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Error-Related EEG Potentials Generated During
Simulated Brain–Computer Interaction
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Abstract—Brain–computer interfaces (BCIs) are prone to errors
in the recognition of subject’s intent. An elegant approach to im-
prove the accuracy of BCIs consists in a verification procedure di-
rectly based on the presence of error-related potentials (ErrP) in
the electroencephalogram (EEG) recorded right after the occur-
rence of an error. Several studies show the presence of ErrP in
typical choice reaction tasks. However, in the context of a BCI, the
central question is: “Are ErrP also elicited when the error is made
by the interface during the recognition of the subject’s intent?” We
have thus explored whether ErrP also follow a feedback indicating
incorrect responses of the simulated BCI interface. Five healthy
volunteer subjects participated in a new human–robot interaction
experiment, which seem to confirm the previously reported pres-
ence of a new kind of ErrP. However, in order to exploit these ErrP,
we need to detect them in each single trial using a short window
following the feedback associated to the response of the BCI. We
have achieved an average recognition rate of correct and erroneous
single trials of 83.5% and 79.2%, respectively, using a classifier
built with data recorded up to three months earlier.

Index Terms—Anterior cingulate cortex (ACC), brain–com-
puter interface (BCI), electroencephalogram (EEG), error-related
potentials (ErrP), inverse models, presupplementary motor area
(pre-SMA), single-trial classification.

I. INTRODUCTION

B
RAIN–COMPUTER INTERFACEs (BCIs), as any other
interaction modality based on physiological signals and

body channels (e.g., muscular activity, speech, and gestures), are
prone to errors in the recognition of subject’s intent, and those
errors can be frequent. Indeed, even well-trained subjects rarely
reach 100% of success. A possible way to reduce errors consists
in a verification procedure whereby each output consists of two
opposite trials, and success is required on both to validate the
outcome [1]. Even if this method greatly reduces the errors, it
requires much more mental effort from the subject and reduces
the communication rate. In contrast to other interaction modal-
ities, a unique feature of the “brain channel” is that it conveys
both information from which we can derive mental control com-
mands to operate a brain-actuated device as well as information
about cognitive states that are crucial for a purposeful interac-
tion, all this on the millisecond range. One of these states is the
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awareness of erroneous responses, which a number of groups
have recently started to explore as a way to improve the per-
formance of BCIs [2]–[5]. Since the late 1980s, different phys-
iological studies have shown the presence of error-related po-
tentials (ErrP) immediately following the occurrence of a per-
ceived error [6]–[8]. Apart from Schalk et al. who investigated
ErrP in real BCI feedback, most of these studies show the pres-
ence of ErrP in typical choice reaction tasks [3], [4], [6], [7]. In
this kind of tasks, the subject is asked to respond as quickly as
possible to a stimulus and ErrP (sometimes referred to as “re-
sponse ErrP”) arise following errors due to the subject’s incor-
rect motor action (e.g., the subject pressed a key with the left
hand when he/she should have responded with the right hand).
The main components here are a negative potential showing up
80 ms after the incorrect response followed by a larger posi-
tive peak showing up between 200 and 500 ms after the incor-
rect response. More recently, other studies have also shown the
presence of ErrP in typical reinforcement learning tasks where
the subject is asked to make a choice and ErrP (sometimes re-
ferred to as “feedback ErrP”) arise following the presentation
of a stimulus that indicates incorrect performance [8]. The main
component here is a negative deflection observed 250 ms after
presentation of the feedback indicating incorrect performance.
Finally, other studies reported the presence of ErrP (that we will
refer to as “observation ErrP”) following observation of errors
made by an operator during choice reaction tasks [9], where the
operator needs to respond to stimuli. As in the feedback ErrP,
the main component here is a negative potential showing up
250 ms after the incorrect response of the operator performing
the task. ErrP are most probably generated in a brain area called
anterior cingulate cortex (ACC), which is crucial for regulating
emotional responses [8]. An important aspect of the first two de-
scribed ErrP is that they always follow an error made by the sub-
ject himself. First, the subject makes a selection, and then ErrP
arise either simply after the occurrence of an error (choice reac-
tion task) or after a feedback indicating the error (reinforcement
learning task). However, in the context of a BCI or human–com-
puter interaction in general, the central question is: “Are ErrP
also elicited when the error is made by the interface during the
recognition of the subject’s intent?” In order to consider the full
implications of this question, let us imagine that the subject’s
intent is to make a robot reach a target to the left. What would
happen if the interface failed to recognize the intended com-
mand and the robot started turning in the wrong direction? Are
ErrP still present even though the subject did not make any error
but only perceived that the interface was performing wrongly?

The objective of this study is to investigate how ErrP could
be used to improve the performance of a BCI. Thus, we will
first explore whether or not ErrP also follow a feedback indi-
cating incorrect responses of the simulated BCI interface and no
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Fig. 1. Exploiting ErrP in a brain-controlled mobile robot. The subject receives
visual feedback indicating the output of the classifier before the actual execution
of the associated command (e.g., “turn left”). If the feedback generates an ErrP
(left), this command is simply ignored and the robot will stay executing the
previous command. Otherwise, the command is sent to the robot (right).

longer errors of the subject himself. If ErrP are also elicited in

this case, then we could integrate them in a BCI in the following

way as shown in Fig. 1: after translating the subject’s intention

into a control command, the BCI provides a feedback of that

command, which will be actually executed only if no ErrP fol-

lows the feedback. This should greatly increase the reliability

of the BCI as we will see later. Of course, this new interaction

protocol depends on the ability to detect ErrP no longer in aver-

ages of a large number of trials [2], but in each single trial using

a short window following the feedback that shows the response

of the classifier embedded in the BCI. In this paper, we report

new experimental results with five volunteer subjects during a

simple human–robot interaction that confirm the previously re-

ported existence of a new kind of ErrP [5], which is satisfactorily

recognized in single trials. The new protocol does not exhibit the

two main characteristics of an oddball paradigm, namely, there

is no habituation of the subject to one of the stimuli and, in case

of an error rate of 50%, there is no longer a frequent and infre-

quent stimulus. Furthermore, using a well-known inverse model

called sLORETA [10] that noninvasively estimates the intracra-

nial activity from scalp electroencephalogram (EEG), we show

that the main focus of activity at the occurrence of ErrP seems to

be located in the presupplementary motor area (pre-SMA) and

in the ACC, as expected.

II. EXPERIMENTAL SETUP

To test the presence of ErrP after a feedback indicating errors

made by the interface in the recognition of the subject’s intent,

we have simulated a human–robot interaction task where the

subject has to bring the robot to targets 2 or 3 steps either to

the left or to the right. This virtual interaction is implemented

by means of a green square cursor that can appear on any of

20 positions along a horizontal line. The goal with this pro-

tocol is to bring the cursor to a target that randomly appears

either on the left (blue square) or on the right (red square) of

the cursor. The target is no further away than three positions

from the cursor (symbolizing the current position of the robot).

Contrarily to the protocol used by Ferrez et al. [5] and Buttfield

et al. [12], this new protocol is more realistic and engaging and

prevents the subject from habituation to one of the stimuli since

the cursor reaches the target within a small number of steps.

Fig. 2 illustrates the protocol with the target (black) initially

positioned two steps away on the left-hand side of the cursor

(gray). An error occurred at step 3) so that the cursor reaches

Fig. 2. Illustration of the protocol. (1) Target appears two steps on the left-hand
side of the cursor (green). (2) Subject pressed the left key and the cursor moves
one step to the left. (3) Subject still pressed the left key, but the system moves
the cursor in the wrong direction. (4) Correct move to the left, compensating
the error. (5) Cursor reaches the target. (6) New target appears three steps on
the right-hand side of the cursor.

the target in five steps. To isolate the issue of the recognition of

ErrP out of the more difficult and general problem of a whole

BCI where erroneous feedback can be because of the nonop-

timal performance of both the interface (i.e., the classifier em-

bedded into the interface) and the user himself, in the following

experiments, the subject delivers commands manually and not

mentally. That is, he/she simply presses a left or right key with

the left or right hand. In this way, any error feedback is only

because of a wrong recognition of the interface of which is the

subject’s intention. Five volunteer healthy subjects participated

in these experiments. After the presentation of the target, the

subject pressed the corresponding key until the cursor reached

the target. The system moved the cursor 1 s after the key press

(to avoid movement-related artifacts) with an error rate of 20%;

i.e., at each step, there was a 20% probability that the cursor

moved in the opposite direction. After the cursor reached the

target, the word “success” appeared above the target, and a new

target was randomly selected by the system. If the cursor did not

reach the target after ten steps, the word “failed” appeared under

the target and a new target was selected. Subjects performed ten

sessions of 3 min on two different days, corresponding to 75

single trials per session. The delay between the two days of mea-

surements was about three months.

EEG potentials were acquired with a portable system

(Biosemi ActiveTwo) by means of a cap with 64 integrated

electrodes covering the whole scalp uniformly. The sampling

rate was 512 Hz and signals were measured at full direct

current (dc). Raw EEG potentials were first spatially filtered by

subtracting from each electrode the average potential (over the

64 channels) at each time step. The aim of this rereferencing

procedure is to suppress the average brain activity, which can

be seen as underlying background activity, so as to keep the

information coming from local sources below each electrode.

Then, we applied a 1–10-Hz bandpass filter as ErrP are known

to be a relatively slow cortical potential [11]. Finally, EEG

signals were subsampled from 512 to 64 Hz (i.e., we took one

point out of eight) before classification, which was entirely

based on temporal features. Indeed, the actual input vector

for the statistical classifier described below is a half-second

window starting 150 ms after the feedback and ending 650 ms

after the feedback for channels “FCz” and “Cz.” The choice

of these channels follows the fact that ErrP are characterized

by a fronto–central distribution along the midline. Thus, the



FERREZ AND DEL R. MILLÁN: ERROR-RELATED EEG POTENTIALS GENERATED DURING SIMULATED BRAIN–COMPUTER INTERACTION 925

Fig. 3. (Left) Average EEG for the difference error–minus–correct at channel “FCz” for the five subjects plus the grand average of them for the first day (top) and
for the second day (bottom) with an error rate of 20%. Feedback is delivered at time 0 s. A first positive peak shows up after 200 ms after the feedback. Negative
and positive peaks show up about 250 and 320 ms after the feedback, respectively. A second broader negative peak occurs about 450 ms after the feedback. (Right)
Scalp potential topographies, for the grand average EEG of the five subjects, at the occurrence of the peaks. Small filled circles indicate positions of the electrodes
(frontal on top), “Cz” being in the middle.

dimensionality of the input vector is 64; i.e., concatenation of

two windows of 32 points (EEG potentials) each. The two dif-

ferent classes are recognized by a Gaussian classifier trained to

classify single trials as “correct” or “error” as in [5]. The output

of the statistical classifier is an estimation of the posterior class

probability distribution for a single trial; i.e., the probability that

a given single trial belongs to class “correct” or class “error.”
In this statistical classifier, every Gaussian unit represents a

prototype of one of the classes to be recognized, and we use

several prototypes per class. During learning, the centers of the

classes of the Gaussian units are pulled towards the trials of the

class they represent and pushed away from the trials of the other

class. No artifact rejection algorithm (for removing or filtering

out eye or muscular movements) was applied and all trials

were kept for analysis. It is worth noting, however, that after a

visual a posteriori check of the trials we found no evidence of

muscular artifacts that could have contaminated one condition

differently from the other (see also Section III-E).

As mentioned, this protocol is more realistic and engaging

and avoids some drawbacks. Furthermore, this study is a new

one and is more complete than the one reported in [5] and [12]

even if we performed the same kind of investigations to validate

our new protocol [5]–[12]. Indeed, we have a new graphical

interface, more subjects took part in the experiments, and we

now record EEG with 64 electrodes. This gives us access to

critical electrode “FCz” and allow us to successfully use inverse

models to estimate intracranial activity.

III. EXPERIMENTAL RESULTS

A. Error-Related Potentials

With this protocol, it is first necessary to check whether

or not ErrP are evoked also by errors of the interface fol-

lowing a correct subject response. Fig. 3 shows the difference

error–minus–correct for channel “FCz” for the five subjects

plus the grand average of the five subjects for the two days

of recordings. A first positive peak shows up 200 ms after

the feedback. Negative and positive peaks can be seen 250

and 320 ms after the feedback, respectively. Finally, a second

broader negative peak occurs about 450 ms after the feedback.

Fig. 3 also shows the scalp potentials topographies, for the

grand average EEG of the five subjects, at the occurrence

of the four previously described peaks: a first fronto–central

positivity appears after 200 ms, followed by a fronto–central

negativity at 250 ms, a fronto–central positivity at 320 ms,

and a fronto–central negativity at 450 ms. All five subjects

show very similar ErrP time courses whose amplitudes slightly

differ from one subject to the other. It is important to note here

that, even if the delay between the two days of recordings was

about three months, potentials as well as scalp topographies
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Fig. 4. Talairach slices of localized activity for the grand average of the five subjects for the first day of recording at the occurrence of the four peaks described
in Section III-A. Supplementary motor cortex and ACC are systematically activated. Furthermore, for the second positive peak (320 ms) and the second negative
peak (450 ms) parietal areas are also activated. This parietal activation could reflect the fact that the subject is aware of the error.

are very similar for both days of recordings. These experi-

ments seem to confirm the existence of a new kind of ErrP

that, for convenience, we call “interaction ErrP.” The general

shape of this ErrP is quite similar to the shape of the response

ErrP in a choice reaction task, whereas the timing is similar

to the feedback ErrP of reinforcement learning tasks and to

observation ErrP. As in the case of response ErrP, interaction

ErrP exhibit a first sharp negative peak followed by a broader

positive peak. However, interaction ErrP are also characterized

by a second negative peak that does not appear in response

ErrP. Interaction ErrP are clearly different from both feedback

and observation ErrP. Indeed, feedback and observation ErrP

are only characterized by a small negative deflection 250 ms

after the feedback and no other components are reported. We

report three other clear components and, furthermore in Fig. 3,

it appears that the 250-ms component is not the main ErrP

component. Some subjects only show a small 250-ms negative

component whereas the 320-ms positive peak and the 450-ms

negative peak have large amplitudes.

B. Estimation of Intracranial Activity

Estimating the neuronal sources that generate a given po-

tential map at the scalp surface (EEG) requires the solution

of the so-called inverse problem. This inverse problem is al-

ways initially undetermined, i.e., there is no unique solution

since a given potential map at the surface can be generated by

many different intracranial activity maps. The inverse problem

requires supplementary a priori constraints in order to be uni-

vocally solved. The ultimate goal is to unmix the signals mea-

sured at the scalp and to attribute to each brain area its own

estimated temporal activity. The sLORETA inverse model [10]

is a standardized low-resolution brain electromagnetic tomog-

raphy. This software was used as a localization tool to esti-

mate the focus of intracranial activity at the occurrence of the

four ErrP peaks described in Section III-A. Fig. 4 shows Ta-

lairach slices of localized activity for the grand average of the

five subjects for the first day of recording at the occurrence of the

four peaks. As expected, the areas involved in error processing,

namely, the pre-SMA (Brodmann area 6) and the rostral cingu-

late zone (RCZ; Brodmann areas 24 and 32) are systematically

activated [8], [13]. Indeed, for the first positive peak (200 ms

after the feedback), the focus of activity is located at 0 mm,

5 mm, and 50 mm. The best match is Brodmann

area 24 (ventral anterior cingulate cortex). For the first negative

peak, (250 ms after the feedback), the focus is at 0 mm,

0 mm, and 40 mm and the best match is again Brod-

mann area 24. For the second positive peak (320 ms after the

feedback), the focus is at 0 mm, 5 mm, 50 mm

and the best match is in this case Brodmann area 32 (dorsal an-

terior cingulate cortex). Finally, for the second negative peak

(450 ms after the feedback), the focus is on Brodmann area 6

(pre-SMA) at 0 mm, 10 mm, and 55 mm.

For the second positive peak (320 ms) and the second negative

peak (450 ms), parietal areas starts to be also activated. These

associative areas (somatosensory association cortex; Brodmann

areas 5 and 7) could be related to the fact that the subject be-

comes aware of the error. It has been proposed that the positive

peak generated in a reaction task was associated with conscious

error recognition [14]. In our case, activation of parietal areas

about 300 ms after the feedback agrees with this hypothesis.

C. Single-Trial Classification

To explore the feasibility of detecting single-trial erroneous

responses, we have done a tenfold cross-validation study where

the testing set consists of one of the recorded sessions. In this

way, testing is always done on a different recording session to

those used for training the model. Table I reports the recognition

rates (mean and standard deviations) for the five subjects plus

the average of them for both days of recordings. This table also

shows the recognition rates when classifying data of the second

day using a classifier built with all data of the first day. The

different hyperparameters—i.e., the learning rates of the cen-

ters and diagonal covariance matrices, number of prototypes,

and common/single covariance matrices for each class—were

chosen by model selection in the training sets. Regarding the

learning rates, usual values were to for the centers

and to for the variances, while the usual number of

prototypes was rather small (from 2 to 4). These results of the

cross validations show that single-trial recognition of erroneous

and correct responses is above 82% for both days. More impor-

tantly, classification using a classifier built with data recorded up

to three months earlier show similar results (79.3% and 83.5%
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TABLE I
PERCENTAGES (MEAN AND STANDARD DEVIATIONS) OF CORRECTLY RECOGNIZED ERROR TRIALS (E) AND CORRECT TRIALS (C) FOR THE FIVE SUBJECTS AND

THE AVERAGE OF THEM FOR BOTH DAYS PERFORMING A TENFOLD CROSS VALIDATION AND FOR THE SECOND DAY, USING A CLASSIFIER BUILT WITH

DATA OF THE FIRST DAY

Fig. 5. (Left) Average EEG for the difference error–minus–correct at channel “FCz” for the five subjects plus the grand average of them with an error rate of
50%. Feedback is delivered at time 0 s. The same potentials as in Fig. 3 can be clearly seen, only the amplitudes are slightly smaller. (Right) Scalp potentials
topographies, for the grand average EEG of the five subjects, at the occurrence of the peaks.

for error and correct trials, respectively). This stability is in ac-

cordance with the stability of the potentials described previ-

ously. Beside the crucial importance to integrate ErrP in the

BCI in a way that the subject still feels comfortable, for ex-

ample, by reducing as much as possible the rejection of actually

correct commands, a key point for the exploitation of the auto-

matic recognition of interaction errors is that they translate into

an actual improvement of the performance of the BCI. Indeed,

as previously shown [5], the integration of error potentials de-

tection theoretically leads to an increase of more than 70% of

performance expressed in terms of bit rate.

D. ErrP and Oddball N200 and P300

Because our protocol is quite similar to an oddball paradigm,

the question arises whether the potentials we describe are simply

oddball N200 and P300. An oddball paradigm is characterized

by an infrequent or especially significant stimulus interspersed

with frequent stimuli. The subject is used to a certain stimulus

and the occurrence of an infrequent stimulus generates a nega-

tive deflection (N200) about 200 ms after the stimulus followed

by a positive peak (P300) about 300 ms after the stimulus. Our

protocol may look similar to an oddball paradigm in the sense

that the cursor usually moves in the correct direction, and a step

in the wrong direction is the infrequent stimulus. To check this

issue, we have run a series of experiments where the interface

executed the subject’s command with an error rate of 50% and,

so, error trials are no longer less frequent than correct trials.

Analysis of the ErrP for the five subjects at channel “FCz” using

error rates of 20% and 50% show no difference between them

except that the amplitude of the potentials are smaller in the case

of an error rate of 50%, but the time course remains the same as

shown in Fig. 5. This is in agreement with all previous findings

on ErrP that show that the amplitude is directly proportional to

the error rate. We can conclude then that, while we cannot ex-

clude the possibility that N200 and P300 contributes to the po-

tentials in the case of an error rate of 20%, the oddballs N200

and P300 are not sufficient to explain the reported potentials.

E. Ocular Artifacts

In the reported experiments, subjects look at the cursor,

awaiting its movement after they pressed the key corresponding

to the target. After the feedback, the subject gets aware of the

correct or erroneous response and he/she will shift gaze to the

new position of the cursor, so that there is a gaze shift in every

single trial. Nevertheless, it is possible that the subject looks

at the target rather than the cursor. Consequently, there will be

a gaze shift only after erroneous trials or, in any case, a larger

gaze shift in erroneous trials. The statistical classifier could,

therefore, pick those gaze shifts since several prototypes per

class were used. To demonstrate that there is no systematical

influence of gaze shifts on the presented ErrP as well as on

classification results, we have calculated the different averages

of the single trials with respect to the side of the target: left
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Fig. 6. Averages of the single trials at channel “FCz” with respect to the side where the target appeared for the five subjects and the average of them. There are
four cases: (a) correct trials when the target appeared on the left-hand side, (b) correct trials with the right-hand side, (c) erroneous trials with the left-hand side,
and (d) erroneous trials with the right-hand side. The left and right correct averages as well as the left and right erroneous averages are very similar whereas the
left correct and erroneous as well as the right erroneous and correct are very different. This probably excludes any artifacts due to gaze shifts.

correct, right correct, left error, right error. Fig. 6 shows these

four averages at channel FCz. Fig. 6(a) shows the average of

correct single trials when the target appeared on the left for

the five subjects and the average of them. Fig. 6(b) shows the

average of correct single trials with respect to the right-hand

side. Fig. 6(c) and (d) shows the average of erroneous trials with

respect to the left- and right-hand sides, respectively. The left

and right correct averages as well as the left and right erroneous

averages are very similar whereas the left correct and erroneous

as well as the right correct and erroneous are very different; so it

appears that there is no systematical influence of gaze shifts on

the reported potentials. Eye blinks are another potential source

of artifacts. Indeed, it is conceivable that subjects may blink

more frequently after one of the two conditions, and so the

classifier could partly rely on eye blinks to discriminate error

and correct trials. However, the scalp topographies of Fig. 3

show that the three ErrP components do not have a frontal

focus, which would be expected in blink related potentials.

Furthermore, we checked the different prototypes used for clas-

sification, and all of them have the shape of the ErrP shown in

Fig. 3. It seems clear that the frontal foci present in some scalp

topographies are generated by different phenomena than those

responsible for ErrP and because we only use channels “FCz”

and “Cz” for classification, eye blinks do not systematically

influence the reported results.

IV. CONCLUSION

In this paper, we have reported results on the detection of

the neural correlate of error awareness for improving the per-

formance and reliability of BCI. In particular, we have con-

firmed the existence of a new kind of ErrP elicited in reaction

to an erroneous recognition of the subject’s intention. An im-

portant difference between response ErrP, feedback ErrP, and

observation ErrP on one side and the reported interaction ErrP

on the other side is that the former involve a stimulus from

the system for every single trial whereas the latter involve a

choice of a long-term goal made by the subject himself/herself

(where he/she wants to bring the cursor). More importantly, we

have shown the feasibility of detecting single-trial erroneous re-

sponses of the interface and we have shown the stability of these

potentials over time.

However, the introduction of an automatic response rejection

strongly interferes with the BCI. The user needs to process ad-

ditional information which induces higher workload and may

considerably slow down the interaction. These issues will be in-

vestigated when running online BCI experiments integrating au-

tomatic error detection. Given the promising results obtained in
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a simulated human–robot interaction, we are currently working

in the actual integration of ErrP detection into our BCI system.

In parallel, we are exploring how to increase the recognition rate

of single-trial erroneous and correct responses.

In this paper, we have also shown that, as expected, typical

cortical areas involved in error processing such as pre-SMA

and ACC are systematically activated at the occurrence of the

different peaks. The software used for the estimation of the

intracranial activity (sLORETA) is only a localization tool.

However, Babiloni et al. [15], [16] have recently developed

the so-called cortical current density (CCD) inverse model that

estimates the activity of the cortical mantle. Since ErrP seem

to be generated by cortical areas, we plan to use this method

to best discriminate erroneous and correct responses of the

interface. In this respect, it is a normal practice in machine

learning to apply feature selection techniques to reduce the

dimensionality of the input vector to the classifier, especially,

when the input space has a huge dimensionality and many

of the features are not relevant for discriminating among the

classes. This is particularly the case for the analysis of EEG

signals and we have previously shown the advantages of such

a feature selection for BCI [17]. In this case, we will apply

them for selecting the most relevant solution points from the

few thousands provided by the CCD model. In fact, the very

preliminary results using the CCD inverse model confirm the

reported localization in the pre-SMA and in the ACC and thus

we may well expect a significant improvement in recognition

rates by focusing on the dipoles estimated in those specific

brain areas.

More generally, the work described here suggests that it could

be possible to recognize in real time high-level cognitive and

emotional states from EEG (as opposed, and in addition, to

motor commands) such as alarm, fatigue, frustration, confusion,

or attention that are crucial for an effective and purposeful inter-

action. Indeed, the rapid recognition of these states will lead to

truly adaptive interfaces that customize dynamically in response

to changes of the cognitive and emotional/affective states of the

user.
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