result is used in Section VII
to find the optimum power/time sharing of the jammer (the noise
source) to increase the SER, based on the technique developed
in [7] for binary modulations. This result can also be applied to
the SER as a function of the mean square error (MSE), as in the
precoder or equalizer design problems [9], [12], [21], [26]–[28].

Section IV presents a number of lower and upper bounds on
first and second derivatives of the SER in SNR and noise power,
which hold for arbitrary constellations and depend only on their
dimensionality. Such bounds are important as the derivatives
play a prominent role in the design and analysis of numerical
optimization algorithms for a number of reasons [1]: to analyze
the convergence conditions and rates, to determine the step size
of gradient methods and to assess suboptimality of various so-
lutions, which is further used as a stopping criteria. The deriva-
tives in noise power find applications in the jammer optimiza-
tion problem (see Sections VII-B, VII-C, and [7]).

Section V deals with a frequency-flat slowly fading channel.
It is shown that the average SER is convex provided that the
instantaneous SER is convex and a mild condition on the distri-
bution of the instantaneous SNR holds.

Since the Q-function finds wide applications in communica-
tion/information theory, we derive in Section VI a number of
new convexity/concavity properties of this function, which com-
plement the known ones (see [21] for an extensive list of such
properties).

Section VII deals with several applications of the convexity
results. It is demonstrated that the optimum power allocation in
the V-BLAST algorithm with the zero-forcing (ZF) successive
interference cancellation (SIC) interface has a unique global so-
lution for all 1- and 2-D constellations, but not necessarily for
higher-D ones, both in nonfading and fading channels, which
extends the corresponding results in [3]–[5] and also applies
to power allocation in OFDM systems [41]. The optimum and
simple suboptimum power/time sharing strategies of a jammer
are developed to maximize the SER, which extend the corre-
sponding results in [7] to arbitrary multidimensional constel-

3This impossibility for binary modulations has been first pointed out in [7],
and is extended here to all 1 and 2-D constellations in the AWGN channel.
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lations in the AWGN channel. It is shown that there exists no
fading distribution that can reduce the SER (compared to the
nonfading channel) of arbitrary 1 and 2-D constellations, i.e.,
“fading is never good in low dimensions”. This does not hold
for higher-D constellations. Finally, known bounds on the error
rate of unitary-precoded OFDM system with QPSK modulation
and optimum precoding [9] are extended to arbitrary constella-
tions (possibly with coding), which reveals the best and worst
transmission strategies.

While we do not consider explicitly interference (e.g., from
multiple users), the results above also extend to the case of in-
terference channel when it can be modeled as Gaussian noise,
which is a popular approach in the literature (see, e.g., [9], [21],
and [28]); in such a case, the noise power becomes the noise plus
interference power, and the SNR is changed to SNIR, and all the
results above hold. The reported results also apply to the BER
when it can be expressed as a nonnegative linear combination
of individual symbol error rates, and also to modulation with
coding, by considering codewords as symbols of an extended
multidimensional constellation. While error rate performance
analysis of coded systems is a formidable analytical task so that
bounding is the only solution in most cases [44], our approach
allows one to establish the convexity properties of error rates of
such systems without resorting to error rate results or bounds.
This opens up an opportunity to use powerful convex optimiza-
tion techniques for the design and optimization of coded sys-
tems on a rigorous footing.

II. SYSTEM MODEL

The standard baseband discrete-time system model of an
AWGN channel, which includes matched filtering and sam-
pling, is adopted here

(1)

where and are -dimensional vectors representing the
Tx and Rx symbols, respectively, ,

is a set of constellation points, is the
additive white Gaussian noise (AWGN), , whose
probability density function (PDF) is

(2)

where is the noise variance per dimension, and is the con-
stellation dimensionality; lower case bold letters denote vectors,
bold capitals denote matrices, denotes th component of ,

denotes norm of , , where the superscript
T denotes transpose, denotes th vector. Frequency-flat slow-
fading channels will be considered as well. The average (over
the constellation points) SNR is defined as , which
implies the appropriate normalization, .

Consider the maximum likelihood detector, which is equiv-
alent to the minimum distance one in the AWGN channel
[13]–[17]

(3)

The probability of symbol error given than was
transmitted is

(4)

where is the probability of correct decision. The SER aver-
aged over all constellation points is

(5)

can be expressed as [15], [17]

(6)

where is the decision region (Voronoi region), and corre-
sponds to , i.e., the origin is shifted for convenience to the
constellation point . can be expressed as a convex polyhe-
dron [1]

(7)

where denotes jth row of , and the inequality in (7) is
applied component-wise.

III. CONVEXITY OF ERROR RATES IN SNR, AMPLITUDE, AND

NOISE POWER

Since many optimization problems in digital communications
use error rates as either the goal or constraint functions (see
[3]–[12] for examples), and since the optimization is often car-
ried out under various power constraints, we begin the analysis
by studying the convexity properties of the SER in terms of the
SNR (which is equivalent to the signal power or energy under
fixed noise) for arbitrary constellations.

A. Convexity of the SER in the SNR and Signal Amplitude

Theorem 1: is a convex (concave) function of the
SNR for any constellation of dimensionality ,

(8)

Proof: See Appendix A.

Theorem 1 covers, as special cases, such popular constella-
tions as BPSK, BFSK, QPSK, QAM, M-PSK, OOK, whose
error rate convexity can also be verified directly by differenti-
ation of known error rate expressions. The convexity property
of the SER also extends to the BER, when the later can be ex-
pressed or approximated as a linear combination of error rates
of individual symbols of the constellation, i.e., when

, (this holds for a number of BER
expressions or their approximations for PAM and QAM con-
stellation with Gray encoding [15], [30], [34]).
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While 1- and 2-D constellation always have convex symbol
error rates, higher-D constellations exhibit more complicated
behavior, as shown below.

Theorem 2: For constellations of dimensionality ,
has the following convexity properties:

2.1. is convex (concave) in the large SNR mode

(9)

where is the minimum distance from
the origin to the boundary of decision region (see
Appendix A).
2.2. is concave (convex) in the small SNR mode

(10)

where is the maximum distance from the origin to
the boundary of 4.
2.3. There are an odd number of inflection points,

, in the intermediate SNR mode

(11)

Proof: See Appendix A.

While Theorem 2 applies to conditional error rates , sim-
ilar result also holds for the error rate averaged over the con-
stellation.

Corollary 2.1: Using the fact that nonnegative weighted sum
of convex (concave) functions is also convex (concave), the re-
sults in Theorem 2 extend directly to via the substitu-
tions and

in (9)–(11).
1) is convex (concave) in the large SNR mode,

.
2) It is concave (convex) in the small SNR mode,

.
3) There are an odd number of inflection points,

, in the intermediate SNR mode,

Theorem 2 indicates that the constellation dimensionality
plays an important role for concavity/convexity properties. We
present a result which is independent of the dimensionality and
holds for a wide class of channels.

Theorem 3: is log-concave in SNR for arbitrary con-
stellation, arbitrary and any log-concave noise density (i.e.,
Gaussian, Laplacian, exponential, see [35] for an extensive list
of such densities and their properties).

Proof: Via the integration theorem for log-concave func-
tions [1, p. 106], [35].

4It should be noted that the small SNR regions in (10) do not exist if � �
�, i.e., unbounded� . This, however, does not imply that� is always convex,
because of the intermediate SNR region in (11), where� may be concave over
a certain interval. Also note that the conditions for convexity/concavity in (9)
and (10) are sufficient but not necessary [e.g., � may also be convex outside
of the interval in (9)].

Unfortunately, in the general case log-concavity does not ex-
tend to since the sum of log-concave functions is not neces-
sarily log-concave. However, in some special cases it does.

Corollary 3.1: is log-concave under the conditions of The-
orem 3 for a symmetric constellation, i.e., for

(e.g., the uniform signal sets [17]).
Proof: Immediate from Theorem 3 since .

We note that log-concavity is a “weaker” property than con-
cavity as the latter does not follow from the former [1]. Yet, it is
useful for many optimization problems, which can be reformu-
lated in terms of and, thus, can be treated as convex op-
timization problems5, with all the advantages aforementioned.

In some cases (e.g., in intersymbol interference analysis,
equalizer design/optimization, etc. [38]–[40], [27], [28]), error
rate is considered as a function of the signal amplitude
rather than power or SNR, so its convexity in is of interest.
This can be studied using the same geometric approach as in
Theorem 1 and 2, which is summarized here.

• The SER as a function of the amplitude
is always convex for ,

• for , it is convex at high SNR
and concave at low SNR , where

and there is an odd number of inflection points in between;
• the same applies to via .
Note that convexity in the amplitude is a stronger property

than convexity in the SNR (power) as the latter follows from the
former (via the composition rule) but not the other way around:
while the SER is always convex in the SNR for , it can be
concave in .

B. Convexity of the PEP and BER in the SNR

In many cases, it is a pairwise error probability (PEP), i.e.,
a probability to decide in
favor of given that , , was transmitted6, that is a key
point in the analysis (e.g., for constructing a union bound and
other performance metrics, see, e.g., [13], [15]–[17], and [37]).
Its convexity property can be established in a way similar to
Theorem 1, 2.

Theorem 4:
a) the pairwise error probability is a convex

function of the SNR at the high SNR region,
, for any ,

b) it is concave for at the low SNR region,
, where is the

distance between and ,

5maximizing (minimizing) � is equivalent to maximizing (minimizing)
���� since ����� is a monotonically increasing function.

6Our definition of the PEP is slightly different from the conventional
one (which is a probability that � is closer to � than to � [16], [17]) so
that our �	� �� ���� � � ���
���, which has important advantages:
� � ���� �� � � and the BER is expressed as in (12), which is
impossible with the conventional definition.
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c) it is convex for at the low SNR region,
.

Proof: Along the same lines as that of Theorem 1 and 2.
We note that Theorem 4(a) is stronger than Theorem 1 (at the

high SNR region) since the latter follows from the former but the
opposite is not always true (as the other SNR range in Theorem
1 indicates). Unlike the SER, the pairwise error probability can
be concave at low SNR even for .

It follows from Theorem 4 that the BER is also convex in the
high SNR region.

Corollary 4.1: Under the conditions of Theorem 4(a) with
the substitution

the pairwise error probabilities , and also the
BER (for any bit mapping) are convex functions of the SNR.

Proof: Using the relationship between the BER and the
pairwise error probabilities [33]

(12)

where is the Hamming distance between binary sequences
representing and , and observing that a positive linear com-
bination of convex functions is convex.

Remarkably, the high-SNR conditions in Corollary 4.1 and
2.1 are the same, i.e., not only the SER, but also the PEP and the
BER are convex in this high SNR range. In some cases (Gray
encoding and when nearest neighbor errors dominate), the BER
is approximated as [16], [17], so that it inherits the
convexity properties from Theorems 1, 2.

C. Convexity of the SER in Noise Power

Following the same geometric approach as in Section III-A,
we study below the convexity properties of as func-
tions of the noise power, which has applications in the jammer
optimization problem (see Sections VII-B and VII-C) and also
in the optimization problems which express the error rate as a
function of the MSE (e.g., equalizer or precoder design [9], [12],
see Section VII-E, where the MSE is considered as a part of the
noise).

Theorem 5: has the following convexity properties in the
noise power , for any n

4.1. is concave in the large noise mode (low SNR)

(13)

4.2. is convex in the small noise mode (high SNR)

(14)

4.3. There are an odd number of inflection points for inter-
mediate noise power

(15)

Proof: See Appendix A.

Corollary 5.1: The results in Theorem 5 extend directly to
by the substitutions and

in (13)–(15).

IV. UNIVERSAL BOUNDS ON SER DERIVATIVES IN SNR AND

NOISE POWER

Here we explore some generic properties of the SER deriva-
tives in SNR and noise power, which hold for arbitrary constel-
lations, based on the results in Section III. Such derivatives play
an important role in the design and analysis of optimization al-
gorithms for several reasons: to analyze the convergence con-
ditions and rate, to assess suboptimality of found solutions and
thus to develop a stopping criteria, and others (see [1, ch. 9–11]
for more details). Since the bounds developed below hold for
arbitrary constellations, they can be used in optimization algo-
rithms applicable to a wide class of problems.

Theorem 6: The first derivative in SNR (and also )
is bounded, for arbitrary constellation, as follows:

(16)

where , where is the gamma-
function [see (A14)] [23].

Proof: See Appendix A.

It should be noted that the bounds depend only on the SNR
and constellation dimensionality, not on constellation geometry
or order. They also apply to . Note that decreases

with SNR at least as .
Example: For arbitrary constellation geometry and order, the

SER first derivative in the SNR is bounded as follows:

(17)

(18)

When dimensionality is large , and

the upper bound on increases with , i.e., higher-dimen-
sional constellations (which may also include coding) have po-
tential for faster decrease of error rates with the SNR.

Corollary 6.1: When the lower bound in (16) is applied to
, it is achieved for the spherical decision region,

, of the radius .
Proof: Immediate From the Proof of Theorem 6.

While the spherical decision region is not often encountered
in uncoded systems, it has a number of remarkable properties:
it is the best possible decision region in the sense that it mini-
mizes the error probability for the symbol it represents [15]; it is
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a decision region for some noncoherent constellations [17]; and
it enters intimately into the channel coding theorem [15], [42]
(via the sphere hardening and packing arguments) so that ca-
pacity-approaching codes should have near-spherical decision
regions and the bounds above become tight. We note however
that they can be tight only for a specific SNR for nonadap-
tive systems (fixed constellation) as the sphere radius in Corol-
lary 6.1. depends on the SNR while the constellation geometry
does not.7 The SNR at which the bound is achieved satisfies to

so that the “effective” SNR for this symbol is
.

Corollary 6.2: The asymptotic behavior of and ,
which also applies to and , is as follows:

(19)

and the convergence to the limit is uniform.
Proof: Immediate from Theorem 6.

The intuition behind this result is that while (error
rate decreases with SNR), from Theorem 1 and at high
SNR (convexity), so that eventually, as SNR increases, has
to approach zero8.

In a similar way, one can derive bounds on the second deriva-
tive of the SER.

Theorem 7: The second derivative in SNR (and also
) is bounded, for arbitrary constellation, as follows:

(20)

where ,
,

, and and 0 otherwise.
Proof: Similar to that of Theorem 6, by observing that the

lower and upper bounds, when applied to , correspond to

the spherical decision regions of radii

and . Using (A13), the bounds can be
immediately evaluated. Since the bounds do not depend on ,
they also apply to .

Note from (20) that decreases at least as , for any
constellation.

Example: For any 2-D constellation in the AWGN channel,
2nd derivative of the SER is bounded as

(21)

Corollary 7.1: The lower and upper bounds in (20) are
achieved for the spherical decision regions of the radii and

.
Proof: Immediate from the proof of Theorem 7.

7This is the price to pay for the universal nature of the bound; naturally, when
some specific information about the constellation is available, tighter bounds
can be constructed.

8Note that when log-log scale is used (���� vs. �����) as in most SER/BER
plots [13], [15], [17], (19) does not apply.

The “effective” symbol SNR at which the bounds
are achieved are and

. As in the case of 1st deriva-
tive, spherical decision regions play here a prominent role.

Corollary 7.2: The asymptotic behavior of and ,
which also applies to and , is as follows:

(22)

and the convergence to the limit is uniform.
Proof: Immediate from Theorem 7.

The intuition behind this result is similar to that of Corollary
6.2: since and at high SNR, the second
derivative has to approach zero to avoid positive first derivative.

Corollary 7.3: , (and also , ) and their first
derivatives are continuous differentiable functions of the SNR.

Proof: Immediate from Theorems 6 and 7.

Let us now explore properties of the SER derivatives in the
noise power. These results parallel ones for the SNR derivatives
and have similar proofs, which are omitted here for brevity.

Theorem 8: The first derivative in the noise power is
bounded, for arbitrary constellation, as follows:

(23)

Corollary 8.1: The upper bound in (23) is achieved for the
spherical decision region of the radius .

Theorem 9: The second derivative in the noise power
is bounded, for arbitrary constellation, as follows:

(24)

where

We note that decrease at least as ,

, respectively.

Corollary 9.1: The lower and upper bounds in (24) are
achieved for the spherical decision regions of the radii

(25)

with the effective SNRs
and .
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Corollary 9.2: The asymptotic behavior of and
, which also applies to and , is as follows:

(26)

and the convergence to the limit is uniform.

Corollary 9.3: , (and also , ) and their first
derivatives are continuous differentiable functions of the noise
power.

Using the same method, the bounds for the first and second
derivatives, both in the SNR and the noise power, can also be
extended to higher-order derivatives. The analysis, however, be-
comes more complicated.

V. CONVEXITY OF AVERAGE SER IN FADING CHANNELS

Some of the convexity/concavity results above also apply to
fading channels, which is explored in this section. We assume
frequency-flat slow-fading channel.

Theorem 10: If the instantaneous SER is convex (concave)
and the CDF of the instantaneous SNR is a function of
only

(27)

where is the average SNR, then the average SER is convex
(concave) in .

Proof: Consider the average SER

(28)

where is the PDF of , and
is the PDF of the normalized instantaneous SNR

. The convexity (concavity) of follows from the last
integral in (28), which is a nonnegative weighted sum.

In many cases, the large-SNR approximation of the error rate
is used instead of the true SER, [4], [14], [20].
It is straightforward to verify that this is also a convex function.

The equivalent to (27) is that the PDF of can be expressed as
. The condition is not too restrictive as

many popular fading channel models satisfy it, which includes
Rayleigh fading channel (also with the maximum-ratio com-
bining), Rice and Nakagami fading channels. However, some
channels do not satisfy (27), which includes the log-normal and
composite fading channels9.

9Form this, however, it does not follow that the corresponding average SER
is not convex (concave).

It should also be pointed out that Theorem 3 does not extend
to fading channels in general, since the sum (or integral) of log-
concave functions is not necessarily log-concave.

VI. CONVEXITY PROPERTIES OF

Since the function finds ex-
tensive applications in communication/information theory, in-
cluding many error rate expressions (it is the error rate of a
binary modulation and many higher-order ones and their ap-
proximations and bounds, e.g., union bounds, include as
a building block), we briefly summarize its convexity/concavity
properties, which serves as a complement of the extensive list
of its properties in [21]. A number of such convexity/concavity
properties are well known

• is convex for (convexity in amplitude) [21].
• is convex for (convexity in power or SNR)

[21].
• Linear combinations and ,

where are constants, are also convex, which
follows from the 1st two properties.

• is convex for and concave for
(convexity/concavity in noise power or MSE) [9]. Con-
vexity/concavity of corresponding linear combinations can
also be derived from this.

• is convex for (convexity in mean
square error, which is required for performance evaluation
and optimization of an MMSE equalizer) [9], [12].

We list below a number of properties, which complement the
properties above and, to the best of our knowledge, have not
appeared in the communication/information-theoretic literature
so far.

Lemma 1: and and are log-concave, i.e.,
and are concave.

Proof: Follows from the integration theorem for log-con-
cave densities [1], [35], [36] since the Gaussian noise density
is log-concave (this can be verified by direct differentiation of

.

Lemma 2: The second derivative can be bounded as
follows:

(29)

Proof: Follows from Lemma 1 and the basic log-concavity
inequality.

Lemma 3: is log-convex in the SNR .
Proof: Consider ; one obtains,

(30)

where the inequality follows from the known bound for
[24],

(31)
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It should be pointed out that log-convexity is a stronger property
than just convexity: while the later implies that ,
the former implies that

(32)

Since finds its way into some error rate expressions (see,
e.g., [13], [16], [17], [32]), we list below its convexity proper-
ties.

Lemma 4: , are log-concave, is
log-convex.

Proof: Follows directly from Lemma 1.

Lemma 5: and are convex.
Proof: From the convexity of , and using the

composition rule [1].

VII. APPLICATIONS

As was emphasized earlier, convexity/concavity properties
are important for optimization problems [1], [2]. Below we con-
sider some applications in digital communications, which in-
clude optimum power allocation for the ZF-SIC V-BLAST, op-
timum power/time sharing for the transmitter and jammer opti-
mization, an implication for fading channels and an optimiza-
tion of a unitary-precoded OFDM system.

A. Optimum Power Allocation for the V-Blast Algorithm

Consider the block error rate (BLER), i.e., the probability of
at least one error at the detected transmit vector, of the ZF-SIC
V-BLAST [3]–[5]:

(33)

where is the SER for the constellation in use, is the SNR
of th stream with uniform power allocation, is the fraction
of the total transmit power allocated to th stream (the uniform
power allocation corresponds to ), is the number of
streams (transmitters). Both instantaneous and average can
be used in (33). Using the BLER as an objective, the following
optimization problem can be formulated [3]–[5]:

subject to (34)

where the constraint insures that the total transmit power is
fixed. The theorem below extends corresponding results in
[3]–[5] derived for QAM modulation to a broad class of cases.

Theorem 11: The optimization problem in (34) has a unique
global solution for either: (i) 1-D or 2-D constellations in terms
of instantaneous or average (in Rayleigh, Rice, and Nakagami-
fading channels) BLER, or (ii) for -D symmetric constella-
tions, , in terms of instantaneous BLER, or (iii) any con-
stellation at sufficiently high SNR.

Proof: Note that the problem in (34) is equivalent to
. If is convex,

and are concave [1]. Thus, the objec-
tive function is concave and hence the problem has a unique

solution. By Theorem 1 and 10, this holds for all 1-D or 2-D
constellations in the AWGN channel, or Rayleigh, Rice, or
Nakagami fading channels if the average BLER is used. For

and a symmetric constellation, the uniqueness in terms
of instantaneous BLER follows from Corollary 3.1. For any
constellation at sufficiently high SNR, the uniqueness follows
from Theorem 2.

We note that Theorem 11 also applies to optimum power al-
location in OFDM systems [41].

B. Optimum Power/Time Sharing for a Jammer

Based on the concavity/convexity properties in Theorem 5,
this section extends the corresponding results in [7] to arbitrary
multidimensional constellations in the AWGN channel.

Considering as a function of , one formulates the fol-
lowing jammer optimization problem using power/time sharing
[7]:

subject to (35)

where the jammer splits its transmission into subintervals,
being the fractional length of th subinterval and is its noise
(jammer) power, with the . The ob-
jective function in (35) is the SER over the whole transmission
interval. An immediate conclusion from (35) is that if
is concave, the power/time sharing does not help, i.e., the best
strategy is no sharing: , , . This can be
seem from the basic concavity inequality

(36)

Theorem 5 ensures that the optimization is possible, i.e.,
can be increased by power/time sharing under the fixed average
noise power, unless the noise power is large, in which case the
best strategy is always “on”. The optimum follows immedi-
ately from Caratheodory theorem [7], [25] : , where
corresponds to no sharing so that the only nontrivial solution is

, i.e., two power levels are enough to achieve the optimum.
Let denotes the maximum in (35), where “ ” denotes
optimality. Similarly to [7], it has simple characterization:

Lemma 5: is concave.
Proof: By contradiction10. If it is not concave, one can

apply the sharing in (35) again to increase it. But that is im-
possible as two consecutive sharings are equivalent to a single
one and hence the second one does not help. Thus, has
to be concave, in which case second sharing does not help, as
(36) indicates.

It also follows that is the smallest concave function
that upper-bounds [1], [7], [25]. This fact, however,

10The original proof in [7] relied on an elaborate argument. The contradiction-
type proof given here is much simpler.
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seems to be immaterial for our problem as we try to maximize
so larger functions are naturally welcome.

Before finding the optimal solution, we give a suboptimal
one, which is simpler to characterize. For clarity of exposition,
we consider two cases, both of which rely on Theorem 5.

Case I: There is a single inflection point , .
From Theorem 5

(37)

In this case, the suboptimum sharing is as follows.

Theorem 12: The suboptimum solution to (35) is to use the
single power level (always “on”) , and
“on-off” strategy with the on-interval

, see (38) at the bottom of the page. which
achieves the following SER

. (39)

Proof: It is straightforward to verify that (39) corresponds
to the strategy in (38). Using (37) under the conditions of The-
orem 5, it follows that . Thus, (38) is indeed
a better strategy than no sharing.

Intuitive explanation for (38) is that one eliminates the convex
part of by time/power sharing and the concave part is
left intact (no optimization is required there). Indeed, it can be
verified that and

. The solution in (38) is not optimum since the first derivative
of is discontinuous at and
(unless , in which case (38) gives the

optimum solution) so that is not concave, which means
that further optimization is possible.

Case II: There are multiple inflection points
. Similar suboptimal strategy can be used in the case of

multiple inflection points.

Theorem 13: The suboptimal time/power sharing strategy of
the jammer in this case is as follows:

if

if
(40)

where is kth interval of convexity of
, and denotes all concave intervals. This achieves

the following SER

(41)
Proof: Similar to that of Theorem 12.

We now consider the optimal solution for the case of a single
inflection point.

Theorem 14: The optimum power/time sharing strategy of
the jammer for the case of a single inflection point is always
“on” at high noise power, and “on-off” at low, [see (42) at the
bottom of the page] where is such that

, which achieves the following SER

. (43)

Proof: A standard proof is based on the concavity/con-
vexity properties in Theorem 5 and follows along the same lines
as that in [7, Theorem 3]. A simpler proof is to notice that

in (43) is concave and thus cannot be further improved
by power/time sharing. Therefore, it is optimal.

Note that (42) is identical to (38) with the differently-defined
threshold , i.e., the optimum strategy can be obtained from
the suboptimum one by proper adjustment of the threshold. The
intuition behind the optimum solution is almost the same as that
of the suboptimum one. The only difference is that the power/
time sharing strategy extends into the concave part to ensure the
continuity of the first derivative of so that its second
derivative is always nonpositive and hence is concave
and no further optimization is possible by time/power sharing.
The optimal solution for the case of multiple inflection points
can be constructed in a similar way.

C. Optimum Time/Power Sharing for the Transmitter

Similarly to the jammer problem above, the optimization
problem can be formulated for the transmitter, with the ob-
jective to reduce the SER. In fact, these two problems are
equivalent, via the substitutions

(44)

For completeness, we formulate below the main results.

if
if (38)

if
if (42)
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Theorem 15:
a) If is concave, e.g., for 1-D and 2-D constella-

tions, the optimum transmission strategy is always “on”,
without sharing (i.e., power/time sharing does not help to
reduce the SER in low dimensions, which was the case in
[7] for binary modulations).

b) if is not concave, e.g., for some -D constella-
tions, , (i) the suboptimum transmitter strategy is
given by Theorems 12 and 13, and (ii) the optimum trans-
mitter strategy is given by Theorem 14, both with the sub-
stitutions in (44).

Comparing these results to those in the previous section, we
conclude that the jammer is in better position compared to the
transmitter for 1-D and 2-D constellations, as the former can use
power/time sharing to optimize its transmission strategy while
the latter cannot.

D. Implication for Fading Channels

The convexity property in Theorem 1 has a profound impli-
cation for arbitrary-fading channels. The following result is a
straightforward consequence of the basic convexity inequality
(Jensen inequality) and the result in Theorem 1.

Theorem 16: If is convex in the nonfading AWGN
channel, e.g., for 1-D and 2-D constellations, fading never re-
duces the SER (compared to the nonfading channel at the same
average SNR), i.e., “fading is never good in low dimensions”

(45)

where denotes mean value of .
Based on Theorem 2, this result also extends to higher-D con-

stellations at high SNR; at small SNR, there are “good” types
of fading, which reduce the SER. Intuitively, this corresponds
to the optimum (or suboptimum) transmitter strategy of the pre-
vious section, since the time/power sharing strategy of the trans-
mitter can be considered as “fading.”

E. Unitary Precoding in OFDM Systems

Let us now apply the convexity/concavity results to bound
error rates of precoded OFDM systems, which also reveals what
is the best and worst precoding. Following [9], we consider an
OFDM system with a unitary precoder (i.e., the Tx precoding
matrix is unitary); conventional OFDM system (without pre-
coding) corresponds to , where is the identity matrix; the
single-carrier cyclic prefix (SC-CP) system, with equalization
done at the receiver using fast Fourier transform (FFT) and in-
verse FFT (IFFT), corresponds to , where is the FFT
matrix. Based of the convexity/concavity property of ,
it has been shown in [9] that the error rate of the unitary-pre-
coded OFDM system with QPSK modulation and arbitrary
can be bounded as

at low SNR

at high SNR (46)

where and are the error rates of the conven-
tional OFDM (no precoding) and the SC-CP system with the ZF
equalizer, respectively, and high/low SNR regions are quantified
in [9]. It follows form (46) that the SC-CP system is

the best unitary precoding at high SNR, and the conventional
OFDM is the best at low SNR11.

Using Theorem 5, the result in (46) immediately applies to ar-
bitrary multidimensional constellations (with low and high SNR
regions defined based on the thresholds in Theorem 5 and corol-
lary 5.1), which may also include coding, i.e., it is a consequence
of the transmission strategy rather than a particular constellation
used, where the latter determines only the low and high SNR
thresholds.

VIII. CONCLUSION

Convexity/concavity properties of error rates of the ML
detector in nonfading and fading AWGN channels in terms of
SNR and noise power have been studied. It has been shown
that the SER is always convex in SNR for 1-D and 2-D con-
stellations, but may be nonconvex in higher dimensions at low
to intermediate SNR, being always convex at high SNR. The
pairwise error probability and also the BER are convex at high
SNR. The SER is concave in noise power at low SNR (large
noise power), convex at high SNR (small noise power) and
has an odd number of inflection points in-between. Universal
bounds on the SER first and second derivatives have been
derived, which are the functions of SNR and constellation
dimensionality only and are independent of the constellation
geometry. A number of related properties of the Q-function
have been discussed. The applications of these results to
optimization problems were presented, which included the
optimum power allocation in the spatial multiplexing system
(ZF-SIC V-BLAST), optimum power/time sharing strategy
for transmitter and jammer, optimal orthogonal precoding for
OFDM systems and implication for fading channels. These
results extend to the interference channel when the Gaussian
approximation of interference is used, and also to the BER
when it can be expressed as a nonnegative linear combination of
individual symbol error rates, or when it can be approximated
as . The BER is always convex at high
SNR. Furthermore, the reported results also apply to coded
systems, by considering codewords as symbols of an extended
multidimensional constellation.

The convexity/concavity properties of error rates studied
above open up a possibility to apply the convex optimization
techniques to many problems in digital communications in a
systematic and rigorous way, thus providing a missing generic
link between digital communications and convex optimization.
Furthermore, generic convexity/concavity properties provide
significant insights into constellation-independent system
properties, i.e., those that depend on system configuration and
transmission strategy (e.g., V-BLAST, power/time sharing,
OFDM precoding) rather than a particular constellation in
use. Optimum or near-optimum transmission strategies and
their performance can sometimes be derived directly based on
the basic convexity/concavity inequalities, without complex
machinery of analytical or numerical optimization.

11As a side remark, we note that the best and worst precoding here follow im-
mediately from the basic concavity/convexity inequalities, without the compli-
cations of explicitly solving an optimization problem (e.g., via Lagrange mul-
tipliers), which emphasizes once more the importance of convexity/concavity
properties.
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Fig. 1. Two-dimensional illustration of the problem geometry for Case 1. The
decision region� is shaded. � ��� has a sign as indicated by “�” and “�.”

APPENDIX

PROOFS

Proof of Theorem 1: Consider first , which can be
expressed as

(A1)

where we have exchanged the integral and derivative since the
integration boundary does not depend on and is contin-
uous in , , and is differentiable in . After some manipula-
tions, the derivative in (A1) can be presented in the following
form,

(A2)

where , so that if ,

and otherwise. Consider three different cases.
Case 1:

(A3)

where is the maximum distance from the origin to the

boundary of . In this case, so that the
integral in (A1) is clearly negative and (8) follows. Fig. 1 illus-
trates this case. This is a small-SNR mode since (A3) implies
that . In the same way, one can prove Theorem
4(b).

Case 2:

(A4)

where is the minimum distance from the
origin to the boundary of . Fig. 2 illustrates this case. This
is a large-SNR mode since (14) implies that .

In this case, , where is
the n-dimensional space, and the difference of two sets and

Fig. 2. Two-dimensional illustration of the problem geometry for Case 2.

is defined as , so that
is the complement of . The in-

tegral in (A1) can be upper bounded as

(A5)

where we have used the fact that . In this case,
the pairwise error probability is also convex (see Theorem 4).

Case 3:

(A6)

This is an intermediate-SNR mode since (A6) implies that
. Fig. 3 illustrates this case. Sepa-

rating the decision region into two subregions, ,
, , where is (are) the

cone(s) whose base(s) is (are) the intersection(s) of the planes
(boundaries of the decision region ) and the ball

; the vertex of the cone(s) is the origin .
Clearly

(A7)

The integral over can be bounded as

(A8)

where the inequality follows from the fact that

, and the equality follows from the
fact that

(A9)

where is the fixed solid angle spanned by and is
the total solid angle in , both of them are independent of 12.
Note that (A9) follows from the spherical symmetry of
(see (2)). Combining (A8) and (A7), one obtains .

12� may be an intersection of several cones, in which case � is the
total solid angle spanned by this intersection, which is still independent of �
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Fig. 3. Two-dimentional illustration of the problem geometry for Case 3. The
cone � is build on the OA and OB rays. � is the triangle AOB.

Thus, is concave and, hence, is convex in all three
cases. Using the fact that a nonnegative weighted sum of con-
cave (convex) functions is concave (convex) [1], one concludes
that is also concave and hence is convex.

Proof of Theorem 2: First, we note that for ,
. In the large SNR case (9), so that

, and the integral for can be
upper bounded as in (A5) from which 2.1. follows. In the small
SNR mode, so that

and the integral in (A1) is positive. Since is concave in
the large SNR mode, , and is convex in the small SNR
mode, , there must be an odd number of inflection
points, , in-between (by the continuity argument ap-
plied to ).

Proof of Theorem 5: Similarly to (A2), can
be expressed as

(A10)

where . Using (A10) in the proof of Theorem 2,
Theorem 5 follows.

Proof of Theorem 6: The derivative can be ex-
pressed as

(A11)

Noting that if and only if ,
can be upper-bounded as

(A12)

where is the ball of radius , .
The last integral in (A12) can be evaluated in a closed form
by using the spherical coordinates and relying on the spherical

symmetry of [22]. Specifically, the integral of over
the sphere of radius is

(A13)

where is the incomplete gamma-function [23]

(A14)

and is the complete gamma-function. Using
(A13), one obtains

(A15)

Since ( is independent of , it also applies to . This proves
the lower bound in Theorem 6. The upper bound is obvious; its
formal proof can be obtained along the lines of that of Theorem
1.
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