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When a person recognizes an error during a task, an error-related potential (ErrP) can be

measured as response. It has been shown that ErrPs can be automatically detected in

tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer

Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies

that concentrate on ErrPs during continuous feedback. With this study, we wanted to

answer three different questions: (i) Can ErrPs be measured in electroencephalography

(EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified

using machine learning methods and is it possible to discriminate errors of different

origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions,

we recorded EEG data from 10 subjects during a video game task and investigated two

different types of error (execution error, due to inaccurate feedback; outcome error, due

to not achieving the goal of an action). We analyzed the recorded data to show that

during the same task, different kinds of error produce different ErrP waveforms and have

a different spectral response. This allows us to detect and discriminate errors of different

origin in an event-locked manner. By utilizing the error-related spectral response, we

show that also a continuous, asynchronous detection of errors is possible. Although the

detection of error severity based on EEG was one goal of this study, we did not find any

significant influence of the severity on the EEG.

Keywords: error-related potential (ErrP), error-related negativity (Ne/ERN), feedback related negativity

(FRN), brain-computer interface (BCI), human-computer interaction, performance monitoring, asynchronous

classification

1. Introduction

If a person makes or perceives an error, an error-related potential can be detected in the electroen-
cephalogram (EEG) due to the person recognizing that error (Falkenstein et al., 2000). Recently,
ErrPs have gained interest for the use in Brain-Computer Interface (BCI) applications, which
give the user the ability to communicate by means of brain activity only. That an ErrP can be
detected when a BCI delivers erroneous feedback, has been shown in several publications (Fer-
rez and del R Millan, 2008; Chavarriaga et al., 2014) and it has further been shown that the
detection of ErrPs can be utilized to correct errors (Schmidt et al., 2012; Spüler et al., 2012a) or
improve adaptation of the BCI (Llera et al., 2011; Spüler et al., 2012b). So far, ErrPs have mainly
been utilized in BCIs with discrete feedback, which is why we want to investigate the detection
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of ErrPs in a continuous task toward the utilization of ErrP detec-
tion in continuous BCI applications. Since the interest of this
study is not specifically in one of the components of the ErrP
or the neurophysiological interpretation, but the investigation of
the error-related response in general with regards to its utiliza-
tion in continuous BCI systems, we use the term error-related
potential (ErrP). As the ErrP in BCI applications consists of
multiple components, ErrP is the commonly used term (Chavar-
riaga et al., 2014) in the BCI literature and generally considered
as an umbrella term, which comprises all components of the
event-related potential that can be measured in response to an
error.

Error-related potentials were first studied in choice reaction
tasks (Falkenstein et al., 1990) and two components of the event-
related potential were described that can be measured as con-
sequence of an error. The first component is the error-related
negativity (ERN or Ne) (Falkenstein et al., 1991; Gehring et al.,
1993), which is a negative potential peaking 50–100 ms after an
erroneous response. Depending on the task, an error-related pos-
itive potential, called error positivity (Pe), follows the ERN. The
Pe can be further divided into a frontocentral and a centroparietal
component. The frontocentral Pe, which seems to be related to
the P3a, appears directly after the ERN, while the late Pe appears
in the centroparietal region with a latency of 200–400 ms after
the error and seems to be related to the P3b (Ullsperger et al.,
2014). Regarding the meaning of these components, it seems that
the negative components are mostly linked to error processing
(Krigolson and Holroyd, 2007a) and reward prediction (Hol-
royd et al., 2003, 2009), while the positive component is likely
associated with conscious error perception (Wessel et al., 2011).

Depending on the experimental task, different variants of
error-related potentials can be measured. If an error is indicated
by feedback, a feedback-related negativity (FRN) can be mea-
sured frontocentrally 200–300 ms after the feedback during a
reinforcement learning task (Holroyd and Coles, 2002). The FRN
seems to be related to or even is the same component as the N200
(Holroyd et al., 2008). Further, it was shown that an ERN can
also be measured if a subject is observing another subject mak-
ing an error (van Schie et al., 2004). Lastly, it was shown that an
ErrP can be measured during human-computer interaction (Fer-
rez and Millán, 2005) and interaction with a BCI (Ferrez and del
R Millan, 2008). In comparison with the previously mentioned
error-related potentials, the interaction ErrP is more complex
with a small positive peak around 200 ms after BCI feedback, a
negative peak at 250ms (likely related to FRN), a positive peak at
320ms (likely related to Pe) and another broad negative peak at
around 450ms (N400); but these latencies can differ depending
on the experimental paradigm (Iturrate et al., 2013).

While the majority of the studies used tasks with discrete feed-
back, Krigolson and Holroyd (2006) have examined errors in
a continuous tracking task and have shown that an ErrP can
be measured if the cursor does not respond during this con-
tinuous task (Krigolson and Holroyd, 2007a). With the aim of
studying ErrPs toward their utilization in BCI, Kreilinger et al.
(2012) investigated ErrPs during continuous arm movement and
tried to classify ErrPs by mapping the continuous feedback to
time-discrete feedback and additionally displaying the discrete

feedback. That a discretization of the feedback is not needed, was
shown by Milekovic et al. (2012) in a study using electrocorticog-
raphy (ECoG) instead of EEG. They could show that an error-
related response during continuous feedback can be observed in
the ECoG signal and also be classified (Milekovic et al., 2013).
Since the ErrP is not only visible in the time-domain, but there
is evidence that there also is an error-related frequency mod-
ulation in EEG (Llera et al., 2011; Omedes et al., 2013, 2014),
mainly in the theta frequency range (Cavanagh and Frank, 2014),
the frequency spectrum could be used for ErrP detection when
there is only continuous feedback. Further, Milekovic et al. (2012)
used the terms “execution error” (if the interface delivers erro-
neous feedback) and “outcome error” (if a goal of an action is
not achieved, i.e., the user is making an error) and showed that
machine learning methods can be used to discriminate differ-
ent error types based on ECoG recordings. While the degree of
an error is another property that has been shown to be reflected
in the strength of the error-related negativity (Falkenstein et al.,
2000), it has not yet been investigated in the context of BCI appli-
cations. Based on the results by Milekovic et al., the study pre-
sented in this paper aims at answering three questions: (i) Can
ErrPs be found in EEG during a cursor control task with con-
tinuous feedback? (ii) Can machine learning methods be used to
detect and discriminate execution and outcome errors in EEG?
(iii) Can the severity of an error be detected in EEG?

2. Methods

2.1. Task Description
The experimental task used in this study was similar to the one
described by Milekovic et al. (2012), in which the subject had to
play a simple video game (depicted in Figure 1). The subject used
the right thumbstick of a gamepad to control the angle in which
the cursor moved on the screen. The task was to avoid collisions
of the cursor with blocks dropping from the top of the screen
with a constant speed. The speed of the falling blocks was set to a
level that the game was challenging and the player collided with
a block from time to time. In case of a collision, the game con-
tinued for 1 s and then stopped. The delay of 1 s was introduced
to make sure that the reaction measured in the EEG originates
from the subject recognizing the collision (outcome error) and
not from the game stopping or restarting. To study the execution
error, which is happening when the interface delivers erroneous
feedback, the angle of the cursor movement was modified for the
duration of 2 s. The degree of modification was randomized (45◦,
90◦, 180◦ to either the left or the right side). The time between
two execution errors was randomized to be between 5 and 8 s.

2.2. Experimental Setup
10 healthy subjects (mean age: 24.1± 1.1 years) were recruited for
this study. EEG was measured with two g.tec g.USBamp ampli-
fiers and a Brainproducts Acticap System. 28 electrodes were
placed on the scalp of the subject to measure EEG (at positions
Fpz, AFz, F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3, Cz, C4, T8, CP3,
CPz, CP4, P7, P3, Pz, P4, P8, PO7, POz, PO8, O1, Oz, O2), while
3 electrodes were placed below the outer canthi of the eye and
above the nasion for electrooculogram (EOG) recordings. The
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FIGURE 1 | (A) Picture of the paradigm. The red and blue arrows indicate

the movement direction of the objects (blue) and the cursor (red). The subject

could move the red cursor with the gamepad to avoid a collision with one of

the blue blocks, which were continuously falling down from the top of the

screen. (B) Example of an outcome error, when the cursor collided with a

block. (C) Example of an execution error, when the cursor moved for

2000ms in a different direction than indicated by the subject through

gamepad control. The dashed arrow in the screenshot indicates the

expected movement direction, while the solid red arrow indicates the actual,

erroneous direction.

data was recorded with a sampling rate of 512Hz and a 50Hz
notch filter was applied to filter out power line noise, as well as an
additional bandpass filter between 0.5 and 60 Hz. The position of
the thumbstick as well as information about outcome or execu-
tion errors was transmitted to the recording software using the
parallel port of the computer.

2.3. Data Analysis
The data was segmented into different trials with a length of
1 s: execution errors, time-locked to the start of an angle modi-
fication; outcome errors, time-locked to the collision event; and
noError trials, when neither a collision nor an angle modifica-
tion has happened during the trial or in the 1 s before or after
the trial. For each subject, about 1 h of EEG was recorded, result-
ing on average in 597 ± 22 execution errors, 86 ± 30 outcome
errors and 475 ± 39 noError trials. An EOG-based regression
method (Schlögl et al., 2007) was used to reduce the effect of eye
artifacts and the signal was re-referenced to the common aver-
age. For analysis of the power spectrum, we used the method by
Welch (1967) on the time interval 0–1 s.

2.4. Event-Locked Classification
For the event-locked classification, we evaluated classification
using three types of features: time domain features only, fre-
quency domain features only, and the combination of both. To
optimize the parameters for each feature set, we tested differ-
ent parameters (e.g., regularization, time range) on data of sub-
ject S01 and finally used the parameters that worked best, which
are stated below. With these parameters a cross-validation was
performed on all 10 subjects to evaluate performance.

For the time domain features, we used the samples from all
channels in the time range 0.2–0.9 s after an error event. For fre-
quency domain features, we calculated the power spectrum using
the method by Welch (1967) on the time range 0.2–0.9 s after an

error event. The first 40 bins of the power spectrum for all chan-
nels were used as features for classification. For the combination
of time domain and frequency domain features, we concatenated
both feature vectors.

To estimate classification accuracies, we used a 10-fold cross-
validation. As classifier, we used a Support Vector Machine
(SVM) (Vapnik, 1998) using the LibSVM implementation
(Chang and Lin, 2011) with a linear kernel and the hyperparam-
eter set to the default value of C = 1. To investigate how well
the error can be classified, outcome error and execution error,
respectively, were classified against noError trials. We also clas-
sified execution errors against outcome errors, to see if the two
types of errors can be discriminated. Since the number of tri-
als was different for each class, the dataset was always balanced
to obtain an even amount of trials for each class. To assess the
significance of the results, we performed a permutation test with
1200 repetitions, in which for each repetition the vector contain-
ing the class labels was randomly permuted before training and
the accuracy was calculated to obtain the significance level for
p = 0.05.

To test if the subject’s movements (due to gamepad control)
or eye movements influence classification, classification was also
done on the EOG data and on the recorded position of the
thumbstick. The classification process itself was the same as for
the EEG data, only the features were replaced by the time-domain
EOG data and thumbstick position data, respectively.

One of the aims of this study was to investigate if it is possible
to detect the severity of an error. Therefore, we tried to classify
how well different angles of the execution error can be classified
against each other. We additionally separated the execution error
trials corresponding to the degree of deflection and performed
a classification for each combination of two degrees. Since 45◦

and 315◦ is basically the same degree, but either to the left or to
the right side, we also joined the trials for 45◦ and 315◦, and 90◦

and 270◦.
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2.5. Asynchronous Classification
Due to the missing information, when an error happens in online
applications, an event-locked classification is not applicable
online with continuous feedback. Therefore, we investigated how
well error-related potentials can be classified asynchronously. For
the asynchronous classification, a window with a length of 1 s
was shifted over the whole signal by 62.5 ms steps. In each step,
the window was classified whether or not it contained an error
event. To ensure that training and testing data do not overlap,
we performed a chronological 10-fold cross-validation in which
EEG data was partitioned into 10 segments. The event-locked tri-
als in 9 segments were used for training the classifier and then
tested asynchronously on the remaining segment. This procedure
resulted in an output every 62.5ms, which labels each window as
error or noError trial.

Since an asynchronous classification has higher time con-
straints to be able to run in real-time and we also found
other parameters to yield better results in the asynchronous
classification, we used different methods for signal processing
and classification than for the event-locked analysis. For the
final asynchronous classification, we used only spectral features
because they performed superior to time-domain features or a
combination of both features in the asynchronous classification.
We used the maximum entropy method by Burg (1972) with a
model order of 16 to estimate the power spectrum in the range
of 1–12Hz with a resolution of 1Hz per bin. One of the most
striking differences between the asynchronous and the event-
locked classification is the time window used for spectral estima-
tion and classification. The power spectrum was not estimated
on the whole 1 s window, but only on a smaller time range.
While we found the time range of 0.2–0.9 s to be optimal for the
event-locked classification, we obtained best results for the asyn-
chronous classification using a smaller time range of 0.1–0.5 s
after an error event. While the reduction of the time range results

in better classification performance, it also improves the reaction
time of an asynchronous classification (having a delay of only
0.5 s instead of 0.9 s). Based on the features obtained after spectral
estimation, we performed a feature selection based on R2-values
(Spüler et al., 2011) to select the 20 best features. Those fea-
tures were used to train a SVM (linear kernel, C = 1). Since the
class imbalance is much higher for the outcome error, we used a
weighted SVM in this case, which assigns different cost factors to
the classes. We obtained best results when the cost factor C is 5
times higher for outcome errors than for noError trials. Based on
the output of the SVM, a probabilistic output was assigned (Lin
et al., 2007) and a weighted average of the last three probabilistic
outputs was computed and taken as a final value. If this value was
above a specified threshold, the current window was classified as
an error.

3. Results

3.1. Neurophysiological Analysis of Error-Related
Potentials
The average event-related potentials for NoError trials, execu-
tion errors, and outcome errors are shown in Figure 2, along
with the significant differences between execution and outcome
error. Figure 3 shows the average difference waveform of exe-
cution error and outcome error at electrode FCz for all sub-
jects, as well as the topographic distribution of the potential. It
can be seen that a clear potential is visible for both kinds of
error. The topographic distribution is similar for both errors and
all subjects, with the maximum around electrode FCz and Cz.
However, the waveform shape of the two error potentials dif-
fers strongly. For the execution error, we found a positive peak
at 229ms, a negative peak at 287ms, a positive peak at 367ms,
and a small negative peak at 461ms. In contrast, the outcome

FIGURE 2 | (A) Event-related potential at electrode FCz averaged

over all subjects for NoError trials, execution errors and outcome

errors. (B) Event-related potential for execution errors and outcome

errors. The gray background denotes the time intervals with a

significant difference between execution and outcome error (p < 0.05,

Bonferroni corrected).
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FIGURE 3 | Left: Error-related potentials at electrode FCz for execution error

(A) and outcome error (C). For display of the ErrPs, the difference between

the error trials and noError trials was calculated. The colored lines depict the

ErrP for the different subjects, while the bold black line is the average over all

subjects. Errors are happening at t = 0ms. The gray background denotes

the time intervals with a significant difference between error and noError trials

(p < 0.05, Bonferroni corrected). Right: Scalp plots showing the topographic

distribution of the error-related potential for execution (B) and outcome error

(D) at the time of the maximum deflection for each of the significant time

intervals.

ErrP starts with a negative peak at 2ms, followed by a positive
peak at 268ms, a negative peak at 486ms, and a small positivity
at 742ms.

Regarding the frequency spectra of the observed error poten-
tials (see Figure 4), we found activity mainly in the delta (1–
4Hz) and theta (5–7Hz) frequency band for both errors, but
the errors show a different spatial power distribution. For the
execution error, the activity in both bands is strictly located at
electrode Cz. For outcome errors, activity in the delta band can
be seen mainly around Cz, while Fz and FCz show activity in the
theta band.

By analyzing the execution error with regard to its severity, we
did not find any significant effect (after correcting for multiple
comparisons). Since the execution error does not differ depend-
ing on the degree, we did not show executions ErrPs separated by
severity in this paper.

3.2. Event-Locked Classification
The results for the event-locked classification of the different
error potentials can be seen inTable 1. For execution vs. outcome
error, the mean accuracy over all subjects varied between 70.6
and 75.5% depending on the features that were used. While the
classification for outcome error against noError reached mean
accuracies between 73.9 and 75.6%, the classification of execu-
tion errors against noError trials was significantly worse (p <

0.05, Wilcoxon’s ranksum test) with accuracies between 64.2 and
66.0%.

When comparing the use of different features, the combina-
tion of time- and frequency domain features gives overall the best
results, but the difference compared to either time- or frequency
domain features is not significant (p > 0.05).

For each classification result, we performed a permutation test
(1200 permutations) to assess significance and found that all of
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FIGURE 4 | R2 values showing the difference in power for different frequency bands between noError trials and execution error (A) or outcome error

(B), respectively.

the results presented in Table 1 are significantly above chance
level (p < 0.05).

To check if the classification might be related to eye or finger
movement, we also repeated the classification process on EOG
data and the position data of the thumbstick. For execution errors
and noError trials, we achieved an average accuracy of 50.9%
based on EOG and 52.5% based on the thumbstick position. For
outcome error against noError trials, average accuracies of 54.9%
(EOG) and 56.0% (thumbstick) could be reached. For the clas-
sification of the two error types, execution error and outcome
error, we obtained average accuracies of 56.4% (EOG) and 55.3%
(thumbstick). For the majority of the subjects, the results were
not significantly above chance level.

To answer the question if the severity of an error can be
detected based on EEG recordings, we tested different degrees of
the execution error against each other by using a cross-validation.
Since the angle of the movement was randomly modified with
different degrees, we also tested if execution errors with a differ-
ent degree can be classified, e.g., 45◦ against 180◦. Classification
results were around chance level (average accuracies between 47.1
and 50.5%), which is why they are not shown in detail in this
paper.

3.3. Asynchronous Classification
Due to the highly imbalanced nature of this asynchronous classi-
fication task, with much more time segments being correct than
containing an error, we did not use classification accuracy for per-
formance evaluation, but used a different method. We defined
windows containing an error as positive and windows without
error as negative. Thereby, a true positive (TP) is a window which
was correctly classified as containing an error, while a false nega-
tive (FN) is a window that contains an error, but was not classified
as such. As a performance measure, we calculated the sensitivity
given by the number of TP divided by the total number of win-
dows containing an error, and we calculated the specificity given
by true negatives (TN) divided by the total number of windows

containing no error. To obtain a performance measure that is
independent of the threshold, we calculated sensitivity and speci-
ficity for different thresholds ranging from 0 to 1 in 0.01 steps
and used the area under the curve (AUC) for performance eval-
uation. Since AUC is a rather abstract performance measure that
makes it hard to catch a glimpse of how well the classification
would work in an application centered scenario, we calculated the
positive seconds rate for a threshold of 0.8, denoted by PSR0.8.
This value gives the percentage of seconds, in which an error is
present and an error was classified. NSR0.8 denotes the negative
seconds rate for a threshold of 0.8, which gives the percentage of
seconds in which no error has happened and in which no error
was classified.

The AUC for the asynchronous classification of the two errors
is shown in Figure 5. On average, the AUC for execution error
is 0.692, while for the outcome error we obtained an average
AUC of 0.657. More detailed results for all subjects can be found
in Table 2. The AUC is significantly above chance level for all
subjects (p < 0.05, permutation test).

4. Discussion and Conclusion

In this study, we looked at error-related potentials during a video
game task with continuous feedback and could show that the
two different kinds of error that appeared in this task also pro-
duced distinct ErrPs that differ in waveform, latency of its com-
ponents, and its spectral content. Based on these differences we
could use machine learning methods to detect those errors and
discriminate between them.

4.1. Execution ErrP/Interaction ErrP
The execution ErrP found in this study showed four peaks,
with the negative peak at 287ms likely being a FRN, the Pe
appearing at around 367ms and an N400 with a maximum
deflection at 486ms. The shape of the execution ErrP and its
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TABLE 1 | Classification accuracies based on EEG data obtained by 10-fold cross-validation.

Subject Execution vs. Outcome Outcome vs. noError Execution vs. noError

T(%) F(%) T+F(%) T(%) F(%) T+F(%) T(%) F(%) T+F(%)

S01 77.9 69.7 78.7 74.4 75.1 75.1 69.7 68.8 69.6

S02 76.3 73.8 75.7 78.5 66.1 78.5 65.4 62.6 66.4

S03 69.6 66.5 69.6 68.2 79.3 68.2 59.9 59.0 60.1

S04 72.1 62.7 72.7 75.0 63.4 74.4 60.1 60.8 60.7

S05 70.2 65.8 73.7 60.3 68.0 60.2 64.3 61.6 68.9

S06 67.7 65.4 67.7 76.5 76.0 76.5 63.4 65.2 63.4

S07 73.6 80.7 72.9 76.3 83.5 76.3 62.8 63.3 62.0

S08 85.0 73.2 85.4 80.4 86.4 80.4 68.6 67.6 71.6

S09 78.1 69.8 77.3 71.3 76.3 72.1 64.5 66.5 65.0

S10 82.1 78.2 81.5 78.0 81.9 78.8 71.2 66. 7 71.8

Mean 75.3 70.6 75.5 73.9 75.6 74.1 65.0 64.2 66.0

The second line denotes the used features (T: time-domain, F: frequency spectrum). Classes were balanced and all results are significantly above chance level (p < 0.05).

FIGURE 5 | AUC for the asynchronous classification separated by

execution error and outcome error. Sensitivity (true positive rate) and

specificity (true negative rate) were calculated based on the continuous

classification in 62.5ms steps. Each red line represents the data of one

subject. The dashed line represents chance level. Results are significantly

above chance level for all subjects (p < 0.05).

topographical distribution is very similar to the typical interac-
tion ErrP described from BCI studies with discrete feedback, in
which the user received erroneous feedback from the BCI (Fer-
rez and del R Millan, 2008; Kreilinger et al., 2012; Spüler et al.,
2012a). Comparing the execution ErrP from this study with the
results from Krigolson and Holroyd (2007a), who investigated
the error-related response during a continuous tracking task,
there are notable differences in ErrP waveforms. Krigolson and
Holroyd (2007a) introduced errors in which the interface was
not responding and found a FRN at 248ms and a Pe at around
450ms. While it was shown that the latencies of the ErrP com-
ponents are task-dependent and that the task can also influence
the amplitude of the N400 (Iturrate et al., 2013), there is also evi-
dence that the appearance of the first positive peak and the N400
is not visible in all BCI tasks (Spüler et al., 2012b). Therefore, the

differences in waveform and latencies of the potential can likely
be explained by the differences in the tasks between the studies.

In the presented study, we additionally analyzed the spectral
properties of the EEG signal and found an error-related spec-
tral response, mainly in the delta and theta band. This frequency
range is similar to the low frequency component identified by
Milekovic et al. (2012) in ECoG recordings and similar to the
frequency range used by Omedes et al. (2014).

4.1.1. Influence of Error Severity
Although we investigated possible effects of the severity of an
execution error on the ErrP, we did not find any significant
effects and were not able to detect the severity of an execution
error (e.g., deflection by 45◦ or 180◦) based on the EEG. This
is in contrast to earlier works by Bernstein et al. (1995) and
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TABLE 2 | Classification performance for the asynchronous classification of execution error and outcome error.

Subject S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 Mean

EXECUTION ERROR

AUC 0.747 0.745 0.705 0.627 0.723 0.617 0.635 0.664 0.716 0.738 0.692

PSR0.8 60.4% 54.8% 49.1% 15.1% 49.9% 44.6% 15.7% 35.5% 58.1% 58.4% 44.2%

NSR0.8 70.4% 77.6% 72.5% 89.9% 75.8% 61.2% 90.6% 75.3% 65.9% 71.4% 75.1%

OUTCOME ERROR

AUC 0.700 0.684 0.655 0.593 0.715 0.593 0.609 0.639 0.684 0.701 0.657

PSR0.8 17.9% 6.5% 19.7% 0.4% 12.4% 3.1% 0.0% 4.1% 13.4% 9.9% 8.7%

NSR0.8 93.6% 97.4% 89.4% 100.0% 98.2% 93.1% 99.9% 97.6% 95.9% 95.8% 96.1%

AUC denotes the area under the curve for the continuous classification in 62.5ms steps. PSR0.8 denotes the positive seconds rate at a threshold of 0.8, which is the percentages of

seconds that contain an error and in which an error was correctly detected. NSR0.8 denotes the negative seconds rate at a threshold of 0.8, which is the percentages of seconds that

do not contain an error and in which no error was detected.

Falkenstein et al. (1996), who showed that the amplitude of the
ErrP depends on the difference between the expected and the
actual feedback. That we could not find an effect of the severity
might be explained by our task design and that the error might
be perceived as equally severe by the subject, although the degree
of deflection is greater in the 180◦ condition than in the 45◦ con-
dition. In a future study, it might be worth investigating different
smaller degrees of error (e.g., 15◦, 30◦, and 45◦) and to make sure
that these different error degrees are also perceived as differently
severe by the subjects.

4.2. Outcome ErrP
When looking at the topographic distribution of execution and
outcome error, both seem similar with a maximum around elec-
trode FCz and Cz, which indicates that the activity might origi-
nate from anterior cingulate cortex (ACC). However, the shape
of both ErrPs is very different. The outcome ErrP shows a broad
negativity around 2ms after feedback. That the ERN appears so
early, can be explained by the subjects recognizing that a collision
is going to happen in advance of the collision actually happen-
ing. This is in line with the results by Krigolson and Holroyd
(2007b) who have found that predictive feedback leads to an
earlier latency of the ERN.

The latency of the Pe for outcome errors at around 264ms is
also about 100ms earlier than the Pe during execution errors. In
contrast, the N400 appears about the same time in both errors,
but has a stronger and broader deflection in the outcome error.
742ms after the error has happened, there is also a small positive
deflection.

Since the outcome error shows in general a longer response
(from 0 to 750ms after error), and has lower-frequency peaks
than the execution error (happening 200–500ms after error),
these difference enabled us to use machine learning methods to
discriminate both errors in time-domain and spectral-domain.

4.3. Classification
For classification of the ErrPs, we could show that in an event-
locked classification a window of 200ms to 900 ms gave the best
results and execution errors could be detected with an average
accuracy around 65%, while the classification of outcome errors
achieved an average accuracy around 75%. Also, the two different

types of error could be discriminated well with an average accu-
racy around 75%. Regarding the choice of features, there was no
significant difference if temporal and/or spectral features were
used for classification.

In the case of an asynchronous classification, the results were
different. Although the results were not shown in detail in this
publication, the use of only spectral features yielded much higher
classification performance in the asynchronous case, which is not
astounding, since the data is not event-locked anymore (which is
important for time-domain classification). Also, we found that a
much shorter window of 100 ms to 500 ms gave optimal results
for an asynchronous classification.

However, the overall classification accuracies obtained in this
study are lower than in studies using non-continuous BCIs (c.f.
Spüler et al., 2012a). As an established method was used for the
time-locked classification and the results presented here are lower
than in studies using the same method (Spüler et al., 2012a), the
classification method itself can be ruled out as a reason for the
discrepancy. Since (Holroyd et al., 2009) found the amplitude
of the FRN to depend on the degree of which the outcome is
perceived to be influenced by the subjects’ behavior, one could
argue that the lacking influence of the subject on the execution
errors is the reason for a weaker ErrP and thereby lower classi-
fication accuracies. However, this explanation is less likely since
in BCI studies the majority of errors are made by the BCI sys-
tem and thereby out of the subjects’ control. While the simple
fact that the difference between continuous and non-continuous
feedback could lead to lower classification accuracies would be
one explanation, we think the main reason for the lower clas-
sification accuracy is the task complexity. Compared to using a
BCI, the video game task in this study is rather complex and will
likely lead to higher workload than the use of standard BCI sys-
tems. Since workload was found to negatively correlate with ERP
amplitude (Allison and Polich, 2008), this could be one expla-
nation for the lower classification accuracy, but the relationship
between workload and ErrP amplitude, respectively classification
accuracy, still needs to be clarified.

4.4. Implications for BCI
At last, it needs to be discussed what implications this study
has for current BCI research. Since the observed execution ErrP
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is similar to the ErrPs observed in BCI applications, we expect
that results from this task can be transferred to BCI applica-
tions and that this data1 can be used to improve methods toward
ErrP detection in continuous BCIs. For synchronous BCIs giving
discrete feedback, ErrPs have been utilized for error correction
(Spüler et al., 2012a) and adaptation (Spüler et al., 2012b). By
showing that ErrPs can be detected asynchronously during con-
tinuous feedback, ErrP-based correction and adaptation can be
used for asynchronous EEG-based BCIs and be used to improve
existing adaptive decoding methods (Gürel and Mehring, 2012).
The fact that execution and outcome errors can be discrimi-
nated allows to combine adaptation and error-correcting mech-
anisms in one BCI system. If an execution error is detected,
this information can be used for adaptation of the system, while
the detection of an outcome error can be used for error correc-
tion. The asynchronous classification also gives a first estimate
what accuracies can be expected. This is important information
for the design of ErrP-based adaptation algorithms for contin-
uous BCI systems, since the amount of uncertainty in the ErrP
detection is a crucial factor that influences the reliability of the
adaptation.

4.5. Conclusion
Regarding the three questions we mentioned in the introduc-
tion and that we wanted to answer with this study, we can con-
clude the following: (i) ErrPs can be measured in EEG during a
cursor control task with continuous feedback, as well as a spectral

1The data will be made publicly available on the website of the first author.

error-related response (mainly in delta and theta band). They
further can be classified in an event-locked, as well as in an asyn-
chronous manner. (ii) The different kinds of errors show a differ-
ent potential in the EEG with different latency and characteristic
of the ErrP components, as well as a different spectral response,
which allows a discrimination between execution and outcome
errors. (iii) We did not find any significant effect regarding the
severity of an error and therefore could not detect it.
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