
1

Error Recovery in Cyberphysical

Digital-Microfluidic Biochips

Yan Luo†, Krishnendu Chakrabarty†, and Tsung-Yi Ho‡

†Electrical & Computer Engineering Dept. ‡Computer Science and Information Engineering Dept.

Duke University, Durham, NC 27708, USA National Cheng Kung University, Tainan, Taiwan

Abstract—Droplet-based “digital” microfluidics technology has
now come of age and software-controlled biochips for healthcare
applications are starting to emerge. However, today’s digital
microfluidic biochips suffer from the drawback that there is no
feedback to the control software from the underlying hardware
platform. Due to the lack of precision inherent in biochemical
experiments, errors are likely during droplet manipulation, but
error recovery based on the repetition of experiments leads to
wastage of expensive reagents and hard-to-prepare samples. By
exploiting recent advances in the integration of optical detectors
(sensors) in a digital microfluidics biochip, we present a “physical-
aware” system reconfiguration technique that uses sensor data at
intermediate checkpoints to dynamically reconfigure the biochip.
A cyberphysical re-synthesis technique is used to recompute
electrode-actuation sequences, thereby deriving new schedules,
module placement, and droplet routing pathways, with minimum
impact on the time-to-response.

I. INTRODUCTION

M ICROFLUIDIC biochips have now come of age, with

applications to biomolecular recognition for high-

throughput DNA sequencing, immunoassays, and point-of-

care clinical diagnostics [1]. In particular, digital microfluidic

biochips, which use electrowetting-on-dielectric to manipulate

discrete droplets (or “packets of biochemical payload”) of

picoliter volumes under clock control, are especially promising

[2].

The ease of reconfigurabilty and software-based control

in digital microfluidics has motivated research on various

aspects of automated chip design and chip application. A

number of techniques have been published for architectural-

level synthesis [3], module placement, and droplet routing

[4], [5], [6]. However, these techniques ignore domain-specific

constraints or practical realities that arise from attempting to

carry out biochemical reactions and microfluidic operations on

an electronic chip. Due to the randomness and complex com-

ponent interactions that are ubiquitous in biological/chemical

processes, predictive modeling and accuracy control are diffi-

cult [7], [8]. In addition to manufacturing defects and imper-

fections, faults may also arise during bioassay execution. For

example, excessive actuation voltage applied to an electrode

may lead to breakdown of electrodes and charge trapping, and

DNA fouling may lead to malfunction of multiple electrodes

in the biochip [9] [10] [11]. These faults are hard to detect a

priori, but they occur often during bioasays [11]. Yet, despite

such inherent variability, many biomedical applications such
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as drug development and clinical diagnostics require high

precision for each operation and correctness of the final result

under various conditions. If an unexpected error occurs during

the experiment, the outcome of the entire experiment will be

incorrect. As a result, all the steps in the experiment must be

repeated in order to correct the error [12].

The repetitive execution of on-chip laboratory experiments

leads to the following problems: (i) wastage of samples that

are difficult to obtain or prepare, and the wastage of expensive

reagents; (ii) an increase in the time-to-result for a bioassay,

which is detrimental to real-time detection and rapid response.

Therefore, it is necessary to develop techniques for monitoring

assay outcomes at intermediate stages and design an efficient

error-recovery mechanism.

Error recovery in digital microfluidics has received rela-

tively little attention in the literature. The only reported work

is [13], which proposed intermediate stage monitoring and

rollback error-recovery for a microfluidic biochip. The key

idea in this work is to use optical sensors to verify the cor-

rectness of immediate product droplets at various steps in the

on-chip experiment. Optical detection has been integrated with

digital microfluidics to evaluate the concentration and volume

of product droplets [2], [14], [15]. In the recent approach

described in [13], error recovery is carried out as follows.

During bioassay execution, intermediate product droplets are

sent to optical sensors. When an error is detected at an optical

sensor, i.e., the volume or concentration of the droplet is below

or above the acceptable calibrated range, the corresponding

droplet is discarded. The operations whose outputs fail to

meet the quality requirements based on sensor calibration are

re-executed to generate a new product droplet to replace the

unqualified droplet.

Figure 1 shows an example of rollback error-recovery. The

initial sequencing graph of a bioassay is shown in Figure 1(a).

Here we assume that the outputs of each dispensing, mixing

and splitting operation are evaluated by an optical sensor.

When an error occurs at operation 9, the system will re-execute

the corresponding dispensing and mixing operations. The new

sequencing graph for error recovery is shown in Figure 1(b).

Operations 16, 17, 18, and 19 are added for error recovery.

The new sequencing graph for error recovery is shown in

Figure 1(b). Operations 16, 17, 18, and 19 are added for error

recovery. It is important to note that, the error is detected at

operation 9, thus it is unnecessary to continue executing the

splitting operation after operation 9 anymore. Thus node 12 is

removed from Figure 1(b).

In the absence of “physical-aware” control software, the er-

ror recovery method in [13] suffers from following drawbacks:
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(a) (b)

Fig. 1. (a) Initial sequencing graph; (b) operations 16, 17, 18 and 19 are
added for error recovery.

1) The first drawback is the over-simplification of fault

detection and the associated assumptions. Using a uni-

form “expected value” for the calibration of each optical

detection operation is not practical. Note that at various

stages during bioassay execution, the concentration of

intermediate product droplets vary in a dynamic manner,

hence the calibration also needs to be repeated and

carried out dynamically.

2) In [13], all recovery operations are carried out in a

stand-alone manner. When an error is detected, all other

ongoing bioassay-related fluidic operations are inter-

rupted. The potential long waiting times introduced by

recovery operations can lead to sample degradation and

erroneous assay outcomes [16]. Some operations, such

as colorimetric enzyme-kinetic reactions, require precise

durations as specified by the reaction protocol, and they

cannot be extended without introducing unpredictability

in the experiment outcome [15].

3) The error recovery approach in [13] cannot handle situa-

tions when multiple errors occur during a bioassay. For

example, it assumes that all error recovery operations

will be executed successfully and it does not consider

the likelihood that errors can also occur during recovery.

4) The error recovery strategy in [13] does not consider re-

liability issues. Errors such as the generation of droplets

with abnormal volumes are usually caused by the accu-

mulation of charge on the surface of certain electrodes

[9] [10]. If the use of such electrodes is continued, it

is likely that they will introduce more errors [9] [10].

Thus, in order to ensure the reliability of biochips, we

must minimize the utilization of these electrodes.

To overcome the above drawbacks, we take a transforma-

tive “cyberphysical” approach towards achieving closed-loop

and sensor feedback-driven biochip operation under program

control. By exploiting recent advances in the integration of

optical detectors (sensors) in a digital microfluidics biochip

[14], we present a “physical-aware” system reconfiguration

technique that uses sensor data at intermediate checkpoints to

dynamically reconfigure the biochip [17].

The key contributions of this paper are as follows:

• Charge-coupled device (CCD)-based and optical detector-

based sensing systems for digital microfluidic biochip are

proposed and compared (Section II).

• An algorithm is proposed for the measurement and track-

ing of droplets based on real-time imaging data from a

CCD camera (Section II).

• A reliability-driven error recovery strategy is proposed

(Section III).

• Parallel recombinative simulated annealing (PRSA)-

based and greedy algorithms for reliability-driven syn-

thesis are presented (Section IV).

• Simulation results are presented for three representative

bioassays (Section V).

II. OVERVIEW OF DIGITAL MICROFLUIDIC BIOCHIPS AND

CYBERPHYSICAL SYSTEM

A digital microfluidic system includes a microfluidic

biochip and control software. A digital microfluidic biochip

consists of three types of components, i.e., a two-dimensional

electrode array, on-chip reservoirs, and sensors [18]. By

utilizing the principle of electrowetting, picoliter droplets

containing biological/chemical samples and reagents can be

manipulated on the chip without any curved channels or

external pressure sources [19] [2].

Figure 2 shows the structure of an element cell on a

microfluidic biochip [2]. The upper plate is a large electrode

that covers all cells on the array and serves as the ground

electrode for all unit cells [18] [2]. The lower plate of the

unit cell consists of an array of discrete control electrodes.

During biochip operation, the unit cells in the array may have

different voltages applied on their lower electrodes [18] [2].

The movements of droplets are determined by signals applied

on the discrete lower electrodes of the array.

As seen in Figure 2, droplets manipulated by the digital

microfluidic biochip are confined between the upper and

lower electrodes [2]. To move a droplet, a high voltage must

be applied to a unit cell adjacent to the droplet, and, at

the same time, a low voltage must be applied to the cell

under the droplet [2]. The voltages applied on the electrodes

can influence the surface characteristics of the hydrophobic

material on the lower electrodes. In this way, the different

voltages applied on the electrodes result in different levels of

interfacial tension on the surface of the biochip [2]. Due to this

effect, the droplet is moved from the low-voltage electrode to

the high-voltage electrode [2]. All the microfluidic functions,

such as droplet merging, splitting, mixing, and dispensing

can be reduced to a set of basic operations [18]. Concurrent

manipulation of multiple discrete droplets can be coordinated

by control software and by voltages applied to the electrodes,

so there is no need for mechanical devices, such as tubes,

pumps, and valves [19].

With the availability of sensing system for biochips,

“physical-aware” control software becomes feasible. By

“physical-aware”, we refer to the fact that the software can re-

ceive information about the outcome (error-free/erroneous) of

fluid-handling operations based on feedback from the sensing

system. Depending on sensor feedback, the control software

can appropriately reconfigure the microfluidic biochip. In this

way, the various steps in the bioassay are executed based upon

real-time sensing of intermediate results.
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Fig. 2. Schematic cross section of a unit cell on digital microfluidic arrays
[2].

Fig. 3. The schematic of the cyberphysical digital microfluidic system.

Fig. 4. Illustration of a digital microfluidics-based image processing system
[20].

Figure 3 depicts each component of a cyberphysical system

on the microfluidic platform. The control software sends a

control signal to the microfluidic biochip, and the on-chip

sensing system monitors the outcomes of fluidic operations.

The outcomes are compared with the “expected values”, i.e.,

the pre-determined thresholds. If the results of the comparison

indicate that an error has occurred, the control software

receives a “repeat request”, and the corresponding operation

in which the error occurred can be executed again, thereby

correcting the error.

A. Sensing Systems

Two sensing schemes can potentially be used in the cyber-

phyiscal system on digital microfluidic biochips.

The first sensing scheme is CCD camera-based. As de-

scribed in [2] [20], CCD cameras can be used in experiments

to view the top sides of droplets simultaneously. An example

of the CCD monitoring system is shown in Figure 4.

Based on images captured by the CCD camera, droplets

can be automatically located by the control software. The

procedure of automatically searching for droplets can be

described as a “template matching” problem. Here a pattern

can be represented as the image of a “typical” droplet. During

the matching process, we move the template image to all

possible positions in the image of the entire array and crop

a sub-image that has the same size as the template image.

Then the control software computes the correlation index,

which indicates the similarity between the template and the

“cropped image”. This process is shown in Figure 5(a) and

the correlation factor is calculated on a pixel-by-pixel basis.

In the control software, all images are stored in grayscale

form, which can be encoded as matrices or vectors. Sup-

pose the template image is represented in a 1-D array: ~x =

(x1, x2, ...xN ). Here xi represents the gravel level of a pixel

and N is the total number of pixels in the template image.

Similarly, the cropped sub-image to be compared with the

template image can be written as ~y = (y1, y2, ...yN ). Thus

the correlation factor between these two images is defined as:

cor =

N∑
i=1

(xi − x̄) · (yi − ȳ)

√
N∑
i=1

(xi − x̄)
2 ·

N∑
i=1

(yi − ȳ)
2

,

where x̄ and ȳ are the average gray level in the template image

and cropped sub-image, respectively. The range of correlation

factor cor is a real number between −1 and +1. According

to the definition of correlation, a larger value represents a

stronger relationship between two images.

After deriving the correlation factors for all possible po-

sitions in the image for the complete biochip, we obtain

the correlation map between the template and the original

input image. Suppose there are κ droplets on the biochip. By

searching for the largest κ correlation factors in the correlation

map, the locations of droplets can be determined. An example

is shown in Figure 5(b) and (c) [21]. Part (b) shows the original

input image of the whole chip and the pattern image, and (c) is

the correlation map, where the best matching locations, i.e. the

coordinations of droplets derived by the control software are

(77, 107), (77, 147) and (76, 208). Thus the control software

automatically locates the droplets, and it can further analyze

the sizes and colors of droplets according to the image. In

this manner, the volumes and concentrations of droplets can be

acquired after processing the image taken by the CCD camera.

Instead of searching for droplets in the complete image,

we use imaging to check whether the droplets have been

moved to the expected positions. This is implemented using

the following steps:

First, we do some calibration before the experiment. We

choose a large number of sub-images with (or without)

droplets, and calculate their correlation with the template.

Based on this calculation, we find an appropriate threshold

for the correlation index (Cth): if the correlation is larger

than Cth, we conclude that there is a droplet in the cropped

sub-image; otherwise, there is no droplet in the sub-image.

When the bioassay is running, we only need to crop the sub-

images near the expected positions of droplets, and calculate

their corresponding correlation indices to determine the ab-

sence/presence of droplets.

The advantages of the CCD camera-based sensing system

are: (i) the detection of errors immediately after they occur

and (ii) the identification of the precise locations of the errors.
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Fig. 5. (a) The matching process moves the template image to all possible positions in a larger source image and computes a numerical index that indicates
how well the template matches the sub-image in that position; (b) the image of the whole biochip [21] and the pattern we selected; (c) the correlation map
between image of the whole array and the pattern. The positions of droplets can be determined by finding κ maximum elements (κ is the number of droplets
on the chip) in the correlation map.

A disadvantage of this system is that extra instruments, such

as CCD cameras, are required to observe the cyberphysical

system.

The second sensing scheme is based on integrated optical

detectors, as proposed in [14] [15]. The quality of an inter-

mediate product in a digital microfluidic biochip can be deter-

mined by examining the concentration of the product in the

droplets through fluorescence [14] [15]. When a fluorophore

tag is attached to a droplet, different product concentrations

lead to the emission of light different wavelengths (i.e.,

different colors). This difference in color can be detected by

optical sensors that convert the received light into electrical

current or a voltage signal [14]. In recent work, integrated

photodetectors have been introduced on the microfluidic array

[14] [15]. For example, in [15], an optical detection system

was integrated with the digital microfluidic array. It consists

of a light-emitting diode (LED) and a photodiode which

functions as light-to-voltage converter. The concentration of

products on the array can be measured by the absorbance of

the droplets using a kinetic rate method. As another example,

thin film InGaAs photodetectors can be bonded onto a glass

platform, coated with Teflon AF, and then integrated into the

digital microfluidic system. Figure 6 shows a coplanar digital

microfluidic chip with the integrated InGaAs photodetector

[15].

Even though no instruments with large footprint and precise

alignment are needed in this method, the integrated optical

detector-based sensing system has a drawback that it cannot

precisely locate the electrode where an error has occurred. For

example, when an output droplet of an operation is sent to the

detector and it fails to meet the requirement of the bioassay,

we know that an error occurred during the mixing operation,

but we cannot locate the precise time and the position where

it occurred.

B. “Physical-Aware” Software

The availability of on-chip sensors provides digital mi-

crofluidic biochips with the capability of using sensor data at

intermediate checkpoints to detect errors, thereby minimizing

the impact of errors that occur during bioassay execution.

The work in [13] proposed intermediate stage monitoring and

rollback error-recovery for a microfluidic biochip. The key

idea in this work is using the sensing system on-chip to verify

Fig. 6. Coplanar digital microfluidic chip with integrated thin film photode-
tector [15].

the correctness of output droplets at various steps in the on-

chip experiment. In this approach, error recovery is carried

out as follows. When an error is detected at a checkpoint,

operations whose outputs failed to meet the quality require-

ments based on sensor calibration are re-executed to recover

from the error. Additional intermediate product droplets must

be stored in specially designated locations of the chips to

facilitate recovery. Additional droplets of samples and reagents

must also be dispensed from reservoirs for error recovery. The

details of the strategy for reliability-driven error recovery are

presented in Section III, and the algorithm for dynamic re-

synthesis of error recovery is described in Section IV.

C. Interfaces between Biochip and Control Software

We next describe the cyberphysical coupling between the

control software and the hardware of the microfluidic platform.

There are two interfaces needed for cyberphysical coupling.

The first interface converts the output signals from the sensing

system to the inputs of the desktop computer that the control

software can interpret. The second interface converts the

output data generated by the control software to voltage signals

that can be directly applied to the electrodes of the biochip.

As described in [3], biochip synthesis includes resource

binding and scheduling, which specifies the start and stop

times of fluidic operations. The synthesis results (control

software) need to be mapped to a sequence of electrode

actuation vectors consisting of “0”, “1”, and “F” (floating). A

programmable logic controller (PLC) is used as the interface

between the output of the control software (“controller”) and

the control pins of the biochip. The controller transfers data to

the memory of the PLC through the USB port of the computer

and an RS-232 interface.
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During bioassay execution, the PLC reads the electrode

actuation sequences stored in memory and applies the ap-

propriate sequence of voltages to the output pins. When the

PLC generates output voltages based on sequences in its

memory, corresponding activation voltages are applied to the

electrodes of the biochip. The quality of an intermediate

product in a digital microfluidic biochip can be determined

by examining the product concentration in droplets through

fluorescence [22], [23]. When a fluorophore tag is attached to

a droplet, different product concentrations lead to emitted light

of different wavelengths (i.e., different colors). This difference

in color can be detected by the sensing system that converts

the received analog signals into electrical current or voltage

[2]. Recent advances in the integration of a multiplicity of such

miniaturized sensors provide an important motivation for the

cyberphysical hardware/software co-design approach studied

in this paper.

III. RELIABILITY-DRIVEN ERROR RECOVERY STRATEGY

A. Error Recovery Strategies

In this subsection, we formulate the principles underlying

error recovery. For the given bioassay protocol, we use the

sensing system on-chip to evaluate the quality of output

droplets of each dispensing, mixing, dilution and splitting

operation. According to the data provided by [2], the response

time of on-chip optical sensors are in the scale of picoseconds

or nanoseconds. Thus the time cost for adding optical detection

operations is negligible.

For a microfluidic biochip, fluid-handling operations can

be divided into two categories: reversible and nonreversible

operations. Reversible operations include dispensing and split-

ting operations; nonreversible operations include mixing and

dilution operations. For errors that occur at reversible opera-

tions, their recovery processes are relative simple. In a split-

ting operation, if two droplets with unbalanced volumes are

generated, then the biochip will first merge the two abnormal

droplets to a larger one and then split the larger droplet again.

For errors that occur at a dispensing operation, the chip can

send the abnormal droplet back to the corresponding reservoir

and dispense another droplet. Thus for errors that occur at

reversible operations, the time cost for recovery is small and

no additional droplets need to be consumed.

The error recovery process for nonreversible operations is

more involved. To implement the corresponding nonreversible

operations to correct the error, we also need input droplets

from operations whose outputs feed the inputs of the failed

operation. Thus we may need to re-execute all the predecessors

of the erroneous operation. For instance, if an error occurs at

operation 7 in Figure 7(a), operations 1, 2, 3, 4, 5, and 6

may need to be re-executed. Thus the time cost for executing

error recovery operations can be extremely high. To reduce

the incidence of the worst case, the following strategies are

taken in our approach:

• For a splitting operation, if only one of its output droplets

is used as the input for the immediate successors, we store

the other (redundant) droplet as a backup for possible error

recovery at a subsequent stage. For example, operation 7 in

(a) (b)

Fig. 7. (a) An example of a sequencing graph corresponding to a bioassay
protocol; (b) The layout of a biochip with reserved area for error recovery.

Figure 7(a) is a splitting operation and it generates two output

droplets. Only one of these two droplets is used as the input

of operation 9. (Note here each circle in the sequencing graph

stands for a fluid-handling operation. The unused droplets are

not shown in the sequencing graph.) If an error occurs at

operation 9, the redundant droplet will be used as an input

for re-execution.

• All dispensing operations are scheduled for execution

as early as possible and their output droplets are stored

on the biochip. We also dispense some droplets as backup

for possible error recovery operations. When the bioassay is

completed, those unused backup droplets are sent back to the

corresponding reservoirs.

Thus, when an error occurs at a nonreversible operation,

the control software first checks whether the inputs of this

operation can be provided by backup droplets stored on chip.

If the answer is yes, then the time cost for this operation

can be reduced. Otherwise, more operations will be executed

during error recovery. Based on the above discussion, the

operations in the sequencing graph can be divided into three

categories according to the number of operations and droplet

consumptions in their error recovery processes, as shown in

Figure 7(a).

The above operations can be formally categorized as fol-

lows:

Category I: This is the set of all reversible operations. They

can be simply re-executed when an error occurs.

Category II: This is the set of nonreversible operations for

which immediate predecessors can provide backup droplets.

Category III: This corresponds to the set of nonreversible

operations for which their immediate predecessors cannot

provide backup droplets.

In a given sequencing graph, each node represents an

operation. We define the number of input droplets as the in-

number of an operation, and the number of output droplets

as the out-number of an operation. As described below, any

operation optk can be categorized based on its in-number and

out-number values:

• If in-number of optk is equal to zero, then optk is a

dispensing operation. Thus we have: optk ∈ Category I.

• If in-number of optk is equal to one and the out-number

of optk is equal to two, then optk is a splitting operation.

Thus we have: optk ∈ Category I.

• Suppose optj is an immediate predecessor of optk. Then

the number of backup droplets at the output of optj
can be calculated as: Boptj = ONj − MNj , where
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1: Classify operations into Category I, Category II and Category III;
2: Initialization of Ri: Ri = opti;
3: Initialization of intermediate variable Re: Re = Pr(Ri);
4: while (Re−Ri) ∩ {Set of operations in Category III} 6= ø do
5: Update Ri: Ri = Pr(Ri);
6: Update Re: Re = Pr(Ri);
7: end while
8: Ri = Re;
9: Ri is the set of recovery operation for opti;

Fig. 8. Pseudocode for determining the recovery operation for opti.

ONj is out-number of optj , and MNj is the number

of immediate successors of optj . If the numbers of

backup droplets for optk’s immediate predecessors are all

non-zero, then we have: optk ∈ Category II; otherwise,

optk ∈ Category III.

For an operation opti, the set of its error recovery opera-

tions, Ri, can be derived according to the categorization result

for opti. Operations in Category I and II can be simply re-

executed when an error occurs because their input droplets

are stored on chip. However, for operations in Category III,

their inputs come from the outputs of predecessor operations

and we do not have backup for these droplets. Thus if an

error occurs in an operation of Category III, we not only need

to re-execute the operation itself but also need to backtrace

to its predecessors. Suppose the error operations is opte and

its immediate predecessors are operation optp1
and optp2

. If

these immediate predecessors are operations in Category I or

Category II, we can first re-execute optp1
, optp2

and then

opte for error recovery, thus Ri = {optp1
, optp2

, opte}. If

the immediate predecessors optp1
and optp2

are neither in

Category I nor Category II, we have to continue enlarging

Ri by adding the immediate predecessors of optp1
and optp2

into Ri. This backtracing and enlargement procedure needs

to be repeated until we reach predecessor operations that can

provide backup droplets to feed the inputs of operations in the

set of error operations.

The above procedure of backtracing and enlargement of

the set Ri can be described as follows. First, we define the

mapping pred(opti) to be a mapping from opti to the set of

immediate predecessors of opti in the sequencing graph.

For a set of operations O = {opto1 , opto2 , ...optok}, we

define the operator Pr as:

Pr : O →
⋃

i=o1,o2,...ok

{opti, optj |optj ∈ pred(opti), ∀ j}

where Pr is a backtracing operation. For any operation opti,

its set of error recovery operations Ri can be derived by

the procedure presented in Figure 8. According to above

discussion, we can derive the set of recovery operations Ri

for any operation opti.

Based on the relationship between operations in the initial

sequencing graph, we can further add edges between opera-

tions in the set Ri, and thus derive the error recovery graph

GRei for opti. If an error occurs in opti, we will re-execute

operations in GRei for error recovery.

It is important to note that some electrodes on the biochip

are intentionally left unused and reserved for storage of backup

(a) (b)

(c)

Fig. 9. (a) An error caused by the phenomenon of charge trapping; (b)
splitting operation with droplets with unbalanced volumes; (c) an error caused
by DNA fouling on the surface of a biochip.

droplets. An example is shown in Figure 7(b); all electrodes

on the boundary of the chip are used as storage cells. Thus

backup droplets can be easily transported on the biochip.

B. Reliability Consideration in Recovery

When an error is detected during the execution of a bioassay,

simply re-executing the operation for which an error occurred

is not efficient to ensure reliable operation. This is because the

errors that occur during the execution of a bioassay usually are

caused by defects involving electrodes; thus, multiple errors

may occur in the same region of the biochip at different

times. Two examples are provided below to illustrate the errors

caused by the charge-trapping phenomenon and DNA fouling.

When the electrodes of a digital microfludic biochip are

actuated excessively, physically-trapped charge and residual

charge may lead to reliability problems [9] [10]. Charge

trapping is a phenomenon in which charge is trapped and

concentrated in the dielectric insulator of the chip. It can lead

to a reduction in the electrowetting force and malfunctions

in the execution of the bioassay. An example is shown in

Figure 9(a). Suppose Electrode 1 has a trapped charge in

its dielectric insulator layer, while Electrode 2 and 3 do

not suffer from charge sharing. In order to implement a

splitting operation, high voltages are applied on Electrode 1

and Electrode 3. However, the charge trapped on Electrode

1 will reduce the electrowetting force. The droplet will be

split by unequal forces, and the two resulting droplets may

have unequal volumes; see Figure 9(b). If we simply re-

execute the splitting operation and continue to use Electrode 1,

additional errors may result. Even worse, the charge-trapping

phenomenon eventually may cause permanent dielectric degra-

dation of the electrode [9] [10]. Thus, once an error is detected,

the electrode at which the error occurred must no longer be

used to implement fluid-handling operations in order to ensure

the reliability of the biochip.

When droplets contain macromolecules, such as DNA, they

may foul the surface of the electrodes [24]. As a result, droplet

concentration can change in undesirable ways. If we continue

to use these contaminated electrodes, other droplets may also
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TABLE I
SYNTHESIS RESULTS FOR THE BIOASSAY SHOWN IN FIGURE 1(A).

Operation Start time Stop time Resource Location

Mix 1 6 12 3×2 mixer (2, 6)

Mix 2 0 6 2×3 mixer (2, 5)

Mix 3 0 10 2×2 mixer (6, 2)

Mix 4 12 15 4×4 mixer (4, 6)

Mix 5 15 18 4×2 mixer (4, 6)

Fig. 10. Module placement results for the bioassay shown in Figure 1(a).

be contaminated. An example of this is shown in Figure 9(c).

The region where DNA fouling occurred is used as part of

a mixer, and the concentrations of the output droplets of the

mixing operation may be abnormal.

We use a simple strategy to ensure a reliability-driven error

recovery. When an error is detected, we update the execution

of the bioassay as follows:

• The operation with error is re-executed.

• The electrodes that may lead to errors will not be used in

other operations. Note that for each operation, the on-chip

resources occupied by it are all recorded by the control

software. Thus depending on the error droplet, it is easy

to backtrace to the region where error occurs. We consider

all electrodes in this region as the possible locations for

defects. These electrodes will therefore be discarded.

C. Comparison Between Two Sensing Schemes

The two sensing schemes introduced in Section II have

differences in the context of fault diagnosis, error recovery

and dynamic re-synthesis.

The diagnosis of an electrode with trapped charge can be

used to illustrate the difference between these two systems.

Suppose a splitting operation with unbalanced droplets occurs,

as shown in Figure 9(b). In the CCD camera-based sensing

system, Electrode 1 can easily be identified as the electrode

with residual charges because the droplet volume is smaller

than normal volume.

On the other hand, for the optical detector-based sensing

system, the outputs of splitter, which consists of Electrodes 1,

2 and 3 shown in Figure 9(b) will not be used any more. In

contrast to the diagnosis result of CCD camera-based sensing

system, Electrode 2 and 3 can no longer be used, leading to

wastage of on-chip resources. Here we use the bioassay shown

in Figure 1 to illustrate the differences of these two sensing

schemes.

Suppose the droplets for dispensing operations 1 to 6 in

Figure 1(a) are generated from different dispensing ports.

Table I shows the synthesis results for all mixing operations

(a) t = 0: Mix 2 and
Mix 3 begin; t = 2:
DNA fouling occurs
at Mix 3 while it will
continue to be exe-
cuted; t = 6: Mix 2
is completed.

(b) t = 6: Mix 1 be-
gins. Mix 3 is still
being executed (even
though DNA foul-
ing has already oc-
curred).

(c) t = 10: Mix 1
is being executed
while the output
of Mix 3 is sent
to optical detector.
The error is detected
and corresponding
electrodes are
discarded. t = 12:
Mix 1 is completed.

(d) t = 12 : Mix 4 begins
and Re-Mix 3 is being ex-
ecuted; t = 15: Mix 4 is
completed; t = 20: Re-Mix
3 is completed.

(e) t = 20: Mix 5 begins; t =
23: Mix 5 is completed. The whole
bioassay is completed at time 23.

Fig. 11. Synthesis results for the bioassay when we use the optical detector-
based sensing system.

of the bioassay shown in Figure 1(a). The module placement

result corresponding to synthesis result in Table I is shown in

Figure 10.

It is important to note that, in Table I, “resource” refers to

part of the electrode array occupied by the mixing operation.

The location of a mixer is expressed in terms of the location of

the electrode at the upper left corner of the mixer. For example,

the upper left corner of the mixing module M1 is in the sixth

row and second column; it includes an electrode array with

two rows and three columns. Thus the mixer is described as

a 3×2 mixer at the location (2, 6).

Suppose that the DNA-fouling phenomenon occurs in the

operation Mix 3 shown in Table I after the operation has been

underway for three seconds. For the optical detector-based

sensing system, the output of Mix 3 is checked only after

Mix 3 has been completed. Thus, the error recovery process

is triggered at time instant t = 10. For the CCD camera-

based system, the error-recovery process will be triggered

immediately after DNA fouling occurs at time instant t =

3. The synthesis results for these two cases are shown in

Figure 11 and Figure 12, respectively. We find that in the

CCD camera-based sensing system, recovery can be triggered

immediately after an error occurs. On the other hand, in a

detector-based sensing system, recovery can only be triggered

at the end of the erroneous operation.

Even though the CCD camera-based sensing system can

precisely locate the position of electrodes with defects and

trigger recovery immediately after an error occurs, light from

the camera may influence some biochemical substances, e.g.,

fluorescent markers in the droplet [25]. Thus in order to mon-
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(a) t = 0: Mix 2 and
Mix 3 begin; t = 2:
DNA fouling occurs,
Mix 3 stops and will
be re-executed; cor-
responding electrodes
are discarded.

(b) t = 2: recovery
operation Re-Mix 3
begins; t = 6: Mix 2
is completed.

(c) t = 6: Mix 1 be-
gins and Re-Mix 3 is
still being executed; t
= 12: both Mix 1 and
Re-Mix 3 are com-
pleted.

(d) t = 12: Mix 4 be-
gins; t = 15: Mix 4 is
completed.

(e) t = 15: Mix 5 begins; t =
18: Mix 5 is completed. The whole
bioassay is completed at time 18.

Fig. 12. Synthesis results for the bioassay when we use the CCD camera-
based sensing system.

TABLE II
COMPARISON BETWEEN CCD CAMERA-BASED SENSING SCHEME AND

DETECTOR-BASED SENSING SCHEME.

CCD camera-based Detector-based
scheme scheme

Accuracy of
locating electrodes High Low

with defect

Error recovery can be Error recovery can only
Response time triggered immediately be triggered at the end

when an error occurred of the faulty operation

Application for
photosensitive Cannot be used. Can be used.

samples/reagents

itor experiments that include photosensitive samples/reagents,

we need to choose the detector-based sensing scheme.

IV. ERROR RECOVERY AND DYNAMIC RE-SYNTHESIS

With the availability of hardware that can send feedback to

the control software, it is now necessary to design physical-

aware software that can analyze sensor data and dynamically

adapt to it. Adaptations include updates for the schedule

of fluid-handling operations, resource binding, module place-

ment, and droplet routing pathways.

The task of the control software includes two phases: the

first phase is off-line data preparation before the execution of

bioassay and the second phase is on-line monitoring for the

fluid-handling operations as well as dynamic re-synthesis of

the bioassay. Details are presented below.

A. Off-line Data Preparation before Bioassay Execution

The first step in data preparation is to convert the sequencing

graph of the bioassay to a directed acyclic graph (DAG) and

store it in memory for use by the control software. In this

DAG, the vertices represent microfluidic handling operations

and the edges represent precedence relations between opera-

tions. The predecessors and successors of any operation can

be determined by performing depth-first search on the graph

[26].

The second step in data preparation is to assign error

thresholds for each operation. These thresholds are determined

by the requirement of precision for the bioassay and they

are stored as a table in memory for use by the control

software. During bioassay execution, if an optical detection

result is outside the range of pre-assigned threshold values,

we conclude that an error has occurred at the corresponding

operation.

The last step in data preparation is the initial synthesis step

for the bioassay. In this procedure, we map the sequencing

graph of the bioassay and on-chip resources to the schedul-

ing, resource binding, module placement, and droplet routing

results for each operation.

For a sequencing graph consisting of n operations, the

synthesis result can be written as the following set:

S = {M∗
opt1

, M∗
opt2

, ...M∗
optn

}

where M∗
opti

, 1 ≤ i ≤ n, is the synthesis output for the

ith operation opti. The element M∗
opti

can be viewed as an

ordered 6-tuple:

M∗
opti

= < ts(opti), te(opti), x(opti), y(opti),

col(opti), row(opti) >

where ts and te are the start time and end time of the

operation, respectively; x and y are the x-coordinate and y-

coordinate for the module that implements the operation; col

and row are the number of columns and rows occupied by the

operation in the array.

For an arbitrary operation opti, the order of elements in the

tuple M∗
opti

is defined. Thus we can use M∗
opti

(j̃) to represent

the j̃th element in the tuple M∗
opti

. For example, the start time

of ith operation can be written as M∗
opti

(1), the x-coordinate

of ith operation can be written as M∗
opti

(3), and the number

of columns occupied by opti can be written as M∗
opti

(5).
For simplicity, we write the set of all operations in the

bioassay as P; and we use C to refer to the set of constraints

that S must satisfy, which include:

1) For any pair of operations optw and optv , if

the two open intervals (M∗
optw

(1),M∗
optw

(2)) and

(M∗
optv

(1),M∗
optv

(2)) overlap, i.e.,

(M∗
optw

(1),M∗
optw

(2)) ∩ (M∗
optv

(1),M∗
optv

(2)) 6= ∅,

which implies that operations optw and optv are imple-

mented concurrently. It is important to note that multiple

operations cannot share on-chip resources (including

electrodes, dispensing ports and detectors) at the same

time. Thus optw and optv must satisfy following con-

straint:

(M∗
optw

(3),M∗
optw

(3) +M∗
optw

(5)) ∩ (M∗
optv

(3),M∗
optv

(3)

+M∗
optv

(5)) = ∅,∨

(M∗
optw

(4),M∗
optw

(4) +M∗
optw

(6)) ∩ (M∗
optv

(4),M∗
optv

(4)

+M∗
optv

(6)) = ∅,
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i.e., their corresponding modules cannot overlap with

each other.

2) For any pair of operations optw and optv , if optw is

the predecessor of optv , then optw must be completed

earlier than the start time of optv , i.e. M∗
optv

(1) ≥
M∗

optw
(2).

The completion time of the bioassay can be written as:

Cp = Max
opti∈P

{M∗
opti

(2)}

Thus the synthesis of the biochip can be viewed as

an optimization problem. The inputs are the set of

operations P and the set of constraints C. The target

is:

minimize: Max
opti∈P

{M∗
opti

(2)}

Previously published CAD methods for digital microfluidic

biochip have proposed several algorithms to solve this op-

timization problem. For example, the PRSA-based synthesis

algorithms can be used to quickly derive optimized synthesis

results [27].

After the optimized synthesis results are derived, the off-

line data preparation step is completed. The bioassay is next

executed according to the initial synthesis result, and the next

step is the on-line monitoring of droplets.

B. On-line Monitoring of Droplets and Re-synthesis of the

Bioassay

During the execution of the bioassay, the control software

must implement the following steps.

Step 1: Error Identification

The error identification procedures for the optical detector-

based sensing system and CCD camera-based sensing sys-

tem are different. For the detector-based sensing system, the

outputs of each operation are sent to an on-chip detector.

After each optical detector operation, the software compares

the detection result with a pre-assigned error threshold. If

the optical detection result fails to meet the requirement of

the experiment, we conclude that an error has occurred. The

detection of the error will trigger the error recovery procedure,

i.e., the software will dynamically adjust the synthesis results

to re-execute the operation in which an error occurred and

bypass the electrodes at which the error occurred.

For the CCD camera-based sensing system, the software can

carry out a real-time monitoring of all droplets on the biochip.

The colors and diameters of the droplets are detected simulta-

neously by the CCD camera and evaluated for comparisions.

Thus, error recovery is triggered as soon as an error occurs.

According to the detection results for droplets, both optical

detector-based and CCD camera-based systems can locate the

on-chip resources with defects. Suppose the output droplet of

operation opto fails to meet the requirement, then we can

conclude the defect may exist in the resources which are

assigned to opto. In order to ensure the reliability of the

subsequent operations, this region will be bypassed.

Step 2: Update of Sequencing Graph

When an error occurs, the control software determines

the required recovery operations. According to the above

1: Derive the graph Goriginal by deleting edges between the er-
roneous operation and its immediate predecessors in original
sequencing graph;

2: Derive the error recovery graph GRei for opti;
3: Copy GRei and label the nodes with different names;
4: Derive the union graph for GRei and Goriginal;

Fig. 13. Pseudocode for adjustment of the sequencing graph.

discussion, if an error occurs during a reversible operation, the

recovery process is simple. For non-reversible operations, the

control software must search the preceding operations until it

finds an operation that can provide backup droplets to feed the

inputs of the recovery subroutine. As mentioned above, when

an error occurs during the implementation of operations, the

software will adjust the sequencing of the bioassay according

to the category of operation. The pseudocode for the adjust-

ment of the sequencing graph is shown in Figure 13. The

definition of error recovery graph GRei for operation opti can

be found in Part A of Section III. The update of the sequencing

graph for errors that occur during the operations of Categories

I, II, and III are shown in Figure 14. The categorization of

operations can be found in Part A of Section III.

It is important to note that, for some operations, the recovery

subroutines may change depending on the error. For example,

operation 7 in Figure 7(a) generates two droplets; one of them

is used in the subsequent reaction and the other is stored

on chip as the “backup droplet”. If a single error occurs

at operation 14, the biochip will re-execute operations 8, 9,

10 and 12. However, if an error occurs at a predecessor of

operation 14, the recovery subroutine for operation 14 will be

different. For example, when an error occurs at operation 9,

the backup droplet of operation 7 will be used as the input for

error recovery. If another error occurs afterwards at operation

14, there is no more backup droplet available at the output

of operation 7. Thus the recovery subroutine of operation 14

has to be expanded and it will now include operation 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, and 12. Therefore the recovery steps

are completely different from the case when an error occurs

at operation 14.

After the recovery subroutine of an operation is determined,

the control software will update the sequencing graph and the

corresponding DAG, and then the dynamic re-synthesis step

will be implemented.

Step 3: Dynamic Re-synthesis

In the cyberphysical system envisioned here, when an error

is detected at a checkpoint, it will trigger the generation

of a new mapping of the remaining steps (including proper

handling of intermediate results) of the bioassay. This process

is referred to here as re-synthesis, on the basis of the initial

design obtained from the a priori synthesis step. The require-

ments for the process of re-synthesis are:

• The interruption of other operations should be avoided.

Consider the following example. For the bioassay with

synthesis results shown in Table I, suppose an error

recovery process is triggered by an error in operation Mix

3 at time instance 10. When the error recovery process is

triggered, operation Mix 1 is being implemented. In order



10

Fig. 14. Update of the sequencing graph corresponding to error operations of Categories (a) I; (b) II; and (c) III.

(a) (b) (c)

Fig. 15. (a) Scheduling result when no error occurs; (b) scheduling when an error occurs in Mix 3. Mix 1 is halted when error operations are executed; (c)
scheduling when an error occurs in Mix 3. Here dynamic synthesis strategy is applied at time 10 and error recovery operations begin at time 11.

to avoid the interruption of Mix 1, in the new synthesis

results, the schedule and resource assignment results for

Mix 1 should be the same as in the inial synthesis results.

• The electrodes at which an error has been deemed to have

occurred should be bypassed in the new synthesis results.

• The completion time of the bioassay should be optimized.

To satisfy these requirements, we propose two re-synthesis

strategies for dynamic re-synthesis. The first strategy is based

on a local greedy algorithm, and the second is a PRSA-based,

global optimization algorithm [3].

For the greedy algorithm, the first step is to determine all

operations that must be adjusted in the re-synthesis result.

These operations include the operations in the error recovery

graph, the erroneous operation, and the set of subsequent

operations that will be implemented on electrodes with defects

in the initial synthesis result. Other operations will be executed

based on the initial synthesis result.

Since the synthesis results for part of the operations are

fixed, dynamic re-synthesis on the microfluidic array can be

modeled as the module placement with obstacles problem.

Here the operations that are implemented based on the initial

synthesis result are fixed a priori as the “obstacles” while the

other operations that are necessary for recovery are derived

through re-synthesis and placed in the remaining available

chip area in a greedy fashion. The detailed steps are described

below.

First the control software places all operations that need

to be re-scheduled in a priority queue based on topological

sort. These operations include error recovery operations and

all successors of the erroneous operation. Then the software as-

signs a priority for each operation in the queue. The “deepest”

operation in the subroutine (i.e., the operation at the bottom

of the list generated by topological sort) is assigned the lowest

priority while the “shallowest” (at the top of the list produced

by topological sort) operation is assigned the highest priority

in the queue.

Next the control software needs to allocate on-chip re-

sources to these operations. Here our on-chip resource set

R changes with time t. The control software will search for

available resources at the current time for the operation with

the highest priority. For example, if the operation with the

highest priority is a mixing operation, then the system will

search for an available m × n cell array that is not occupied

from current time t to t+△t. Here △t is the time needed for

the operation in the m×n cell array. If suitable idle resources

are available, resource binding will be successful and the start

time of the operation will be deemed to be the current time.

Otherwise, the operation has to be delayed until there are

available resources. If multiple resources are available at the

same time, the control software will randomly choose one

and bind it to the corresponding operation. After resource

binding and start/stop time of the operation are determined,

the operation will be removed from the priority queue.

Note that the above steps can also be used to generate

re-synthesis results, when multiple errors are detected at the

same time. In this situation, multiple recovery processes are

triggered at the same time and the control software generates

a priority queue for each recovery process. After these priority

queues merged, the control software assigns a priority for each

element based on topological sort. Finally, the control software

determines new synthesis results for every operation in the

merged priority queue.

For a microfluidic biochip with an M × N electrode

array, D detectors and P dispensing ports, the computational

complexity of searching for available resources (i.e. “the

maximum empty rectangle”) in this re-synthesis algorithm

is O(MN + D + P ). Since we can view the number of

detectors and dispensing ports as being constant and we are
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1: Localize the fault operation according to feedback at checkpoints;
2: Determine the operations which need to be adjusted and store them

into a priority queue Q;
3: Delete all initial synthesis results for operations in Q;
4: while Q 6= ∅ do
5: Seach avaibale resource for operation q0 which has the highest

priority in Q;
6: Remove q0 from Q;
7: end while

Fig. 16. Pseudocode for dynamic re-synthesis of the bioassay.

interested in algorithm scalability for large arrays, the worst-

case complexity is O(MN ). This is because the software will

exhaustively search each electrode/detector/dispensing port in

the array and check whether it is available. The computational

complexity for other parts of the algorithm are all O(1).

Hence the overall computational complexity of the re-synthesis

algorithm is O(MN ). The pseudocode for the re-synthesis

procedure is shown in Figure 16.

An example of re-synthesis is shown in Figure 15. Fig-

ure 15(a) shows the schedule corresponding to the sequencing

graphs in Figure 1(a). Figure 15(b) and Figure 15(c) both

show the schedules corresponding to the sequencing graph

in Figure 1(b). For the sake of clarity, we only show the

schedule for mixing operations. Here Figure 15(b) is the

schedule obtained using the error-recovery algorithm of From

Fig. 15(b), we can see that mixing operation Mix 1 is halted

for 10 time slots when error recovery operations are executed.

The completion time of the bioassay shown in Fig. 15(a) is

increased from 18 time slots to 28 time 18 time slots to 28

time slots, which can be unacceptable for many applications.

The dynamic scheduling result corresponding to Fig. 1(b) is

shown in Fig. 15(c). When the error is detected at the output of

Mix 3 at time 10, the Mix 3 at time 10, the ongoing operation

Mix 1 is executed based on the initial synthesis result. We

assume that the computing time to generate the new synthesis

result is 1 time slot. In practice, computation time is at least an

order of magnitude less than the fluidic operation time. Then

at time 11, the control software will generate new synthesis

result based on the updated Fig. 1(b). As shown in Fig. 15(c),

Mix 1 is completed at time 12 without being interrupted and

the being interrupted and the experiment is finished at time

18. Thus the bioassay is executed “seamlessly” without any

time penalty or interruption of other operations.

The re-synthesis problem can also be solved using the

PRSA-based global optimization method from [3]. The inputs

and constraints of the re-synthesis problem are different from

the initial synthesis problem introduced in Section III.A.

Suppose the set of operation for the re-synthesis problem is

P ′ and the set of constraints is C′. We can derive P ′ and C′

based on P and C introduced in Section IV.

We first define a operator T on the set P . T is a mapping

from the set of all operations to the set of operations that have

already started at time instant t.

T (t) : P → P(t) = {opti|M
∗
opti

(1) ≤ t}

When an error is detected at time instant t in operation

opti, the set of operations that need to be re-synthesized can

be written as P ′ = P ∪ Ri ∪ Õ − P(t). Here Ri is the set

of recovery operations corresponding to erroneous operation

opti, and Õ is the set of subsequently operations which will be

implemented on electrodes with defect in the initial synthesis

result. The method for determining the operations in Ri is

introduced in Section III.A. Then according to the module

placement information included in initial synthesis result, and

locations of electrodes with defects, operations in Õ can be

determined.

We write the new synthesis results for opti ∈ P ′ as M ′
opti

.

In addition to the set of constraints C, the new synthesis must

satisfy the constraint that the region where an error has been

deemed to have occurred cannot be used any more.

The optimization problem for re-synthesis process can be

written as:

minimize: Max
opti∈P′

{M ′
opti

(2)}

The above optimization problem can be solved by using the

PRSA-based synthesis procedure introduced in [3]. Using this

method, we can derive globally-optimized synthesis results

with short assay completion time, but the CPU time is high of

the order of 20 minute for a typical bioassay [13]. Thus, this

method is not suitable for on-line computation of re-synthesis

results.

V. SIMULATION RESULTS

In this section, we evaluate the re-synthesis approach for

error recovery on representative bioassays that are especially

prone to fluidic errors. We compare the completion time for the

two sensing schemes; and the re-synthesis results derived by

the greedy algorithm and the PRSA-based global optimization

algorithm.

A. Preparation of Plasmid DNA

First, we simulate the preparation of plasmid DNA by

alkalinelysis with SDS-minipreparation [31]. During sample

preparation, a mixture of three reagents is required. The three

reagents are:

• Reagent R1: Alkaline lysis Solution I (50 mM Glucose,25

mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0)).

• Reagent R2: Alkaline lysis Solution II (0.2 N NaOH, 1%

SDS (w/v)).

• Reagent R3: Alkaline lysis Solution III (5 M sodium

acetate, glacial acetic acid).

The required concentration of the mixture is 22% of R1,

44% of R2, and 34% of R3, which can be approximated to
28

128
of R1, 56

128
of R2, and 44

128
of R3. The sequencing graph

to get the required concentration by mixing R1, R2, and R3 is

shown in [17]. This bioassay is mapped to a 10×10 electrode

array and all electrodes on the boundary of the array are used

as storage cells.

The error-recovery capability of the cyberphysical microflu-

idic system can be evaluated on the basis of the bioassay

completion time when errors are detected. We inject errors

randomly into the chip during the execution of the bioassay

and compare the completion time of the two sensing schemes.

The results are shown in Figure 17. Here the completion time
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Fig. 17. Completion time for biochip with detector-based and CCD camera-
based sensing system, and the biochip without error recovery mechanism when
errors are injected in the sample preparation of plasmid DNA.

Fig. 18. Comparison for the completion time between reliability-driven and
reliability-oblivious error recovery [17] when a 1× 4 subarray is defective in
the sample preparation of plasmid DNA. The error bars show the maximum
and minimum completion time for reliability-oblivious error recovery in
simulation.

is derived from the greedy algorithm introduced in Section

IV, and the results are the average of the values derived from

repeating the experiments 10 times.

From Figure 17, we can see that the completion time for

the CCD camera-based sensing scheme is slightly less than

the completion time for the optical detector-based scheme.

This is because in the CCD camera-based scheme, when an

error occurs during an operation, the error recovery procedure

is immediately triggered; in the detector-based scheme, the

recovery procedure only can be triggered at the end of the

erroneous operation. The simulation results for biochip without

error recovery mechanism are also shown in Figure 17. For this

case (no error recovery), if an error occurs during the bioassay,

the final outcome of the entire experiment will be incorrect. As

a result, the biochip has to be discarded, and the experiment

must be repeated on a new biochip in order to correct the

error. If we assume that re-execution of the experiment will be

successful, the bioassay completion time will be twice as the

completion time in the fault-free case. Based on these results,

we note that error recovery can reduce the bioassay completion

time, and the consumption of biochemical reagents/samples

can be reduced.

Fig. 19. Comparison between the completion time of reliability-driven and
reliability-oblivious error recovery when a 2 × 4 subarray is defective in
the sample preparation of plasmid DNA. The error bars show the maximum
and minimum completion time for reliability-oblivious error recovery in
simulation.

(a)

(b)

Fig. 20. (a) Completion time for biochips with detector-based and CCD
camera-based sensing systems when errors are injected in the sample prepa-
ration of interpolating mixing; (b) Completion time for biochips with detector-
based and without error recovery mechanism when errors are injected in the
sample preparation of interpolating mixing.

In reliability-driven error recovery, the electrodes where an

error is deemed occurred will not be used in other operations.

On the contrary, for the reliability-oblivious error recovery

process in [17], when an error occurs during execution,

the region where error occurs will continue to be used in

subsequent operations. As discussed in Section III.B, these

electrodes with defects may further lead to more errors.

To compare between the completion time for reliability-
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Fig. 21. Completion time for the bioassay of interpolating mixing (derived
from two re-synthesis algorithms when multiple errors are injected).

oblivious and reliability-driven error recovery procedures, the

following simulation was set up. In the reliability-oblivious

error recovery, we randomly select one operation optfe as

the first instance of error in the execution of bioassay. The

electrodes that are used to implement optfe are referred to

“electrodes with defects”. When another operation is imple-

mented again on these electrodes with defects, we assume that

there exists a probability Pfail that this operation will also fail.

For a fixed value of Pfail, we simulate reliability-oblivious

error recovery 15 times, and determine average completion

time.

Figure 18 compares the completion time of reliability-driven

error recovery and average completion time of reliability-

oblivious error recovery for different values of Pfail. Here the

randomly selected optef is a mixing operation implemented

on a 1 × 4 electrode array. As expected, Figure 18 shows

that the reliability-driven error recovery leads to shorter assay

completion time in the presence of defects.

Next we randomly select another operation as optfe and

run the simulation again. The electrodes that implement optfe
now constitute of a 2 × 4 electrode array. The simulation

results are shown in Figure 19. We find that as expected,

the average completion time for reliability-oblivious error

recovery is higher when more electrodes are likely to be

defective. On the other hand, the completion time of reliability-

driven error recovery does not depend on the type of defect

on the chip and keeps the minimum completion time.

B. Protein Assays: Interpolating Mixing and Exponential Di-

lution

Next we evaluate re-synthesis and error recovery for two

real-life protein assays. These assays lead to the dilution

of a protein sample by using two methods, namely inter-

polating mixing and exponential dilution. The protocols and

corresponding sequencing graphs for these two bioassays are

described in [13].

When errors are injected in the sample preparation of

interpolating mixing, the completion time of biochips with

detector-based and CCD camera-based sensing systems are

shown in Figure 20(a); and the completion time of biochips

Fig. 22. Comparison between the completion time of reliability-driven and
reliability-oblivious error recovery [17] when a 1× 4 defect array is injected
in exponential dilution. The error bars show the maximum and minimum
completion time for reliability-oblivious error recovery in the simulation.

with detector-based sensing systems and without error recov-

ery mechanism are shown in Figure 20(b). The bioassay is

mapped to a 10× 10 electrode array.

Figure 21 reports the completion time when multiple errors

are inserted during the interpolating mixing protocol. Note

that the completion time defined here only includes time

spent on fluid-handling operations, and excludes the CPU

time spent on resynthesis. From Figure 21, we see that the

completion time achieved by the PRSA-based algorithm and

greedy algorithm are almost the same, but the CPU times

for these two algorithms are different. The experiment was

performed on a 2.6-GHz, Intel i5 processor with 6 GB of

memory. Both re-synthesis algorithm are implemented on the

basis of the same initial synthesis result. The CPU time

needed was around 33 minutes for computing the re-synthesis

results using PRSA, which was 10 times more than the

bioassay completion time; while the CPU time was less than

5 seconds for the greedy algorithm, which was only 2.5% of

the bioassay completion time. The bioassay completion time

derived by greedy algorithm is only slightly higher for the

PRSA. Nevertheless, the greedy algorithm is more suitable

for on-line re-synthesis because of low CPU time.

While the PRSA-based approach is less attractive for real-

time decision making, it provides a useful calibration point

for the greedy algorithm and shows that the latter’s effective

for timely bioassay completion. Moreover, the PRSA-based

method can serve as the basis for future error recovery

methods based on precomputation and preloading of recovery

schedules.

For the exponential dilution protocol introduced in [13],

we evaluate the completion time for the reliability-driven

and reliability-oblivious error recovery methods in Figure 22.

First we randomly select one operation optfe as the first

instance of error in the execution of bioassay, where optfe is a

dilution operation implemented on a 1× 4 electrode subarray.

Then for subsequent operations that are implemented on this

electrode array with defects, we set Pfail as the probability

that the operation will fail again. Then corresponding to each

value of Pfail, we run the simulations 15 times, and derive

the average completion time for reliability-oblivious error

recovery. In contrast, the defective electrodes are bypassed in

reliability-driven error recovery. Thus the completion time of

reliability-driven error recovery is independent of Pfail. From



14

the results shown in Figure 22, we find that reliability-driven

error recovery reduces the bioassay completion time. At the

same time, we avoid the problem that any given set of defective

electrodes can lead to replicated errors, thus the number of

errors in the bioassay is reduced. Hence less reagents/samples

are consumed, leading to lower cost and higher reliability for

the experiment.

VI. CONCLUSIONS

We have shown how recent advances in the integration

of optical sensors in a digital microfluidics biochip can be

used to make biochips error-resilient. We have presented a

cyberphysical approach for “physical-aware” system recon-

figuration that uses sensor data at intermediate checkpoints

to dynamically reconfigure the biochip. Real-time experiment

monitory techniques based on integrated optical detector and

CCD camera have been considered. Two different sensor-

driven re-synthesis techniques have been developed to re-

compute electrode-actuation sequences, thereby deriving new

schedules, module placements, and droplet routing pathways,

with minimum impact on the time-to-response. These two

methods have been compared in terms of bioassay completion

time and CPU time needed for re-synthesis. The coordination

between the physical-aware control software and the microflu-

idic biochip allows sensor data at intermediate checkpoints to

be used as feedback to make decisions about completed oper-

ations, and dynamically reconfigure the biochip and optimize

electrode actuation sequences for subsequent operations. The

proposed approach has been evaluated and its effectiveness

demonstrated for three representative protein bioassays.

REFERENCES

[1] H. Becker, “Microfluidics: a technology coming of age”, Medical Device

Technology, vol. 19, 2008.
[2] R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?”,

Microfluidics and Nanofluidics, vol. 3, pp. 245-281, 2007.
[3] F. Su and K. Chakrabarty, “High-level synthesis of digital microfluidic

biochips”, ACM J. Emerging Tech. in Comp. Sys., vol. 3, January 2008.
[4] E. Maftei et. al., “Routing-based synthesis of digital microfluidic

biochips”, Proceedings of the 2010 International conference on Compil-

ers, Architectures and Synthesis for Embedded Systems, pp. 41-50, 2010.
[5] T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware droplet

routing algorithm for the synthesis of digital microfluidic biochips”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 29, no. 11, pp. 1682-1695, November 2010.
[6] T.-W. Huang and T.-Y. Ho, “A two-stage ILP-based droplet routing

algorithm for pin-constrained digital microfluidic biochips”, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,
vol 30, no. 2, pp. 215-228, February 2011

[7] M. Iyengar and M. McGuire, “Imprecise and qualitative probability in
systems biology”, International Conference on Systems Biology, 2007.

[8] O. Levenspiel, “Chemical reaction engineering”, New York: Wiley, 1999.
[9] J. K. Park, S. J. Lee, and K. H. Kang, “Fast and reliable droplet transport

on single-plate electrowetting on dielectrics using nonfloating switching
method, J. Biomicrofluidics, no. 4, 2010

[10] J. Verheijen et. al., “Reversible electrowetting and trapping of charge:
model and experiments, ACS J. Langmuir, No. 15, pp. 66166620, 1999.

[11] E. Welch et. al., “Picoliter DNA sequencing chemistry on an
electrowetting-based digital microfluidic platform”, Biotech. J., vol. 6,
pp. 165-176, 2011.

[12] C. A. Mein et. al., “Evaluation of single nucleotide polymorphism typing
with invader on PCR amplicons and its automation”, Genome Res., vol.
10, pp. 330-343, 2000.

[13] Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design
and error recovery in digital microfluidic lab-on-chip”, ACM J. Emerging

Tech. in Comp. Sys., vol. 3, no. 11, August 2010.
[14] R. Evans et. al., “Optical detection heterogeneously integrated with a

coplanar digital microfluidic lab-on-a-chip platform”, Proc. IEEE Sensors

Conf., pp. 423-426, Oct. 2007.
[15] N. M. Jokerst et. al., “Progress in chip-scale photonic sensing”, IEEE

Trans. Biomedical Circuits and Sys., vol. 3, pp. 202-211, 2009.
[16] W. Bialek et. al., “Protein dynamics and reaction rates: mode-specific

chemistry in large molecules?”, Proceedings of the National Academy of

Sciences of the United States of America, vol. 85, pp. 5908-5912, 1988.
[17] Y. Luo, K. Chakrabarty, and T.-Y. Ho, “A cyberphysical synthesis

approach for error recovery in digital microfluidic biochips”, Proc. DATE,
pp. 1239-1244, 2012.

[18] R. Fair, A. Khlystov, V. Srinivasan, V. Pamula, and K. Weaver, “In-
tegrated chemical/biochemical sample collection, pre-concentration, and
analysis on a digital micro uidic lab-on-a-chip platform”, Lab-on-a-Chip:

Platforms, Devices, and Applications, Conf, page 5591, 2004.
[19] F. Su, K. Chakrabarty, and R. B. Fair, “Microfluidics-based biochips:

technology issues, implementation platforms, and design automation
challenges”, IEEE Transactions on Computer-Aided Design of Integrated

Circuits & Systems, vol. 25, pp. 211-223, February 2006.
[20] Y. Shin and J. Lee, “Machine vision for digital microfluidics”, Review

of Scientific Instruments, 2010.
[21] Y. Zhao and K. Chakrabarty, “Digital microfluidic logic gates and their

application to built-in self-test of lab-on-chip”, IEEE Transactions on

Biomedical Circuits and Systems, vol. 4, pp. 250-262, August, 2010.
[22] A. Furtado and R. Henry, “Measurement of greenuorescent protein

concentration in single cells by image analysis”, Analytical Biochemistry,
pp. 84-92, November 2002.

[23] S. Rodriguez-Cruz, J. Khoury, and J. Parks, “Protein fluorescence
measurements within electrospray droplets”, Journal of the American

Society for Mass Spectrometry, pp. 716-725, June 2001.
[24] M. Jebrail, and A. Wheeler, “Let’s get digital: digitizing chemical

biology with microfluidics”, Current Opinion in Chemical Biology, vol.
14, pp. 574-581, 2010.

[25] U. Resch-Genger et. al., “Quantum dots versus organic dyes as fluores-
cent labels”, Nature Methods, pp. 763-775, 2008

[26] R. Sedgewick, Algorithms in C: graph algorithms, Addison-Wesley,
Chapter 23, 2001.

[27] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing”, Science, vol. 220(4598), pp. 671-680, May 1983.

[28] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB placement with
obstacles based on sequence pair”, Proc. ISPD, pp. 26-31, 1997.

[29] L. Sha et. al., “An analytical algorithm for placement of arbitrarily sized
rectangular blocks”, Proc. DAC, pp. 602-608, 1985.

[30] A. Alon and U. Ascher, “Model and solution strategy for placement
of rectangular blocks in the Euclidean plane”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 3,
pp. 378-386, 1988.

[31] V. Ananthanarayanan and W. Thies, “Biocoder: a programming language
for standardizing and automating biology protocols”, Journal of Biolog-

ical Engineering, vol. 4, no. 1, 2010.
[32] F. Su and K. Chakrabarty, “Defect tolerance for gracefully-degradable

microfluidics-based biochips”, Proc. IEEE VLSI Test Symposium, pp. 321-
326, 2005.


