
Error Recovery in Automation - An Overview

Peter Loborg
Department of Computer and information Science

LinkSping University, S-581 83 Link~3ping, SWEDEN
Phone: (+46) 13 282494 E-mail: plo@ida.liu.se

Abstract

This paper attempts to provide an overview of techniques
and approaches to error recovery, both in automation and in
other fields (such as autonomous robotics) where analo-
gous problems occur. The term ’error recovery’ is often
used as a common name for the three sub areas error/fault
detection, error/fault diagnose, and recovery from the
resulting failure. All three areas will be covered.

Rather than presenting different systems and approaches
in-depth, different types of systems and approaches will be
presented and compared.

Terminology

The first observation made is that there is a lack of common
terminology, e.g. the word error is sometimes used to
denote the original reason why something went wrong,
whereas in other cases it is used to denote the effects in the
computer system due to some unforeseen event.

However, in the ’reliable computing’ community there is
an emerging standard [Laprie, 1992]. Although they are pri-
marily interested in problems internal to a computer and its
software, the terminology is applicable when talking about
problems in a ’real world’ controlled by a computer, prob-
lems which may manifest themselves as discrepancies be-
tween the actual state in the real world and what the compu-
ter ’think’ is the actual state. The following definitions will
be used throughout this paper:.

fault the original source of any problem, such as a
broken air pressure valve or assembly part out of
tolerances, which may led to an error directly or
indirectly.

error is a difference between what is specified and
what is actually there. It may be latent (the sys-
tem has not recognized it as such) or detected by
a detection mechanism (often called monitor).
Thus, in a control system, an error is an observa-
ble discrepancy between the actual state (the
state in the controlled system) and the internal
representation of the intended state.

failure occurs when an error affect the service delivered
from a system in any way, e.g. the robot is una-
ble to continue the grasping operation since
someone have removed the object in question.
Finally, (completing the chain of effects) if the
component that experience a failure is a part of a
system of components, the result is a fault in the
system which contains the falling component.

Using this terminology, it is evident that what is commonly
described as error recovery (such as catching a signal on
division by zero) is really failure recovery, although it
would be desirable to handle the problem before it mani-
fests itself as a failure, i.e. to have true error recovery
(detect the presence of a zero and do something about it
before it is used in a division). Systems which are able to
handle an error without affecting the service delivered are
called fault tolerant systems.

The field of error recovery is often divided in three sub-
fields:

detection techniques for (or the process of) observing
the actual state of the controlled system and
comparing it with specifications in order to find
discrepancies as early as possible.

diagnose techniques for finding the original fault which
caused the error.

recovery applying the proper corrective actions in order
to prevent a possible future error or reach an
error free state.

In each of these subfields there are several principles for
how to achieve these objectives, as well as different meth-
ods for representing the information needed.

Classification

The following classification parameters will serve as a
framework for the comparison of approaches and tech-
niques. Although it is not always possible, subjective
parameters has been avoided as far as possible. Thus no
approach will be classified as being the ’best’, since such
an evaluation is dependent on the application and the moti-
vation for using a specific approach in that application.

94

From: AAAI Technical Report SS-94-04. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



When presenting different approaches of error recovery,
a basic categorisation is whether a forward or backward er-
ror recovery approach is used. The definition for these terms
are ([Laprie, 1992; Noreils, 1990]):

backward error recovery: Find an earlier (previously
passed) error free state of the system and return
there, by ’undoing’ what has been done since.
Examples of general techniques using this
approach are recovery blocks [Kim and Welch,
1989] and transactions [Harder and Reuter,
1983].

forward error recovery: Find an error free state that the
system is supposed to eventually reach, and per-
form actions to reach that state. This is often
done using predefined alternative actions or
replanning of what actions to use to achieve the
’goal’ [Chen and Trivedi, 1991; Noreils, 1990].

Other criteria which have implications on the system per-
formance as well as its flexibility are:

Knowledge sources: The information (or knowledge)
used may originate from several knowledge
sources, such as from the original code, from a
description of what to perform, from statistically
aquired information about relations between
error causes and effects in the system as well as
the proper corrective action. This knowledge
may also be manually specified after analysis of
the system.

Application dependence: The knowledge as such may
be more or less application dependent, which
have implications for the reusability of the
knowledge.

Knowledge representation: The knowledge used may
be represented in several different formalisms,
such as rules, alternative code or pieces of plans
to use, graphs describing decision trees etc.
Notable here is that several of these formalisms
may be combined, or translated from one form
into another.

Techniques for error recovery

In this section different aspects of error recovery will be
presented and discussed. Firstly, techniques for the detec-
tion of a fault is discussed, followed by diagnose and
recovery techniques.

Detection

In order to avoid costly failures, it is desirable to detect the
presence of faults as early as possible. The constant verifi-
cation of absence of errors is costly and not always possi-

ble, since the degree of observability of a system may not
correspond to the richness in the model of the system. The
following techniques address this problem.

Sensory signature is a term used by [Lee et. al., 1983] to
denote a collection of parameters which specify the limits of
acceptability of a sensed signal during a specific task phase.
The result is that sensor monitoring is guided by current ac-
tion, not only in a binary fashion (should it be monitored or
not) but also qualitatively (how tight are the limits, how of-
ten should they be verified).

Gini ([Gini, 1893]) uses a world model to represent the
activity in a robot system. This world model and the opera-
tions on it is generated from the original robot program, and
for each operation executed in the robot a corresponding se-
mantic operation is executed in the world model. If the re-
suits differ (the world model containing the expected out-
come compared to the sensed state of the world) there is an
error. What sensors to use is guided by expected changes as
well as expected lack of changes.

In [Hayes-Roth, 1990], Barbara Heyes-Roth uses a focus
of attention principle in a life support and monitoring sys-
tem to discriminate between which parameters to monitor
more closely and not. This focus is guided by rules accord-
ing to what task is performed, current load in the system,
and may also (in case of overflow of sensor data) impose fil-
tering strategies on sensor channels. The knowledge used is
currently ’hard-wired’, application dependent a priori
knowledge.

Observations These three examples shows that there ex-
ists feasible techniques for detection, provided that there is
a good observability of the system, that is that there are sen-
sors enough to monitor most of the tasks. Notable is that the
knowledge used to guide the monitoring in Gini’s approach
is extracted from the program, knowledge which the user
must supply explicitly in the other two approaches. In Lee’s
approach, the knowledge is input twice (although in some-
what different forms) - both in the ’original’ program and in
the monitoring system.

Guiding the monitoring task in planning systems is often
a variant of Gini’s approach, and is thus not included here.

Omitted in this presentation is also techniques for how to
implement monitoring of different types of signals, since
this is out of the scope of this paper. However, an overview
can be found in [Iserman, 1984] and [Frank, 1990].

Diagnose

Diagnose is the process of identifying the cause of the error
(or failure). The identifcation starts by verifying the pres-
ence or absence of selected sensor data values, often called
features. The result of the diagnosis is a set of explanations
for the error, i.e. a set of possible faults.

Failure tree [Srinivas, 1977; Srinivas, 1978]: Early work

95



by Srinivas presents a method where predefined knowledge
about possible faults for each action (rules testing sensors
and facts trying to explain why the action failed) and the
current state of execution is used to build a decision tree of
tests for ’features’ upon a failure. This tree is then used to
diagnose the situation. The method also uses the informa-
tion available in the interrupted execution to trace situations
where the error could be a result of a previous or parallel ac-
tion. This is accomplished by examing the preconditions of
all interrupted actions. Depending on the outcome of that
examination, the corresponding error rules are also includ-
ed.

Since Srinivas method is computationally expensive, it
would be favourable to ’remember’ the errors that actually
occured in an application and their cause, and store them in
a computationally more efficient form. The technique for
doing so has been termed machine learningI [Chang and
DiCesare, 1989; Chang et. al., 1990a; Chang et. al., 1990b]2

and is used to produce heuristic rules which given a failed
action, tests for the presence and absence of certain features
known to discriminate between possible explanations. The
technique is based on an initial knowledge about possible
errors for an action, and for each error both probable and
definite features for that error. In the case when the system
finds multiple explanations, it produces a tentative heuristic
rule that may be confirmed or ruled out when more knowl-
edge is acquired "from experiments, models or other sourc-
es".

Probability Vectors [Taylor and Taylor, 1988; Taylor et.
al., 1990] is an alternative technique where statistical a pri-
ori knowledge about the system is used. Each possible fault
is associated with the probability of its occurence, and
stored in a vector. This is repeated for all possible effects
(errors), all model parameters and all sensors, resulting 
four vectors containing probability estimations. Connection
matrices describes a weighted relationship between faults
and errors, errors and parameters, parameters and sensors.
Using this information, it is possible to compute a set of
probable causes for a given error, what sensors to use to ver-
ify an error as well as (at least in theory) guiding the process
of instrumenting a work cell with sensors to achieve rele-
vant observability.

Alternative approaches to diagnose can be found in other
domains (such as AI in Medicine, e.g. see [Zhang, 1993]).
They are often called model based or consistency based,
since they contain a qualitative description of the system.
This description, or model, expressed in some logical for-
realism, describes each components normal bahaviour and
how modules interact. If an observation of an actual system

1. Should not be mixed up with ’true’ machine learning such as
neural nets.
2. Extends and complements previous work such as [Chang et. aL,
1989] and [Pazzani, 1986; Pazzani, 1987].

state is added to the description such that the description be-
comes inconsistent, there is an error present. By identifying
which component (or components) that in conjunction with
the observation results in a contradiction, the set of explana-
tions (faulty components) have been found. The expalnation
is complete, the diagnose can handle multiple faults and
may even reviel previously unknown faults [deKleer and
Williams, 1987; Reiter, 1987]. However, it might some-
times propose awkward explanations since it lacks knowl-
edge about possible errors, or rather, causal relations.

Addingfaultmodels [deKleer and Williams, 1989; Struss
and Dressier, 1990] to the description improves the explana-
tion, but the explanation is no longer guarantied to be com-
plete. The system may now label components as faulty, cor-
rect or either - meaning it can not decide which.

Observations The techniques for diagnose presented is
just a small sample of what can be found in the literature.
Characteristic for the first examples (failure trees with mod-
ifications and probability vectors) is that the knowledge is
shallow, that is it is composed of ’rules of the thumb’ or sta-
tistics about the system, and that it is not complete. If the
system is reconfigured, large parts of the knowledge has to
be updated. In the failure tree based approaches, this could
be handled by specifying the diagnose knowledge separate-
ly for each module in an assembly cell. In a specific config-
uration, most of the knowledge would then be collected
from its components, and only a small part would have to be
added describing the current configuration. However, spec-
ifying all diagnostic knowledge for each module is probably
not feasible, and thus they will still be incomplete - i.e. does
not cover all failure situations.

In the model based approach, the knowledge stored is of-
ten called deep knowledge since it covers the normal struc-
ture and function of the system. This approach requires that
the knowledge is complete, emphasing the same problems
of uppdating the system as with the shallow techniques. Al-
though this is an even more more computationally expen-
sive approach, it has gained interest since it is better suited
for modular description than the diagnostic rules above
(e.g., see [Lee, 1986]).

Recovery

The term (error) recovery is used in a more versatile fash-
ion than the two above. Essentially, it is the process of ’cor-
recting an error’, i.e. change the state of the controlled
system to be consistent with specifications. If a module
accomplishes this without failure (i.e. the system which
uses this module/service never notices any error), the mod-
ule is said to be fault tolerant. If the module reports the
error to some other part of the system responsible for tak-
ing corrective actions, the system as a whole achieves error
recovery.

96



The following sections reviews some of the approaches:

Programming language constructs A first step to struc-
ture the handling of exceptional situations in a programming
language is to introduce a new programming construct, of-
ten called an exception handler. Upon an error, the control
is transferred to the proper exception handler, which will
then execute corrective actions. However, in some languag-
es not even this support exists, and the constructs of the lan-
guage has to be used to trap errors and accomplish
dispatchers for corrective actions or default actionst [Cox,
1988; Cox 1989].

Attempts have been made to introduce a notion of recov-
erypoints (or blocks) in a program, specifying a legal and
consistent state to return to in case of errors. This may be
viewed as a weaker version of the concept of transactions as
used in the data base community [Harder and Reuter, 1983],
and there is ongoing work studying the usability of these
concepts in the automation area [Schmidt, 1992].

In the data base community, the notion of SAGAS or
nested SAGAS [Gareia-Molina and Salem, 1987; Garcia-
Molina et. aL, 1991] has been developed and proposed for
modelling parallel, nested activities in a corporation as a
data base application. Examples of such activities are re-
ceiving orders, billing the customer while updating the in-
ventory, and so on. In principle, it is a scheme for specifying
compensating activities to be used in case of an abortion of
an ongoing activity, and to specify how the abortion of one
activity that is a part of a nested structure of activities should
affect the other activities. There are no means to describe
that some alternative activity should be performed when an
activity aborts.

Knowledge based systems The term knowledge based
systems is commonly used to denote any system where the
knowledge used is separated from the program that uses it.
These system are often also called rule based or frame based
systems, according to how the knowledge is represented.

In two early proposals ([Lee et. al., 1983; Gini, 1983]) 
conventional robot system was extended by a "knowledge
and reasoning module". Error recovery was achieved by us-
ing the failure tree produced in the diagnose process, and by
augmenting the explanations with corrective actions/proce-
dures. These ’corrections’ were designed to restore the con-
trolled system (the application) to either a previously visited
state or a state further down the original program. In both
these approaches the original robot program is interrupted
and the recovery is performed by downloading new instruc-
tions to the robot.

In Noreils et. aL [Noreils and Chatila, 1989; Noreils,
1990] proposes a variant of the solution above. Here the cor-
rective action is inserted into the original program, either re-

I. Examples are ’longjump’ in C and structured use of methods in
C++.

placing the original (failed) part or as a corrective continua-
tion of it, and the program execution is then continued by
the interpreter in its current context. This approach is often
calledplan repair - and the idea is to ’remember’ the correc-
tion by altering the plan/program.

Delchambre et. al. presents a backward error recovery
approach [Delchambre and Coupetz, 1988; Gaspart et. al.,
1989]. It uses a ’flat’ (non hierarchical) plan representation
with framelike structures representing parts and their fea-
tures, and rules describing general assembly knowledge.
The plan describes the assembly task and is given by the
user. An example of a feature defined for a part is the ’hand-
ability coefficient’, describing how ’easy’ it is for the robot
to handle that part. An example of an assembly knowledge
rule is that if a sub-assembly is to be picked up, the system
should focus the picking operation to the part of the sub-as-
sembly with the best handability coefficient. The response
to an error is to disassemble the faulty part (i.e. only errors
caused by faulty parts are handled) by generating a sequence
of actions (a plan) to accomplish this.

Meijer et. al. presents a hierarchical system in which the
objects used in the (a priori given) plan is called ’knowledge
areas’ (KA’s) [Meijer and Herzberger, 1988; Meijer et. al.,
1991]. Each KA is responsible for some action such as call-
ing a partially ordered set of other KA’s or performing some
primitive sensing or acting. For each KA there is an invoca-
tion specification, specifying what goals it will fulfill and/or
what facts need to exists in order to use it. If it is a primitive
KA, monitor conditions may be specified, as well as a set of
exception handling strategies. Since these strategies are
themselves represented as KA’s, they contain invocation
specifications guiding the system to what recovery strategy
to use when the monitoring conditions signal an error.

A hierarchical, frame based approach is proposed by
[Chert and Trivedi, 1991 ], where frames represent plan skel-
etons of different abstraction levels. The ’planning’ consists
of selecting appropriate ’frames’ and ’instantiating’ sub-
plans (frames) refining the plan until all leaves are primitive
actions or perceptions. In this approach, the major differ-
ence between generating the original plan for an assembly
task and generating an error recovery plan is that the overall
goal for the plan is only considered in the first case. During
planning for error recovery, the main goal is to achieve any
error free state.

The main differences in the approaches taken by Meijer
and Chen is that in the first case exception handling strate-
gies are predefined for each primitive action, albeit as more
or less general plans, while in Chen’s approach these plans
are generated upon an error situation using available actions
and subplans, but with a somewhat different goal state than
during the original planning.

Graph based approaches When the task description is
based on some graph formalism such as a Petri Net or Finite

97



State Machines, some restricted variants of the approaches
described above apply. In the following, only Petri Net
based approaches will be presented since alternative formal-
isms are often compilable into a Petri Net.

Petri Nets (PN) is a static description (’based places
and transitions between them, where action normally take
place during a transition) without any exception handling
constructs as can be found in programming languages. Thus,
if error handling is to be used in a PN based approach, it
must be modelled as a part of the normal operation, and once
the PN is constructed it can not be arbitrarily modified. Us-
ing PN’s, there are four constructs that can be used to en-
code exception handling [Zhou and DiCesare, 1989]:

Input Condition: When several transitions leaves a
place, it is customary to select arbitrarily
between them. However, the transitions may be
augmented with a condition, which if satisfied
will favour the selection of that transition, and
otherwise reject that transition.

Alternative Path: Using the Input Condition construct
above, an alternative path through the PN may
be defined.

Backward Error Recovery: The two constructs above is
used to trap an anomaly and execute corrective
actions (undoing the problem), returning to 
previously visited place in the PN.

Forward Error Recovery: Analogous to Backward
Error Recovery, but the corrective action will
directly solve the problem and return control to
the same place as where the error originated (or
was detected).

Petri Nets with backtracking: In [Cao and Sanderson, 1992]
a system is presented which generates a PN controller from
an assembly description represented as an AND/OR tree. At
each place reached by a transition where the transition/oper-
ation may fail, a forward error recovery action is defined
which will try to correct the failure. If the PN still fails, a
backtracking approach is used based on the augmentation of
the PN with inverse transitions (brother transition in [Cao
and Sanderson, 1992]) allowing the system to backtrack
(disassembling parts) to a previous state. In the assembly
context, depending of the parts disassembled, the system
may choose to redo the assemble operation with partially
new material as a strategy to correct the original error. This
augmentation of the PN is done as a part of the generation
of the PN from the AND/OR graph, and can only handle a
subset of all faults that may occur in an assembly cell. Also,
when expanding the PN with new places and transitions for
handling anomalies, the resulting net grows large and com-
plex.

Layered Petri Nets (LPN) is used to modularize a 

controller as several PN’s responsible for different function-
ality or modes of operation. In a LPN a place may be defined
to be a complete PN in itself, defining a complex action to
be performed when the token reaches that place. In [Haseg-
awa et. al., 1990] LPN’s is used to define separate nets for
normal operation (an auto-mode net) for exception han-
dling, manual operation etc., and how to switch between
these modes. This may be viewed as a more general and
structured version of the exception handler construct men-
tioned above, since it also handles ’manual mode’ and any
other mode of operation desirable.

Modifiable Layered Petri Nets: In [Zhou and DiCesare,
1989; Zhou and DiCesare, 1993] a LPN1 using the four error
recovery methods described above in cooperation with an
Error Diagnose and Recovery Planning module (EDRP) 
presented. When an anomaly appears during ’execution’ of
the LPN which has previously not been planned for, the
EDPR module extends the original LPN by transforming
parts of it (using the four constructs described above) 
handle the situation. This may be viewed as on line ’patch-
ing’ of the code, but the authors claim that all properties of
the original net (such as avoiding deadlocks or buffer over-
flows) is preserved2.

Observations

Table 1: Techniques for recovery after an error

"13qae of Knowled Is knowl- Knowled
error ge
recover source? edge appli- ge repre-

cation sentationt
dependenteehnique

Gini any program yea

Lee any us4~r mles

Not~ils. any user/system ycrJno mles
Chatila

Delchambre backward user/system no roles.frames

Meijer et.a/. any user ? sem ofrules

Chcn any system no plans

Cao et. al. backward assembly petrinet

Hasegawa any user yes layered PN
et. al.

Zhou, DiC- any user/system yes/no layered PN,
@.sKre ~ale~

Most of the techniques presented above provide both back-

1. Here the authors views theplace as aa operation or ongoing
activity and a transition as an instantaneous change of state
(place).
2. Theoretical work supporting this is described in [-Fielding et. al.,
1988].

98



ward and forward error recovery. Some of the systems
combine predefined system information with application
dependent knowledge specified by the user (Delchambre/
Zhou), some extract it from other available sources such as
the original robot program or assembly description(Gini/
Cao). Notable is that very few approaches uses general
error recovery knowledge only. Exceptions is approaches
proposed by Delchambre and Chert, witch manages without
any application specific error recovery knowledge. In all
other approaches error recovery knowledge is associated
with each action or each possible error explanation.

Techniques for recovery seems to evolve in two direc-
tions; techniques based on graph formalisms such as Petri
Nets, which have some tractable properties of provable live-
liness etc., and general, plan based formalisms. In both cases
there are planners involved, which poses a problem since
most planners are known to have problem with soundness1

and/or safeness2, and to have intractable complexity (i.e.
they can’t handle large data). However, there are planners
that are safe, and in some domains even sound. And by re-
stricting the semantics of the planning problem, the com-
plexity can be reduced. Promising work in this direction can
be found in [Klein, 1993].

Conclusions
In this paper different techniques proposing solutions to

the error recovery field have been reviewed. What they
share is a completely different view of what to specify and
how to do it compared with equipment traditionally used in
industry, which makes them hard to integrate into existing
production plants. Although, some attempts have been made
to build industrial applications (e.g. Thorn EMI [Ashton et.
al., 1987], and Lookheed Aeronautical Systems Company
[Kartak, 1988]), using only the most fundamental tech-
niques. As limited as they are, they are still regarded as im-
provements to the alternatives given at the time.

As striving towards a more flexible work cell equipment
yields a more complex instruction task and a more complex
behaviour, it is essential to find suitable high-level methods
and languages for instructing the cell if the flexibility is not
to be lost. Simply providing ’hi-level’ languages used for
programming computers is not enough. The goal must be to
maximize the expressiveness while minimizing the specifi-
cation needed, and thus only leave to the application pro-
grammer to specify what is really application dependent
knowledge, knowledge which can not be generated from the
design of the product. This in turn implies that different
parts of the system (abstraction levels) is to be specified/in-
structed by different categories of people, and thus that dif-

1. Just because the planner does not find a plan there is no guaran-
tee that it doesn’t exist one
2. The planner is not guaranteed to halt if a plan does not exist

ferent languages/forms av descriptions may be needed - as
opposite to what is suggested in [Cox, 1988].

Concluding from this, future research in the area ought to
be heading towards multileyered knowledge based systems
describing limited domains, systems which is easy to adapt
to a new application.

References
[Ashton et. al., 1987] M. Ashton, D. A. Harding and M. I.

Micklefield. A flexible assembly system controller. In
Proceedings of the 2nd International Conference on Machine
Control Systems - MACON-2, p.165-74, IFS Publications,
Kempston, UK 1987.

[Cao and Sanderson, 1992] T. Cao and A. C. Sanderson. Sensor-
based Error Recovery for Robotic Task Sequences Using Fuzzy
Petri Nets. In IEEE International Conference on Robotics and
Automation, p.1063-9, 1992.

[Chang and DiCesare, 1989] S.J. Chang and E DiCesare. The
generation of diagnostic heuristics for automated error
recovery in manufacturing workstations. In IEEE International
Conference on Robotics and Automation. p. 522-7 vol.1, 1989.

[Chang, 1989] S.J. Chang, E DiCesare and G. Goldbogen. An
algorithm for constructing a failure propagation tree in
manufacturing systems. In IEEE International Symposium on
Intelligent Control, p.38-43, 1989.

[Chang et. al., 1990a] S. J. Chang, G. Goldbogen and E
DiCesare. Evaluation of diagnosability of failure knowledge in
manufacturing systems. In IEEE International Conference on
Robotics and Automation, p.696-701 vol. 1, 1990.

[Chang et. al., 1990b] S. J. Chang, G. Goldbogen and E
DiCesare. Aspects of diagnostic rules for manufacturing
systems: generation, generalization and reduction. In IEEE
International Conference on Systems, Man and Cybernetics,
p.78-83, 1990.

[Chert and Trivedi, 1991] C.X. Chela and M. M. Trivedi. A task
planner for sensor-based inspection and manipulation robots.
In Proceedings of the SPIE - The International Society for
Optical Engineering, vol. 1571, p. 591-603, 1991.

[Cox, 1988] I.J. Cox. C++ language support for guaranteed
initialization, safe termination and error recovery in robotics. In
IEEE International Conference on Robotics and Automation.
p.641-3 vol.l, 1988.

[Cox, 1989] I.J. Cox and N.H. Gehani. Exception handling in
robotics. Computer, 22(3):43-9, March 1989.

[deKleer amd W’llliams, 1987] J. deKleer and B.C. W’dliams.
Diagnosing Multiple Faults. Artificial Intelligence, 32(1):97-
130, 1987.

[deKleer and Williams, 1989] J. deKleer and B.C. V~rdliams.
Diagnosis with Behavioural Modes. In Proceedings of the
1989’th lntenational Joint Conference on Artificial Intelligence
(IJCAI89), pp. 1324-1330, 1989.

[Delchambre and Coupez, 1988] A. Delchambre and D. Coupez.
Knowledge based error recovery in robotized assembly. In
Proceedings of the 9th International Conference on
Developments in Assembly Automation - Japan vs Europe;
Product Design for Assembly; Assembly Automation. p.349-66.
IFS Publications, Kempston, Bedford, UK, 1988.

99



[Fielding et. aL, 1988] E J. Fielding, E DiCesare and O.
Golbogen. Error Recovery in Automated Manufactoring
through the Augmentation of ProgI’amrned Processes. In
Journal of Robotic Systems, 5(4), 337-362, 1988.

[Frank, 1990] E M. Frank. Fault Diagnosis in Dynamic Systems
using Analytical and Knowledge Based Redundancy - A
Survey on some new results. Automatica, 26(3):459-474, 1990.

[Garcia-Molina and Salem, 1987] H. Garcia-Molina and K.
Salem. SAGAS. Proc. SIGMOD int. conf. on Management of
Data, pp.249-259, May 1987.

[Garcia-Molina et. al., 1991] H. Garcia-Molina, D. Gawlick, J.
Klein, K. Kleissner and Kenneth Salem. Coordinating Multi-
Transaction Activities. Data Engineering Bulletine, 1991.

[Gaspart et. al., 1989] P. Gaspart, A. Delchambre, A. Coupez
and P. Brouillard. Rule based procedures for diagnosis and
error recovery. In Proceedings of MIV-89 . International
Workshop on Industrial Applications of Machine Intelligence
and Vision (Seiken Symposium), p.88-93, 1989.

[Gini, 1983] M. Gini. Recovering from Failures: A New
Chalenge for Industrial Robotics. In Proceedings of the 25"th
IEEE Computer Society International Conference
(COMPCON-83). p.220-227, Arlington 1983.

[Harder and Reuter, 1983] T. Harder and A. Reuter. Principles of
Transaction Oriented Database Recovery. ACM Computing
serveys, 15(4):287-317, 1983.

[Hasegawa et. al., 1990] M. Hasegawa, M. Takata, T. Temmyo
and H. Matsuka. Modelling of exception handling in
manufacturing cell control and its application to PLC
programming. In IEEE International Conference on Robotics
and Automation, p.514-19, vol.1, 1990.

[Heyes-Roth, 1990] B. Hayes-Roth. Architectural Foundations
for Real-Tmae Performance in Intelligent Agents. In Journal of
Real-17me Systems, no.2, p.99-125, 1990.

[Iseremann, 1984] R. Isermann. Process Fault Detection based
on Moddeling and Estimation Methods A Survey.
Automatica, p.387-404, vol.20, 1984.

[Kartak, 1988] J. A. Kartak. Development of automated
workcell control software: a case study. In Proceedings of the
18th International Symposium on Industrial Robots, p.467-91,
1988.

[Klm and Welch, 1989] K.H. Kiln and O. H. Welch. Distributed
Execution of Recovery Blocks: an approach for uniform
treatment of hardware and software faults in real-time
applications. In IEEE transactions on Computers, 38(5):626-
636, 1989.

[Klein, 1993] I. Klein. Automatic Synthesis fo Sequential
Control Schemes. PhD-theses no.305, Linktping University,
1993.

[Laprie, 1992] J. C. Laprie. Basic Concepts and Associated
Terminology. In Dependable Computing and Fault Tolerant
Systems, Vol. 5, Springer-Verlag, Wien New-York, 1992.

[Lee et. al., 1983] M. H. Lee, D.P.Bames and N.W. Hardy.
Knowledge Based Error Recovery in Industrial Robots. In
International Joint Conference on Artificial Intelligence
(IJCAI83). pp.824-26, 1983.

[Lee, 1986] M.H. Lee. Deep knowledge modelling in robotics.
In Proceedings of the Alvey IKBS Research Theme: Expert
Systems. Deep Knowledge. Workshop 3Io.2, p.44-50, Alvey
Directorate, London, UK, 1986.

[Meijer and Herzberger, 1988] G. R. Meijer and L. O.
Hertzberger. Off-Line Programming of Exception Handling
Strategies. In Proceedings of IFAC Symposium on Robot
Control p.431-436, Karlsruhe 1988.

[Meijer et. al., 1991] G.R. Meijer, L. O. Hertzberger, T. L. Mai,
E. Ganssens and E Arlabosse. Exception Handling System for
Autonomous Robots Based on PES. In Journal of Robotics and
Autonomous Systems. 7(2-3): 197-209, 1991.

[Noreils, 1990] E R. Noreils. Integrating error recovery in a
mobile robot control system. In IEEE International Conference
on Robotics and Automation, p.396-401 vol. 1, 1990.

[Noreils and Chatila, 1989] E R. Noreils and R. G. Chatila.
Control of mobile robot actions. In IEEE International
Conference on Robotics and Automation. p. 701-7 vol.2, 1989.

[Pazzani, 1986] M.J. Pazzani. Reflnln$ the Knowledge Base of
a Diagnostic Expert System: An Application of Failure Driven
Learning. In 5’th National Conference on Artifical Intelligence
(AAA1-86). p.1029-35, 11-15 Aug. 1986.

[PazTarti, 1987] M.J. Pazzani. Failure-Driven Learning of Fault
Diagnosis Hheuristics. IEEE Transactions on Systems, Man
and Cybernetics, SMC-17(3), p.380-394, May/June 1987.

lReiter, 1987] R. Reiter. A Theory of Diagnose from First
Principles. Artificial Intelligence, 32(1):57-95, 1987.

[Schmidt, 1992] U. Schmidt. A Framework for Automated Error
Recovery in FMS. In International Conference on Automation,
Robotics and Computer Vision. p. IA.3.4.1-5, 1992.

[Srinivas, 1977] S. Srinivas. Error Recovery in Robot Systems
PhD thesis California Inst. of Tech., Pasadena, 1977.

[Srinivas, 1978] S. Srinivas. Error Recovery in Robots Through
Failure Reasoning Analysis. In Proceedings of AFIP - National
Computer Conference, p.275-282, 1978.

[Struss and Dressier, 1989] R Struss and O. Dressier. "Physical
Negation" - Integrating Fault Models into the General
Diagnostic Engine. In International Joint Conference on
Artificial Intelligence (IJCAI89), pp. 1318-1324, 1989.

[Taylor and Taylor, 1988] G. E. Taylor and P. M. Taylor.
Dynamic error probability vectors: a framework for sensory
decision making. In IEEE International Conference on
Robotics and Automation, p. 1096-100, 1988.

[Taylor et. al., 1990] P.M. Taylor, I. Halleron and X.K. Song.
The application of a dynamic error framework to robotic
assembly. IEEE International Conference on Robotics and
Automation, pp170-5, 1990.

[Zhang, 1993] T. Zhang. A Study in Diagnosis Using
Classification and Defaults. PhD thesis no. 302, LinkSping
University, 1993

[Zhou and DiCesare, 1989] M. C. Zhou and F. DiCesare.
Adaptive design of Petri net controllers for error recovery in
automated manufacturing systems. IEEE Transactions on
Systems, Man and Cybernetics, 19(5): 963-73, Sept. 1989.

[Zhou and DiCesare, 1993] M.C. Zhou and E DiCesare. Petri
Net Synthesis for Discrete Event Control of Manufactoring
Systems. ISBN 0-7923-9289-2, Kluwer Academic Pub., 1993.

100


