
Error Reconciliation in Quantum Key

Distribution Protocols

Miralem Mehic1,3(B), Marcin Niemiec2,3, Harun Siljak4, and Miroslav Voznak3

1 Department of Telecommunications, Faculty of Electrical Engineering,
University of Sarajevo, Zmaja od Bosne bb, Kampus Univerziteta,

71000 Sarajevo, Bosnia and Herzegovina
miralem.mehic@ieee.org

2 AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland

3 Department of Telecommunications, VSB-Technical University of Ostrava,
17. listopadu 15, 70800 Ostrava-Poruba, Czech Republic

4 CONNECT Centre, Trinity College Dublin, Dunlop Oriel House 34 Westland Row,
Dublin 2, Ireland

Abstract. Quantum Key Distribution (QKD) protocols allow the estab-
lishment of symmetric cryptographic keys up to a limited distance at
limited rates. Due to optical misalignment, noise in quantum detectors,
disturbance of the quantum channel or eavesdropping, an error key recon-
ciliation technique is required to eliminate errors. This chapter analyses
different key reconciliation techniques with a focus on communication
and computing performance. We also briefly describe a new approach to
key reconciliation techniques based on artificial neural networks.

Keywords: Error reconciliation · Quantum key distribution ·
Performances · Reversibility

1 Introduction

QKD provides an effective solution for resolving the cryptographic key estab-
lishment problem by relying on the laws of quantum physics. Unlike approaches
based on mathematical constraints whose security depends on the attacker’s
computational and communication resources, QKD does not put a limit on the
available resources but limits the length of the link implementation [1]. A QKD
link can be realized only to a certain distance and at certain rates since it involves
usage of two channels: quantum/optical and public/classical.

This work has been partially supported by COST Action IC1405 on Reversible Compu-
tation - Extending Horizons of Computing, and partly by the European Union’s Hori-
zon 2020 Research and Innovation Programme, under Grant Agreement no. 830943,
the ECHO project. This work was also supported by the Ministry of Education, Science
and Youth of Canton Sarajevo, Bosnia and Herzegovina under Grant No. 11/05-14-
27719-1/19 and partly by the Horizon 2020 project OpenQKD under grant agreement
No. 857156.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 222–236, 2020.
https://doi.org/10.1007/978-3-030-47361-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_11


Error Reconciliation in Quantum Key Distribution Protocols 223

Quantum cryptography focuses on photons (particles of light), using some
of their properties to act as an information carrier. Principally, information is
encoded in a photon’s polarization; a single polarized photon is referred to as a
qubit (quantum bit) which cannot be split, copied or amplified without intro-
ducing detectable disturbances.

The procedure for establishing a key is defined by QKD protocol, and three
basic categories are distinguished: the oldest and widespread group of discrete-
variable protocols (BB84, B92, E91, SARG04), efficient continuous-variable (CV-
QKD) protocols and distributed-phase-reference coding (COW, DPS) [2,3]. The
primary difference between these categories is reflected in the method of prepar-
ing and generating photons over a quantum channel [4–6].

A quantum channel is used only to exchange qubits, and it provides the QKD
protocol with raw keys. All further communication is performed over a public
channel, and it is often denoted as post-processing. It includes steps that need to
be implemented for all types of protocols [2], exchanging only the accompanying
information that helps in the profiling of raw keys. The overall process is aimed
at establishing symmetric keys on both sides of the link in a safe manner.

The initial post-processing step is called a sifting phase, and it is used to
detect those qubits for which adequate polarization measurement bases have
been used on both sides. Therefore, user B, typically designated Bob informs user
A, usually named Alice in literature, about bases he used, and Alice provides
feedback advising when incompatible measurement bases have been used. It is
important to underline that information about the measurement results is not
revealed since only details on used bases are exchanged. Bob will discard bits
for cases when incompatible bases have been used, providing the sifted key.

Further, it is necessary to check whether the eavesdropping of communica-
tion has been performed. This step is known as error-rate estimation since it
is used to estimate the overall communication error. The eavesdropper is not
solely responsible for errors in the quantum channel since errors may occur due
to imperfection in the state preparation procedure at the source, polarization ref-
erence frame misalignment, imperfect polarizing beam splitters, detector dark
counts, stray background light, noise in the detectors or disturbance of the quan-
tum channel. However, the threshold of bit error rate pmax for the quantum
channel without the presence of eavesdropper Eve is known in advance, and this
information can be compared with the measured quantum bit error rate (QBER)
p of the channel. The usual approach for estimation of the QBER in the chan-
nel (p) is to compare a small sample portion of measured values. The selected
portion should be sufficient to make the estimated QBER credible where the
question about the length of the sample portion is vital [4,7,8]. After estimating
QBER, the obtained value can be compared with the already known threshold
value of pmax. If the error rate is higher than a given threshold (p > pmax),
the presence of Eve is revealed which means that all measured values should
be discarded and the process starts from the beginning. Otherwise, the process
continues.



224 M. Mehic et al.

Although the estimated value is lower than the threshold value, there are
still measurement errors that need to be identified, and those bits need to be
corrected or discarded. The process of locating and removing errors is often
denoted as “error key reconciliation”. As shown in traffic analysis experiments [9,
10], error key reconciliation represents a highly time demanding and extensive
computational part of the whole process. Depending on the implementation, a
key reconciliation step may affect the quantum channel and considerably impact
the key generation rate.

In the following sections, we analyze the most popular error reconciliation
approaches. Cascade protocol is discussed in Sect. 2, overview of Winnow proto-
col is given in Sect. 3. Section 4 outlines LDPC approach while the comparison
is given in Sect. 5. We introduce the new key reconciliation protocol in Sect. 6
and provide conclusion in Sect. 7.

2 Cascade

The most widely used error key reconciliation protocol is cascade protocol due
to its simplicity and efficiency [11]. Cascade is based on iterations where random
permutations are performed with the aim of evenly dispersing errors throughout
the sifted key. The permuted sifted key is divided into equal blocks of ki bits,
and after each iteration and new permutations, the block size is doubled: ki =
2 · ki−1. The results of the parity test for each block are compared, and a binary
search to find and correct errors in the block is performed. However, to improve
the efficiency of the process, the cascade protocol investigates errors in pairs of
iterations in a recursive way.

Instead of rejecting error bits in the first stage, information about the pres-
ence of an error bit in the block is used in the further iterations to detect
errors that have not been detected due to the measurement parity. For any
error detected in further iterations, at least one matching error can be identified
in the same block of the previous iteration which was previously considered as
a block without errors. Using a binary search, a deep search for errors in such
a block is performed, and the masked errors can be recursively detected. Two
passes of cascade protocol are illustrated in Fig. 1.

The length of the initial block k1 is a critical parameter which depends on
the estimated QBER. The empirical analysis described in [11] proposes the use
of value k1 = 0.73/p as the optimal value, where p is the estimated QBER.
Sugimoto modified the cascade protocol to bring the cascading protocol closer
to theoretical limits [12]. Besides, he confirmed that four iterations are sufficient
for the effective key reconciliation as originally proposed in [11]. However, due
to the dependence of the initial block’s length on the estimated QBER, it is
advisable to execute all the iterations (as long as the length of the block ki is
not equal to the length of the key). In [4], Rass and Kollmitzer showed that
adopting block-size to variations of the local error rate is worthwhile, as the
efficiency of error correction can be increased by reducing the number of bits
revealed to an adversary [13].



Error Reconciliation in Quantum Key Distribution Protocols 225

Fig. 1. Illustration of the first two passes of reconciliation using a Cascade protocol.



226 M. Mehic et al.

Cascade protocol relies on the use of the binary search to locate an error
bit. The binary search includes further division of the block into two smaller
subblocks for which the results of parity check values are compared until an error
is found. For each block with an error bit, in total 1+ ⌈log2 ki⌉ parity values are
exchanged since 1+ ⌈log2 ki⌉ is the maximum number of times that block ki can
be splitted, and only one parity value is exchanged for blocks without errors.

In addition to discarding the sample portion bits used to estimate QBER
value, it is advised to discard the last bit of each block and subblock for which
the parity bit was exchanged to minimize the amount of information gained by
Eve. The maximum number of discared bits denoted as Di can be calculated
based on ki value in the ith iteration as follows:

∑

Di =
∑

i

(
∑

initially
even

blocks

1 +
∑

initially
odd

blocks

(1 + ⌈log2 ki⌉) +
∑

other
errors

corrected

⌈log2 ki⌉) (1)

As proposed in [14], Eq. (1) can be shortened to:

D =
∑

Di =
∑

i

(
n

ki

+
∑

errors
corrected

⌈log2 ki⌉) (2)

where ki = 2 ·ki−1, ki < n
2 and n denotes the amount of the measured values

in sifting phase. The number of discarded bits depends on the QBER value and
initial block size. However, Sugimoto showed [12] that most errors are corrected
in the first two iterations. The empirical analysis of cascade protocol is given
in [15], while the practical impact of cascade protocols on post-processing is
considered in [9,16]. In [17], Chen proposed the extension of random permuta-
tions using interleaving technique optimized to reduce or eliminate error clusters
from burst errors. Nguyen proposed modifying the permutation method used in
cascade [18]. Yan and Martinez proposed modifications based the initial key’s
length in [19,20] while the use of Forward Error Correction was analyzed in [21]
(Table 1).

Table 1. Error correction per passes using Cascade protocol

Iteration 1 2 3 4

Corrected errors (%) 54.522% 45.347% 0.451% 0.002%

3 Winnow

In 2003, Winnow protocol based on Hamming codes was introduced [22]. The
aim was to increase the throughput and reduce the interactivity of Cascade by
eliminating the binary search step.



Error Reconciliation in Quantum Key Distribution Protocols 227

Both parties, Alice and Bob, divide their random keys Ma and Mb into blocks
of equal length (recommended starting size is k = 8) and calculate syndrome
values Sa and Sb based on a Generator matrix G and a parity check Matrix H
where H ·GT = 0. For each block of size k, based on his key values Mb, Bob will
generate and transmit his syndrome Sb = H · Mb to Alice, which will calculate
the syndrome differences Sd. If Sd is non-zero, Alice will attempt to correct the
errors with the fewest changes leading to syndrome zero values.

Sa = H · MT
a =

⎡

⎣

0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1

⎤

⎦ ·
[

0 1 1 0 0 1 1
]T

=

⎡

⎣

1
0
0

⎤

⎦

Sb = H · MT
b =

⎡

⎣

0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1

⎤

⎦ ·
[

0 1 0 0 0 1 1
]T

=

⎡

⎣

0
1
0

⎤

⎦

Sa

⊗

Sb =

⎡

⎣

1
1
0

⎤

⎦

1 · 20 + 1 · 21 + 0 · 22 = 3 (bit on position 3 is the error) (3)

The Hamming distance dmin between codewords limits the number of errors
that are suitable for correction where a code word with the number of errors
greater than dmin

2 may closely resemble different code word then correcting
the considered code word. Due to reliance on Hamming codes, the Winnow
protocol may actually introduce errors, which is the main disadvantage of the
shortly described approached. Its efficiency is lower when compared to Cascade
for QBER values below 10% that are useful for practical QKD [23].

To achieve information-theoretical secrecy, Buttler suggested discarding an
additional bit of each block of size k in the privacy maintenance phase [22].

4 Low Density Parity Check

With terrestrial links, Alice and Bob are usually not limited to execution time,
computation and communication complexity. However, with satellite links, the
parties need to consider significant losses in the channel, limited time to establish
a key due to periodic satellite passage where communication and computation
complexity puts additional constraint. Therefore, in previous years, researchers
have turning to the application of Gallager’s Low Density Parity Check (LDPC)
codes that have recently been shown to reconcile errors at rates higher than those
of Cascade and Winnow [24–26]. LDPC provides low communication overhead
and inherent asymmetry in the amount of computation power required at each
side of the channel.

LDPC linear codes are based on a parity check matrix H and a generator
matrix G where a decoding limit of the code is defined with the minimum dis-
tance. The dimensions of H and G are m×n where m = n·(1−r) and r is defined



228 M. Mehic et al.

as code rate in range [0, 1]. The code rate value is usually defined beforehand; it
defines the correcting power and efficiency. The reconciliation algorithm based
on LDPC includes following steps:

– An estimation of QBER of the communication channel is performed,
– Based on estimated QBER, Alice and Bob choose the same m × n generator

matrix G and parity check matrix H,
– For each sifted key, Bob calculates syndrome Sb and send it to Alice,
– Alice attempts to reconcile sifted key, assuming that Bob has the correct

sifted key. Her goal is to resolve Bob’s key vector x, based on her key
vector y, received syndrome Sb, the parity-check matrix H, and estimated
QBER value. Alice can use several techniques to decode LDPC such as belief
propagation decoding algorithm (also known as the Sum-Product algorithm)
or Log-Likelihood Ratios which significantly lower computational complex-
ity [4,16,23].

Decoding LDPC code requires larger computational and memory require-
ments than either the Cascade or Winnow algorithms. However, it has a signifi-
cant advantage due to the reduction of communication resources since only one
information exchange is required. In networks with limited resources (bandwidth
and latency), such tradeoff provides potentially large gains in overall runtime and
secrecy. In the context of QKD, LDPC was firstly used as a base for the BBN
Niagara protocol in DARPA QKD network [27].

5 Comparisson

For testing purposes, Cascade, Winnow and LDPC code were implemented in
C++ programming language on servers Intel (R) Xeon (R) Silver 4116 CPU @
2.10 GHz with 8 GB, and 512 GB HDD. For each value of QBER, 10.000 random
keys were tested with the same random seed, which allowed repeating scenarios
for different protocols used (Cascade, Winnow and LDPC). In total, 870,000
tests were performed.

The total number of leaked bits is defined as follows:

– Cascade: For each exchange of parity value, one bit is discarded.
– Winnow: For each block k, one bit is discarded.
– LDPC: Total length of syndrome Sb value exchanged.

Figure 2 shows that for small values of QBER (up to 0.05%), Cascade quickly
finds and removes errors resulting in a small number of iterations. However, as
the QBER value increases (up to 0.10%), LDPC shows better efficiency in terms
of overhead and information exchanged.

Figure 3 shows that the overhead efficiency has its price in terms of execution
time. Due to the simplicity of algorithms, Cascade and Winnow codes have
almost fixed execution time, while in LDPC, the code execution time varies, and
gradually increases with the QBER increase.



Error Reconciliation in Quantum Key Distribution Protocols 229

Fig. 2. The number of bits leaked (discarded) for different QBER values. Due to its
simplicity, the binary search within Cascade protocol can locate errors in a short time
for lower values of QBER. However, for more significant QBER values, binary search
requires deeper checking of the sifted key, which increases communication. In the case
of Winnow, syndrome message per each block of length k is exchanged which can be
used to detect errors in early stages.

Fig. 3. The execution time for different QBER values. LDPC predominantly requires
more time to execute key reconciliation tasks while due to its simplicity, the execution
time of the Cascade and Winnow protocols is almost constant. LDPC based on the
belief propagation algorithm was used for decoding.



230 M. Mehic et al.

6 Error Correction Based on Artificial Neural Networks

Using artificial neural networks for error correction during a key reconciliation
process is a new concept, introduced in [28]. This proposal assumes the use of
mutual synchronization of artificial neural networks to correct errors occurring
during transmission in the quantum channel. Alice and Bob create their own
neural networks based on their keys (with errors). After the mutual learning
process, they correct all errors and can use the final key for cryptography pur-
poses.

6.1 Tree Parity Machines

Tree parity machine (TPM) is a type of artificial neural networks (ANN) –
a family of statistical learning models inspired by biological neural networks
[29]. It consists of artificial neurons (analogous to biological neurons) which are
connected and are able to transmit a signal from one neuron to another [30].
Neurons are usually organized in layers: the first layer consists of input neurons
which can send the data to the second layer (called hidden). The last layer –
called the output layer – consists of output neurons. TPM contains only one
hidden layer and has a single neuron in the output layer. It consists of KN
input neurons, where K is the number of neurons in the hidden layer and N is
the number of inputs into each neuron in the hidden layer. An example of TPM
is presented in Fig. 4.

Fig. 4. Structure of TPM machine [28]

TPMs have another important feature: connections between neurons can
store parameters (called weights) that can be manipulated during calculation.



Error Reconciliation in Quantum Key Distribution Protocols 231

Each connection between the input layer and hidden layer is characterized by its
weight, which is an integer from the range [−L, L]. The output value of neuron
k in the hidden layer depends on input x and weight w and is calculated as:

σk = sgn(

N
∑

n=1

xkn ∗ wkn) (4)

where signum function is:

sgn(z) =

{

−1 z ≤ 0

1 z > 0
(5)

The output value of the neuron in the output layer is calculated as:

τ =
K
∏

k=1

σk (6)

When Alice and Bob build their own TPMs with the same structure (K, N
and L), they can synchronize these artificial networks after mutual learning [31].
At the beginning of this process, each TPM generates random values of weights,
however after the synchronization process both users have TPMs with the same
values of weights. Therefore, Alice and Bob can use this phenomenon to correct
errors occurring in the quantum channel.

In order to synchronize neural networks, Alice or Bob generates random
inputs and both users compute outputs from each TPM. If the outputs have the
same value, they start the learning process, but if the outputs are different, a
new string of bits must be generated. Alice and Bob can choose any learning
algorithm; however, the generalized form of Hebbian method is the most popular
in practical implementations [32]. This algorithm strengthens the connections
which have the same value as the TPM output. The new weights are calculated
by means of the following formula:

w⋆
kn = νL(wkn + xkn ∗ σk ∗ Θ(σk, τ)) (7)

where:

Θ(σk, τ)) =

{

0 if σk �= τ

1 if σk = τ
(8)

and function νL limits values of connections to the range [−L, L]:

νL(z) =

⎧

⎪

⎨

⎪

⎩

−L if z ≤ −L

z if − L < z < L

L if z ≥ L

(9)

After the appropriate number of iterations, the synchronization process ends,
and the weights of both TPM machines are the same. However, synchronization



232 M. Mehic et al.

of TPMs requires public channel for communication between Alice and Bob
where Eve can eavesdrop and try to synchronize her own TPM machine with
Alice and Bob. Fortunately, if the output of Eve’s TPM machine is different
than the outputs of Alice and Bob’s machines, the learning process cannot be
performed. Therefore, the synchronization of Eve’s TPM is much slower than the
synchronization of the TPMs belonging to Alice and Bob. An example of the
synchronization process is presented in Fig. 5 (TPM machines with parameters:
N = 8, K = 6, L = 2 and Hebbian learning algorithm). Alice and Bob synchronized
neural networks before 200 iterations, but the attacker was not able to do it for
1000 iterations.

Fig. 5. Example of TPMs synchronization: Alice’s TPM and Bob’s TPM, Bob’s TPM
and Attacker’s TPM (TPM machines with parameters: N = 8, K = 6, L = 2 and Hebbian
learning algorithm)

6.2 Error Correction Based on TPMs

We can use the presented synchronization of the TPM machines to correct errors
in the quantum cryptography. In the beginning, Alice and Bob create their own
TPM machines based on their own strings of bits. The users change the string
of bits into weights in their own TPM machines (bits into numbers from the
range [−L, L] ). Values {−L,−L + 1, ...L − 1, L} become weights of connections
between the input neurons and the neurons in the hidden layer. In this way,
Alice and Bob construct very similar neural networks – the TPM machines
have the same structure, and most of the weights are the same. The differences
are located only in the places where errors occurred: for example, if QBER
≈3%, it means that ≈97% of bits are correct. After this, synchronization of the



Error Reconciliation in Quantum Key Distribution Protocols 233

TPM machines begins and continues until all weights in both machines become
the same. When each random input is chosen (input strings have KN length),
the users compute outputs and compare the obtained values. When the TPM
machines are synchronized, the weights are the same in both neural networks.
Therefore Alice and Bob can convert the weights back into bits because both
strings are now the same. All errors have been corrected.

Importantly, Alice’s binary string is very similar to Bob’s string of bits. The
typical value for QBER does not exceed a few percent; therefore we must correct
only a small part of the whole key. This means that the TPM machines are close
to synchronization and the learning process will finish much faster than in the
case of synchronization of random strings of bits. Of course, this increases the
security level significantly.

It is worth mentioning that this idea – using the mutual synchronization of
neural networks to correct errors – is a special case when this process makes
sense. In general, TPM machines cannot be used for error correction of digital
information because we are not able to predict the final weights after the learning
process.

7 Conclusion

In this chapter, we analyzed techniques of implementing the key reconciliation
using Cascade, Winnow, Low-density parity-check code and the application of
neural networks with a focus on communication and computing performances.

Our previous results [9] showed that key reconciliation process takes the
dominant part of QKD post-processing. With increasing interest in satellite and
global QKD connections, minimizing the duration of key establishment process
is becoming an increasingly attractive area. It is necessary to take into account
the possibilities of asymmetric processing, which simplifies the requirements for
computing power budgets as well as requirements for minimizing the exchange
of packets to reduce overhead and the ability to work in networks with weaker
network performance (bandwidth and network delay).

Since the development of metropolitan QKD testbed networks [33–39], LDPC
is increasingly being considered as an adequate basis for the key reconciliation
process in QKD, and there are noticeable variations in how this protocol is
implemented. However, techniques of reversibility or on artificial neural networks
can significantly improve the process to reduce communication and computing
resources and represent areas of great interest for further research.

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, New York, vol. 175, p. 8 (1984)

2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N.,
Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys.
81(3), 1301–1350 (2009)



234 M. Mehic et al.

3. Assche, G.V.: Quantum Cryptography and Secret-Key Distribution. Cambridge
University Press, Cambridge (2006)

4. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography, vol. 1. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-04831-9

5. Dodson, D., et al.: Updating quantum cryptography report ver. 1. arXiv preprint
arXiv:0905.4325, May 2009

6. Dusek, M., Lutkenhaus, N., Hendrych, M.: Quantum cryptography. In: Progress
in Optics, vol. 49, pp. 381–454. Elsevier, January 2006

7. Niemiec, M., Pach, A.R.: The measure of security in quantum cryptography.
In: 2012 IEEE Global Communications Conference (GLOBECOM), pp. 967–972,
December 2012

8. Mehic, M., Niemiec, M., Voznak, M.: Calculation of the key length for quantum
key distribution. Elektron. Elektrotech. 21(6), 81–85 (2015)

9. Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis
of the public channel of quantum key distribution link. IEEE J. Quantum Electron.
53(5), 1–8 (2017)

10. Mehic, M., et al.: A novel approach to quality-of-service provisioning in trusted
relay quantum key distribution networks. IEEE/ACM Trans. Netw. 28(1), 168–
181 (2020)

11. Brassard, Gilles, Salvail, Louis: Secret-key reconciliation by public discussion. In:
Helleseth, Tor (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 35

12. Sugimoto, T., Yamazaki, K.: A study on secret key reconciliation protocol. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E83-A(10), 1987–1991 (2000)

13. Lustic, K.: Performance analysis and optimization of the winnow secret key recon-
ciliation protocol. Ph.D. thesis, Air Force Institute of Technology (2010)

14. Ruth, Y.: A probabilistic analysis of binary and cascade. math.uchicago.edu (2013)
15. Calver, T.: An empirical analysis of the cascade secret key reconciliation protocol

for quantum key distribution. Master thesis (2011)
16. Pedersen, T.B., Toyran, M., Pearson, D., Pedersen, T.B., Toyran, M.: High perfor-

mance information reconciliation for QKD with CASCADE. Quantum Inf. Com-
put. 734(5–6), 419–434 (2013)

17. Keath, C.: Improvement of reconciliation for quantum key distribution. Ph.D. the-
sis, Rochester Institute of Technology, February 2010

18. Nguyen, K.C.: Extension des protocoles de réconciliation en cryptographie quan-
tique. Université Libre de Bruxelles, Travail de fon d’études (2002)

19. Yan, H., et al.: Information reconciliation protocol in quantum key distribution
system. In: Proceedings - 4th International Conference on Natural Computation,
ICNC 2008, vol. 3, pp. 637–641 (2008)

20. Martinez-Mateo, J., Pacher, C., Peev, M., Ciurana, A., Martin, V.: Demystifying
the information reconciliation protocol cascade. arXiv preprint arXiv:1407.3257,
pp. 1–30, July 2014

21. Nakassis, A., Bienfang, J.C., Williams, C.J.: Expeditious reconciliation for prac-
tical quantum key distribution. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds.)
Quantum Information and Computation II, vol. 5436, p. 28, August 2004

22. Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., Nickel, G.H., Donahue, C.H.,
Peterson, C.G.: Fast, efficient error reconciliation for quantum cryptography. Phys.
Rev. A 67(5), 052303 (2003)

23. Elkouss, D., Leverrier, A., Alleaume, R., Boutros, J.J.: Efficient reconciliation pro-
tocol for discrete-variable quantum key distribution, June 2009

https://doi.org/10.1007/978-3-642-04831-9
http://arxiv.org/abs/0905.4325
https://doi.org/10.1007/3-540-48285-7_35
http://arxiv.org/abs/1407.3257


Error Reconciliation in Quantum Key Distribution Protocols 235

24. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8, 21–28
(1962)

25. Elkouss, D., Martinez-Mateo, J., Vicente, M.: Information reconciliation for QKD.
Quantum Inf. Comput. 11(March), 226–238 (2011)

26. Elkouss, D., Martinez-Mateo, J., Martin, V.: Analysis of a rate-adaptive reconcil-
iation protocol and the effect of leakage on the secret key rate. Phys. Rev. A - At.
Mol. Opt. Phys. 87(4), 1–7 (2013)

27. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status
of the DARPA quantum network (Invited Paper). In: Donkor, E.J., Pirich, A.R.,
Brandt, H.E. (eds.) Quantum Information and Computation III. Proceedings of
SPIE, vol. 5815, pp. 138–149, May 2005

28. Niemiec, M.: Error correction in quantum cryptography based on artificial neural
networks. Quantum Inf. Process. 18(6), 174 (2019)

29. Kanter, I., Kinzel, W.: The theory of neural networks and cryptography (2007)
30. Hadke, P.P., Kale, S.G.: Use of neural networks in cryptography: a review. In: IEEE

WCTFTR 2016 - Proceedings of 2016 World Conference on Futuristic Trends in
Research and Innovation for Social Welfare (2016)

31. Chakraborty, S., Dalal, J., Sarkar, B., Mukherjee, D.: Neural synchronization based
secret key exchange over public channels: a survey. In: 2014 International Confer-
ence on Signal Propagation and Computer Technology, ICSPCT 2014 (2014)

32. Kriesel, D.: A brief introduction on neural networks. Technical report, December
2007. www.dkriesel.com

33. Elliott, C., Yeh, H.: DARPA quantum network testbed. Technical report July, BBN
Technologies Cambridge, New York, USA, New York (2007)

34. Alleaume, R., et al.: SECOQC white paper on quantum key distribution and cryp-
tography. arXiv preprint quant-ph/0701168, p. 28 (2007)

35. Korzh, B., et al.: Provably secure and practical quantum key distribution over 307
km of optical fibre. Nat. Photon. 9(3), 163–168 (2015)

36. Sasaki, M.: Tokyo QKD network and the evolution to secure photonic network. In:
CLEO:2011 - Laser Applications to Photonic Applications, vol. 1, JTuC1. OSA,
Washington, D.C. (2011)

37. Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Continuous
operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96(2010),
2008–2011 (2010)

38. Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.:
Security of trusted repeater quantum key distribution networks. J. Comput. Secur.
18(1), 61–87 (2010)

39. Shimizu, K., et al.: Performance of long-distance quantum key distribution over
90-km optical links installed in a field environment of Tokyo metropolitan area. J.
Lightwave Technol. 32(1), 141–151 (2014)

www.dkriesel.com


236 M. Mehic et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Error Reconciliation in Quantum Key Distribution Protocols
	1 Introduction
	2 Cascade
	3 Winnow
	4 Low Density Parity Check
	5 Comparisson
	6 Error Correction Based on Artificial Neural Networks
	6.1 Tree Parity Machines
	6.2 Error Correction Based on TPMs

	7 Conclusion
	References


