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Abstract: Sliding mode control with nonlinear interpolation in the boundary layer is proposed. 
A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its 
parameter is tuned by a fuzzy controller. The fuzzy controller that takes both the sliding 
variable and a measure of chattering as its inputs tunes the parameter of the modified sigmoid 
function. Owing to the decreased thickness of the boundary layer and the tuned parameter, the 
proposed method has superior tracking performance than the conventional linear interpolation 
method. 
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1. INTRODUCTION 

Sliding mode control is a robust nonlinear feedback 
control technique with the drawback of chattering. 
The most common method for solving the chattering 
problem is to introduce a boundary layer (BL) around 
the switching surface and to use continuous control 
inside the BL. This method, however, does not ensure 
the convergence of the state trajectory of the system to 
the sliding surface, and probably results in the 
existence of the steady-state error.  

An alternative way to solve the chattering problem 
is to use the fuzzy sliding mode controller (FSMC), 
which combines a fuzzy controller (FC) with the 
sliding mode controller (SMC). The nonlinear transfer 
characteristic of the FSMC can be made to piecewise 
S-shape or reverse S-shape depending on the shape of 
the membership functions or its location [1,2]. The 
advantage of the FSMC is that the control method 
achieves asymptotic stability of the closed–loop 
system [3]. Also, the FSMC requires fewer fuzzy rules 
than the FC does. Due to the similarity between the 
FC and the SMC, the SMC has been used to guarantee 
the stability and robustness of the FC systems [4]. 
Although the FSMC is an effective method, its 
drawback is that the fuzzy rules must be previously 
tuned by time-consuming trial-and-error procedures. 
Furthermore, how to create suitable fuzzy rules 

remain uncertain. To overcome this problem, Lin and 
Hsu [5] proposed self-learning fuzzy sliding mode 
control, which can automatically adjust the fuzzy rules 
by a tuning algorithm. Lu and Chen [6] developed a 
self-organizing FSMC to achieve rapid and accurate 
tracking control of a class of nonlinear systems. 
Berstecher et al. [1] proposed an adaptive FSMC to 
better cope with changing system dynamics, unknown 
model uncertainties, and disturbances. However, the 
works [1,5-6] require an additional adaptive algorithm 
to improve control performance, thus it is likely to 
make the system complex and time-consuming.        

In this paper, a modified sigmoid function (MSF), 
which is one of the reverse S-shaped functions, is 
proposed to interpolate nonlinearly in the BL and the 
parameter of the MSF is tuned by an FC as shown in 
Fig. 1. The fuzzy rules are employed to control the 
shape of the MSF by taking both the sliding variable, 
which is a measure of the distance to the sliding 
surface, and a measure of chattering as fuzzy input 
variables of the FC. This work has been motivated by 
the fact that the shape of the MSF can be made easily 
similar to the reverse S-shape transfer characteristic of 
the adaptive FSMC [1] and controlled simply by a 
single parameter. The sliding error of the proposed 
method is significantly reduced due to the narrowed 
virtual boundary layer (VBL) and the tuned shape of 
the MSF, which is the merit of the proposed method. 
Computer simulation examples using the proposed 
method for a DC motor and a nonlinear model are 
executed to show the performance of the proposed 
algorithm. 

 
2. SLIDING MODE CONTROL 

Consider a single-input second order system 
 

( ) ,x = f u d+ +x  (1) 
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Fig. 1. Configuration of the control systems. 
 

where the scalar x  is the output of interest, 
[ ]Tx x=x is the state vector, ( )f x  is an unknown 

function, and the scalar u  is the control input.                                       
We assumed that the function ( )f x  is  

 
ˆ( ) ( ) ( ),f f f= + ∆x x x  (2) 

 
where ˆ ( )f x and ( )f∆ x  are the estimation of 

( )f x  and the model uncertainty, respectively. The 
model uncertainty and the disturbance are assumed to 
be bounded as 
 

ˆ( ) ( ) ( ) ( ) .f f f F and d D∆ = − ≤ ≤x x x x  (3) 

 
Let the time varying sliding surface s  be 

expressed in the state-space 2R  by ( ) 0s t =x; as  
 

( ) ( ) , 0ds t e e e
dt

= + = + >λ λ λx;       (4) 

 
and define the tracking error - [ ]Td e e= =e x x  

where [ ]Td d dx x=x  is the desired state vector. The 
control input to allow the state x  to track a specific 
time-varying desired state dx  in the presence of 
model uncertainty on ( )f x  is made to satisfy the 
following sliding condition [7]: 
 

21
- | |, 0.

2
d

s s
dx

≤ ≥η η        (5) 

 
Let û  be the nominal control law that can be 

interpreted as the best estimate, computed by 0s =  

with known information ˆ ,f f=  then it is found as 
follows: 

 
ˆˆ .du x e f= − −λ  (6) 

 
Thus, the control law that satisfies the sliding mode 
condition in (5) can be obtained as 
 

ˆ su u u= +  
( )su ksgn s= − , 
1, 0,

( )
1, 0,

if s
sgn s

if s
+ >

= − <
 (7) 

 
where .k F D≥ + +η   

A certain disadvantage of this method is the drastic 
changes of the control input, which leads to high 
stress for the plant to be controlled. However, this can 
be avoided by means of the BL near the switching line, 
which smoothes out the control behavior and ensures 
that the system states remain within this layer  
 

}{( ) , ( ) , 0B t s ;t= ≤ >φ φx x , (8) 

 
where φ  is the boundary layer thickness (BLT).   
Therefore, we substitute the signum function sgn( )s  
in (7) by saturation function ( / )sat s φ . 
 

ˆ ( / )u u k sat s φ= −  (9) 
 

with 
1

( )
,

x if x
sat x

sgn(x) otherwise
 <= 


 and  k = k -φ .  

Also, the sliding condition in (5) is modified as 
follows; 
 

21
( ) | |, 0.

2
d

s - η s η
dx

≤ ≥φ       (10) 

 
From (6), (7), and (10), the filter function follows 

[7] 
 

( ( ) ( )), 0d
ks βs f O β= − + −∆ + >ε
φ

x  (11) 

 
and ( )O ε  represents a term of relatively small 
magnitude caused by using a desired state instead of 
the actual state vector in (11). This filter with 
bandwidth β  removes the high-frequency chattering 
to give a smooth s .  
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Table 1. The system parameters of the motor. 

 
 

3. FUZZY SLIDING MODE CONTROL  

A FC that uses the sliding variable s  as the input 
to calculate the control variable u  belongs to the 
family of FSMCs. In [4], the FC is used to interpolate 
in BL. Due to the strictly monotonous decreasing u  
as s  increases in the BL, the shape of the nonlinear 
transfer characteristic of the FSMC becomes S-shaped 
depending not only on the values of u , but also on 
the membership functions of the rule antecedents, 
consequents and defuzzification method. Similar to 
the SMC with BL, the rules are, in general, 
conditioned such that above the switching line a 
negative control output is generated with a positive 
one below it. The pattern of the control can be 
expressed by the numerous rules in Table 1, where NB 
denotes Negative Big, NM Negative Medium, NS 
Negative Small, Z Zero, PB Positive Big, PM Positive 
Medium, and PS Positive Small whose meanings are 
defined by corresponding membership functions. 

Due to similarity between FCs and SMCs [2], we 
consider the following fuzzy sliding control law: 
 

ˆ fu u u= + , 

( , , ) ( / ),f fuzzyu k e e sat s= − ⋅λ φ  (12) 
 

where ( , , )fuzzyk e e λ is the absolute value of the 
control output of the FC. The nonlinear transfer 
characteristics of the above fuzzy rules, of which 
input and output membership functions are shown in 
Fig. 2, have a reverse S-shaped piecewise 
configuration as drawn in the same figure. The graph 
represents the control value fu  against s  after the 
center-of-sums defuzzification. 
 
4. NONLINEAR INTERPOLATION USING A 

SIGMOID FUNCTION  

In order to eliminate the chattering caused by the 
signum function in (7) we introduce a MSF, which has 
the similar shape to the nonlinear transfer 
characteristics of the FSMC shown in Fig. 2(c), to 

replace the signum function when the states of the 
system get into the BL. The MSF used in this paper is  

 

( ) -αx
2f x = - +1,

1+ e
 (13) 

 
where α  is a constant that controls the shape of the 
function. Thus, the new control law inside the BL is 
expressed as follows;  
 

(- )s -αs
2u = k +1 .

1+ e
′  (14)  

 
The nonlinear transfer characteristics of the SMC with 
the MSF inside the BL depend on the parameter α  
of the MSF. A FC is employed to tune the parameter 
α  in (14) in order to control the shape of the MSF. 
The inputs of the FC are the sliding variable s  and 
the measure of chattering Γ , which is defined as 
 

NB NS Z PS PB

s

µ

0

1

−Φ 2
Φ

−
2
Φ Φ

(a) Input s. 
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µ

0

1
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(b) Output su . 
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-k

0

k

s
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(c) Nonlinear transfer characteristics of the FSMC. 

 
Fig. 2. The Membership functions for the fuzzy sets.  

Rule R1:  If  s  is NB then u  is PB 
Rule R2:  If  s  is NM then u  is PM 
Rule R3:  If  s  is NS then u  is PS 
Rule R4:  If  s  is Z then u  is Z 
Rule R5:  If  s  is PS then u  is NS 
Rule R6:  If  s  is PM then u  is NM 
Rule R7:  If  s  is PB then u  is NB 
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Table 2. A set of the fuzzy rules to control the 
parameter of the MSF. 

IF s  is zero and Γ is small THEN ∆α  is PB

IF s  is zero and Γ is big THEN ∆α  is PS

IF s  is small and Γ is small THEN ∆α  is PB

IF s  is small and Γ is big THEN ∆α  is PS

IF s  is big  THEN ∆α  is PS
 

.s=Γ  (15)  
 

From these inputs, the FC computes on-line the 
parameter of the MSF on the principles of the 
following fuzzy rules:   
 
If the sliding variable is small and chattering is not 
occurring, increase parameter α . 
If chattering is occurring, decrease parameter α .  
regardless of the magnitude of the sliding variable. 
 
The control rules on this principle are expressed in 
Table 2, where we define +0αα Δα.  A parameter 
α  is assumed to be in the following range:   
 

< < ,0 Γα α α  (16) 
 

where 0α  is the starting value of the parameter α  
and Γα  is the maximum value of the parameter 
before chattering occurs. 

When the tuning of the parameter α  is finished by 
the FC, the sliding control with MSF will be almost 
saturated in the wider range than the linear 
interpolation as shown in Fig. 3. Therefore, we can 
define the virtual boundary layer (VBL), B (t)′  as 
follows: 
 

}{( ) , ( ) .B t s ;t′ ′= ≤ φx x  (17) 

 
where ′φ > 0  is determined by elongating the MSF 
vertically as illustrated in Fig. 3. This adjustment is 
accomplished by multiplying the MSF by / ck k′ ′ ,  
where  
 

k = k -′ ′φ  (18) 
 

and ck ′  is set to 99.9% of k′  in this work. 
The reason for this adjustment is that the candidate 

of the switching control su′  in (14) converges to 
k ′−  in (18) only when s  goes to infinity because of 

the characteristics of the MSF. Since the amount of 

adjustment is very small, the effect can be ignored. 
Now, the new control law becomes 
 

( ) , ,

( ),

-αs
cs

-2 kk +1 s
ku 1+ e

k sgn s                            

 ′
′ ′< ′=

 ′−

φ
 (19) 

ˆ su u u= + . (20) 
 

From (4) and (11), the structure of the error 
dynamics can be summarized as in Fig. 4 [1]. In this 
figure, the 2nd order filter function can be rewritten 
as 
 

( ) ( )1 df O
e

p p
+

= ⋅
′+ +

∆ ε
λ β

x
. (21) 

 

-Φ -Φ' 0 Φ' Φ

0

s

us

tuned MSF by FC
BL of the linear interpolation

 

Φ' Φ
s

us

 
Fig. 3. BL of the linear interpolation and VBL after 

tuning. 
 

( ) ( )df o−∆ + εx 1
p +β

s 1
p + λ

e

 
Fig. 4. Structure of the closed-loop dynamics. 



Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer 527 
 

When ( )dk x  is assumed to be dominant to ′φ  or 
φ  it follows that  
 

( ) ( )
.d dk x - k x -

> β=
′

′
′
φ φ

β
φ φ

 (22) 

 
Since ′β  is greater than β  the error dynamics 

(20) have a wider bandwidth than with β , which 
results in improved error reduction by forcing the pole 
in the more negative direction on the real axis. Thus, 
we can reduce the effect of uncertainty, 

( )df∆ x without chattering.  
Finally, we have the following design procedure.  
 

● Procedure 
Step 1: Choose k  in (7).  
Step 2: Calculate the parameter 0α  at the given  
BLT of linear interpolation. 
Step 3: Obtain the parameter ∆α from the FC. 
Step 4: Adjust the switching control su  in (19).  
Step 5: Calculate the sliding mode control u  from  
(20).  
 

5. STABILITY 

To design a stable SMC using MSF inside the BL, 
we must determine proper values of û  and k ′  in 
(19). First, the approximation of control input, û  
would be obtained from (6). Next, we can choose the 
value of k  by the bounds on f  and d , and k ′  is 
obtained from (18). 

Now, the following theorem ultimately gives the 
SMC system with MSF finiteness. 

 
Theorem: For system (1), the proposed SMC with 

the MSF inside the BL makes the system trajectories 
ultimately bounded under the region given in (17), if 
we choose k′  as 
 

- .F Dk ′≥ + +′ η φ  (23) 
 

Proof: Define the Lyapunov function 
 

21 .
2

V s=  (24) 
 

Then, when s ′> φ , the derivative V  along the 
system trajectory is 
 

( )

( )

ˆ( )

d

k sgn s

V s s

s f d u e

s f f d

x

′

=

= + + − +

= − + +

λ  (25) 

where (4), (6), and ˆ ( )u u k sgn s′= −  are used. Thus, 
 

( )

( ,

V s F D k s

s

′≤ + −

′≤ − )η − φ
 (26) 

 
where (24) is utilized. The (26) satisfies the sliding 
condition, 21 ( ) ( ) | |

2
d s ,t s
dx

′φ≤ ηx  - -   and it implies 

that s  is bounded by s < ′φ . Therefore, using the 

value k′  of (21), we always have the bounded 
trajectories in the region of ( )B t′  in (17).  
 

6. ILLUSTRATIVE EXAMPLES 

Example 1: A simplified model to simulate the 
dynamics of the DC motor has been developed using 
the classical equations [8]. A block diagram of the DC 
motor is shown in Fig. 5. 
 

1 2

2 2 1( ) ( ) .f f m b m
a

x x
JR K L RK K K K

x x x v
JL JL JL

=
+ +

= − − +
 

(27) 
 

where [ ( ), ( )]Tx w t w t= , ( )w t  is the angular velocity, 

av  is the input voltage that drives the angular 
position output, J  is the total moment of inertia 
reflected in the motor axis, dT  is the load 
disturbances and fK  is the viscous friction. The 

constants , ,m bK K R  and L  given in Table 3 are 
the electrical constants of the motor. The sampling 
rate and the slope λ  of the switching line are 
0.01s  and 5, respectively. Control law in (9) with 
BLT 0.5=φ  is  
 

( ) - ( / ).-14x - 41x 5eu 5 sat s 0.5
10

+
=  (28) 

 
Now, the MSF is used to interpolate nonlinearly 

within the BL. The control law in (19) is used as 
 

( ) ( ) .-αs
-14x - 41x 5e -2 1u 5 +1

10 0.9991+ e
+

= −   (29) 

 
To evaluate the nonlinear interpolation in the face 

of disturbance, we simulate the response to a step 
command 1refw =  with a disturbance 0.1dT Nm=  
between 5t =  and 10t = seconds. The 
corresponding step response and control input are 
plotted in Figs. 6 and 7, respectively. 
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Fig. 5. DC motor model. 
 
Table 3. The electrical constants of the motor used in 

the simulation experiment 1. 
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Fig. 6. Step response. 
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Fig. 7. Control input. 
 

Example 2: A simplified nonlinear model of an 
underwater vehicle can be written as [7] 

0 1 2 3 4 5 6
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Time[sec]

s-
tra
jec
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s

proposed method
linear interpolation
FSMC

 
Fig. 8. s-trajectories with time-varying BLs. 

 

 

, , ,

, , ,

( ) , ( ),

ˆ ˆ, , ,

ˆ , , ,

( )

max

min

d

mx + cx x = u,

cx x ux = - + 1 m 5 0.5 c 1.5
m m

cx x b1f = - b = β= = 5
m m b

m = 3+1.5sin x t c = 1.2+0.2sin x t

x x
f = - F = 0.3x x c = 1

5

m = 5 η= 0.1 λ= 10

x = sin πt/2 ,

≤ ≤ ≤ ≤

   (30) 

 
where x  defines position, u  is the control input, 
m  is the mass of the vehicle, c  is a drag coefficient, 
and the sampling rate is 0.002s . The boundary φ  is 
varying and the control law of (9) for this example is  
 

du = cx x + x - 10e - k sat(s/ )φ  (31) 
 

with  
 

0.3 0.1 5 5( 5 1) | 10 |,
10( ) 10 5 ( ) ,

5
10 10( ) ( ) / 5, .

55

d

d d

d d

k x x x e

k x k x k k

k x k x k k

= + + − −

≥ ⇒ + = = − /β,

≤ ⇒ + = = −

φ φ φ φ

φ φφ φ β

 
When the MSF is used to interpolate in a varying 
boundary layer, the control law of (19) is  

 

,( )
c

d -αs '
-2 ku = cx x + x - 10e - k +1

1+e k
′′  (32) 

R  Ohm2.0  

L  Henry0.5  

,m bK K  0.1  

fK  Nm0.2  

J  2 20.02 /kg m s⋅  

A
m

p
lit

u
d
e
 

s
-
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a
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c
to

ri
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Fig. 9. Boundary layer thickness ( 0)>φ . 
 

where α  is the output of the FC.   
The proposed method is compared with two 

different types of interpolations, the conventional 
FSMC in section 3 and the SMC with linear 
interpolation in the BL. In Figs. 8 and 9, the s-
trajectories and BLT of the above two cases and the 
proposed methods are shown, respectively. One can 
see that the s-trajectories of the proposed method are 
significantly reduced because of the narrowed BL.  
 

6. CONCLUSIONS 

The MSF has been employed for nonlinear 
interpolation within the BL as opposed to the 
conventional sliding mode controller with linear 
interpolation in the fixed BL or in the variable BL. 
After the operating range of the parameter of the MSF 
is updated on-line, the parameter is tuned by the FC. 
Due to the wide bandwidth of the error filter function, 
we can reduce the steady state error by the proposed 
SMC with the MSF under the system uncertainties 
and disturbances. By computer simulations, the 
proposed controller has shown to produce less 
significant steady-state errors than the conventional 
ones.  
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