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 Abstract - A variable step size Least Mean Square (LMS) 
algorithm based on the difference of the error signal (ESD-VSS) is 
proposed. The convergence and steady state behavior of the ESD-
VSS is analyzed and the key parameters are given. Simulations are 
conducted and the results show that, compared with the Modified 
Variable Step Size (MVSS) algorithm, modified LMS algorithm and 
the standard LMS algorithm, the ESD-VSS provides faster 
convergence speed and smaller steady state misadjustment. 
 Index Terms - LMS algorithm, variable step size, adaptive filter, 
MSE 

I .  Introduction 

 The LMS algorithm proposed by Widrow and Hoff has 
been widely used in channel equalization [1] and system 
identification [2], due to its robustness and simplicity. 
However the tradeoff between the convergence speed and the 
steady state misadjustment is a challenging problem. To 
achieve faster convergence speed and small misadjustment, a 
number of modified algorithms have been proposed. Ref. [3] 
utilized the self-correlation to control the step size, and 
suppress the interference of irrelevant noise effectively, but the 
convergence speed and the tracking capability are still 
expected to be improved.Ref. [4] gave a variable step size 
LMS algorithm using estimate signal error and thus it is of 
relatively faster tracking speed and smaller steady state error. 
However, the computational complexity of the algorithm is 
larger due to the tangent and exponent arithmetic, which 
makes it difficult to implement. 
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Fig.1 Structure of standard adaptive filter 

In this paper, we propose a variable step size LMS 
algorithm which updates its step size according to the 
difference of the error signals. The intention is that a large 

difference contributes to a big step size and provides a faster 
convergence speed while a small difference is capable of 
realizing small steady state misadjustment. The updating 
equation is simple and easy to implement compared with the 
reported algorithms in [5], and [6]. 

Condition for coefficients vector, convergence behavior 
of the mean square error (MSE) and expression for steady 
state misadjustment are provided. In addition, simulations of 
channel equalization and system identification with different 
assumptions are demonstrated and the performance of 
convergence speed and steady state misadjustment are 
evaluated in comparison of those of the known algorithms. 

II. The Principle of the Proposed Algorithm 

In this section, we propose the new variable step size 
algorithm and give the equation for the update of the step size 
and the tap weights then analyze its computational complexity. 

To acquire faster convergence speed with relatively small 
computational complexity, the ESD-VSS updates its 
coefficients and step size according to the following equations: 

|])()1(|1[)( 0 kekek             (1) 

)()()()()1( kxkekukwkw                (2) 

where 0 is the original step size, k is the iteration number, 

 is the adaptive parameter of the step size, )(kw is the vector 

of adaptive filter weights, )(kx is the adaptive filter input 

vector and )(ke represents the error signal. 

From (1), the step size )(k  is controlled by both   and 

the difference between the error signals of the consecutive 
iteration. If the adaptive system has not reach steady state, the 
difference between the error signals will be big and gives a big 
step size while when the system reaches steady state, the 
difference will be small and gives a small misadjustment. To 
make the algorithm robust to noise, parameter  , which is 

correlated to the choice original step size
0 , must be set in a 

small range.   is designed to be within (0, 3) to guarantee that 

steady state is available . 
From  (1) and (2), we can conclude that there are 1N  
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multiplication operations and 1 addition to update tap weights, 
2 multiplications and 2 additions to update the variable step 
size. 

III. Property analysis 

In this section, we analyze the performance of the ESD-
VSS algorithm. All the analyses are based on the assumptions 
given as follows:  

1) The input signal )(kx and the tap weight )(kw  are 

statistically independent. 
2) The input signal )(kx  is a zero-mean stochastic process. 

3) The additive noise )(kn  is a zero-mean Gaussian process 

A.  Convergence Behavior of the coefficient vector 

Assume an unknown adaptive filter with coefficient vector 

given by 0w , employing the ESD-VSS variable step size 

algorithm, with white noise )(kn  that has zero mean and 

variance 
2
n added to the unknown filter. 

 The error in the adaptive filter coefficients as related to 

the ideal coefficient vector 0w  is described as 

0)()( wkwkw                                    (3) 

Equation (2) then can be rewritten as:   
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where )()()()(0 kWkXkdke
T is the optimal output error. 

Substituting (1) into (4), we get 

)()()()()}()()({)1( 0 kXkekukwkXkXkuIkw
T          (5) 

With the assumption that the elements of )(kX  is 

statistically independent of )(kw and )(0 ke , the expected 

error in the coefficient vector of the system can be simplified 
as: 

   )]([})({)]1([ kwERkuIkwE                   (6) 

 According to [7], (6) has the same form compared with 

][))]([(][ '
1 kkk VERnfuEIVE  

, so an effective step size 

effu  is defined as  

)()]([ '
kunfuEu keff                       (7) 

Thus we may conclude that the nonlinear error algorithm 
converges in the mean for 

        
max0 /2)1(0   Mu                           (8) 

where max is the maximum value among the eigenvalue of  R  

(auto correlation of the input signal vector) and M  is the 

largest value of |)()1(| keke  , which means 

Mkekekeke  |)1(||)(||)()1(| . 

B.  Convergence Behavior of MSE 

As mean value convergence of the coefficient vector )(kw  

is not the sufficient condition of the mean square error 

convergence.  We expand the MSE with )(kw  and min  as 

follow: 

)]()([)]([ min
2

kwkwEkeEMSE
T           (9) 

where  )]([ 2
min kwE  .Hence, the convergence of MSE is 

equal to the convergence of covariance matrix of coefficient 

)]()([ kwkwE
T .So according to  (5), the covariance matrix of 

coefficient can be written as 
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where )]()([ kXkXER
T  is the auto correlation of the input 

signal vector. According to [8], (10) can be derived as: 
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where  ])()([)](cov[ '
QkwkwQEkW

TT   and IQQQQ
TT   

( Q  is the unitary matrix that diagonalizes R  to  through a 

similarity transformation). Therefore MSE convergence is 
equal to the sum of the elements along diagonal line 
convergence. The following relationship can be derived 

 22'' )]([)](cov[)]1(cov[ nkuEkWBkW          (12) 

The elements of B are given below 

2 2
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To guarantee the convergence of MSE, the sum of the 

elements in any row of B  must satisfy   10 ijb .So the 

stable condition is 

 1)]([)]([2)]([210
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

N

j
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 ])[/(1)1(0 max0 RtrMu                               (15) 

where

ondertermisiMMkekekeke  |)1(||)(||)()1(| , is 

the determining level of signal ‘1’. 

C.  Misadjustment of the algorithm 

The output signal error of adaptive filter is 
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)()()()()()( 0 kXWkekXwkXwkdke
TTT         (16) 

With independence assumption, expected value of )(2
ke  is  
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With equation )()( ABtrBAtr  and )]()([ kXkXER
T , 

(17) can be simplified as 

  )]()([)( min kRwkwEk
T                           (18) 

Then the excess MSE of k th iteration is 
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According to (12) and (13),  

                                  (19)  

So the excess MSE can be given by 
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If k  is big enough, (20) can be written as 
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Then the misadjustment is obtained as 

      min
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                               (22)  

Equation (22) is of the same form as that in Ref. [9].  

IV.  Simulation and Discussions 

Simulations are conducted to evaluate the performance of 
the ESD-VSS LMS algorithm.  
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Fig. 2  Comparison of MSE behavior when 2.9W   
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Fig. 3 Comparison of MSE behavior when 3.1W   

A.  channel equalization  

We test and compare the performance of the ESD-VSS 
algorithm with the standard LMS and the modified VSS [5] in 
adaptive channel equalization environment, of which the 
channel is described as  

 
W

k
kh

]2[2cos15.0)(        321 ，，k  

The parameter W is used to control the amount of 
amplitude distortion. Parameters of these algorithms are 
selected to produce a comparable level of misadjustment. 
Signal in this channel is corrupted by an additive white 

Gaussian noise )(knoise , which has zero mean and variance 

of 001.02  . So the input signal of the adaptive filter can be 
described as )()(*)()( 0 knoisekhkXkX  .Fig.2 shows the 

result of MSE behaviors of the three algorithms with 11 taps 
and 2.9W  . The parameters for the ESD-VSS used are 

0.02 , 2.3  and 0.97 , 2.3 , 0.025  (which 

are used in its original paper)are used for the MVSS algorithm. 
Besides, the step-size for standard LMS algorithm 
is 0.020  . 

Figure 3 shows MSE curve of the three algorithms with 

distortion control parameter 3.1W   and the noise variance 

005.02  . Parameters for the modified LMS algorithm 

are 0.958 , 0.99 , 0.025 .Parameter    of the 

ESD-VSS algorithm is 2.3. The other parameters remain 
unchanged. 

According to Fig. 2 and Fig. 3 , the ESD-VSS algorithm 
provides much faster convergence speed at comparable level 
of misadjustment in both cases, and realizes a faster 
convergence speed with much less complexity compared to 
modified LMS algorithm.  

B.  System identification 

The ESD-VSS variable step-size LMS algorithm, ESD-
VSS, is implemented in a system identification environment. 
The performance of the algorithm is compared with the 
standard LMS algorithm and MVSS algorithm [6].Parameters 
of these algorithms are selected according to the recommended 
values in their publication and also with a consideration to 
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produce a comparable misadjustent. The unknown system is 
assumed to be finite impulse response (FIR) system and the 
length of coefficient vector is 11. 

1) Uncorrelated signal 

Signal applied to the system is a pseudorandom bit 
sequence, with zero mean value and unit variance. Additive 

noise )(knoise  with the same mean value and variance is 

also applied to the simulation. Parameters of the ESD-VSS 

algorithm are 2.6  0.034u . To obtain comparable 
misadjustment, for the modified algorithm we set 

parameters 0.997 , 0.99 and 0.025 . The step 

size of standard LMS algorithm is 0.01.  
Fig 4 shows the behavior of the ESD-VSS algorithm, 

standard LMS algorithm and MVSS algorithm. Notice that the 
small misadjustment level is achieved by the algorithms, but 
the convergence rate of the standard LMS is not satisfying. 
The ESD-VSS and MVSS algorithm reduce the tradeoff 
between misadjustment and convergence rate. The ESD-VSS 
reaches steady state after about 200 iterations while the MVSS 
reaches steady state about 50 iterations later, which proves the 
efficiency of ESD-VSS algorithm. 
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Fig.4  Comparison of MSE behavior for uncorrelated signal and low SNR 

2) Uncorrelated signal with abrupt change in system 

coefficients 

To check the robustness of the ESD-VSS algorithm, we 
set an abrupt coefficient change at the 1000th iteration. All the 
other related parameters are kept the same as simulation shown 
in Fig.4. Fig.5 compares the behaviors of the algorithms, 
which shows that the ESD-VSS algorithm converge faster and 
reaches steady state first with smaller computational 
complexity compared with the MVSS algorithm. The 
simulation demonstrated the ESD-VSS algorithm has better 
tracking performance after the abrupt coefficients change.  
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Fig. 5  MSE behavior for uncorrelated signal with abrupt      change in system 
coefficients 

V.  Conclusion 

A new variable step size LMS algorithm (ESD-VSS) has 
been proposed, with a comprehensive consideration of both 
convergence speed and misadjustment. The variable step size 
is updated using the difference between the error signals. The 
simulation results show that the ESD-VSS.  

ESD-VSS algorithm provides better performance over . 
MVSS algorithm and the modified LMS algorithm, as well as 
standard LMS algorithm in the environment of channel 
equalization and system identification. 
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