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Abstract—Governments are increasingly interested in the use
of crowdsourced spatial tracking data to gain information on
the travel behaviour of their citizens. To improve the reliability
of reporting in such mobility studies, this paper systematically
analyses the propagation of errors from low level operations
to high level indicators, such as the modal split and travelled
distances. We find that most existing metrics in literature are
insufficient to fully quantify this evolution of data quality. The
propagation channels are presented schematically and a new
approach to quantify the spatial data quality at the end of each
processing stage is proposed. This procedure, within the context
of Smart Cities, ensures that the data analytics and resulting
changes in policy are sufficiently substantiated by credible and
reliable information.

Index Terms—data quality, geospatial data, crowdsensing, data
processing, error propagation

I. INTRODUCTION

In the pursuit of more information on their citizens, govern-

ments are increasingly interested in crowdsourced data. This

kind of data can be gathered relatively cheaply and quickly, but

its analysis requires extra care as the measurement environment

is uncontrolled. Often, governments are interested in this

crowdsourced data to derive information that is necessary for

their decision making. Governments look at spatial tracking

data for mobility, quality of life or sustainability indicators.

Crowdsourced mobility studies often use data gathered from

smartphones [1, 2] or other Global Navigation Satellite Sys-

tems (GNSS) devices [3] to gain insight in the travel behaviour

of citizens. However, this approach requires that the accuracy

and the reliability of the data and transformation processes

are clearly characterized. Studies have shown that errors that

occur in early stages of the data processing can have drastic

consequences on the accuracy of later stages and particularly

on typical indicators that are reported at the end of mobility

studies, such as the modal split and travelled distances.

II. EXISTING QUALITY METRICS

Over the past couple of years, several authors have defined

the causes of data quality problems in GNSS mobility studies.

These causes, along with potential metrics to measure their

This work is funded by the Flanders Agency for Innovation and En-
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impact, have been collected in this section. They are organized

according to the stage where they occur.

A. Missing data and positioning errors

Positioning errors caused by inherent errors in the GNSS

device or by signal reception issues have an influence on

the trip lengths. Several authors have identified this phe-

nomenon [4, 5] and Lopez has experimentally determined the

distribution of the residual distance for several speeds [6, 7].

This overreporting has an influence of less than 1% at 30 km/h,

and is therefore relatively minor for motorized traffic. However,

it is more relevant for slower forms of transportation, such

as pedestrians or cyclists. Ranacher et al. also determined

that GNSS measurement errors cause a systematic overesti-

mation of travel distance and offer a mathematical proof [8].

They offer a derivation of a formula for OED, the expected

overestimation of distance. This equation can be reshaped to

calculate the spatial autocorrelation of GNSS measurement

errors C, which can be used as a quality metric to describe

how accurately the GNSS sensor captured the movement of an

object.

On the other hand, missing data can have a significant effect

on underreporting of trip distance, especially for curves or

other non-straight paths, because it can cut off the curvature

of the trajectory in case one or more intermediate points are

missing or if the sampling rate is too low. Based on the

comparison of GNSS tracks and CAN-bus data recorded in the

vehicle, Lopez reports that an average of 9% of the travelled

distance is not captured as a result of missing data during the

trip.

Biljecki et al. discovered that missing data can also affect the

segmentation and transport mode classification processes [9].

If the signal shortage is long enough, it could mean that entire

segments done with a different mode are not recorded. The

exact location of a mode transition could also be lost if it

occurs during a period of missing data.

B. Preprocessing

Some mobility researchers apply interpolation, filtering or

smoothing techniques to reduce the impact of positioning

errors or missing data. Grochla and Połys applied Kalman fil-

tering to GNSS trajectories recorded using a smartphone. They



propose two metrics to quantify the quality of the trajectory,

and found that Kalman filtering actually introduces additional

noise. While the resulting track will be more visually attractive

due to smoothing, the average distance between the trajectory

and the reference track can increase significantly [10]. Jun et

al., on the other hand, have found that a modified Kalman filter

for GNSS data performs better than other common smoothing

techniques at reducing the impact of GNSS random errors on

estimations of speed, acceleration and travel distance [11].

C. Segmentation and transport mode classification

Segmentation and transport mode classification are closely

related. Many techniques use point-based transport mode clas-

sification as a way to identify segments in a trip, while others

perform segmentation first, followed by transport mode clas-

sification on each segment separately. Typically segmentation

processes suffer from oversegmentation, leading to low preci-

sion in trip reporting, due to ambiguous situations where the

users remain stationary for short periods, e.g. at traffic lights

or in traffic jams. A segmentation algorithm or transport mode

classifier that uses speed information could therefore have a

high accuracy over time or distance, but yield significantly

oversegmented trips nonetheless, if it contains many of these

spurious short segments.

Prelipcean et al. support the idea that comparing the accu-

racy of different segmentation and mode classification algo-

rithms based on common metrics such as precision and recall

is difficult [12]. To illustrate this, they offer the result of 5

techniques, which yield completely different segments but have

identical precision and recall. Finally, they propose five new

metrics that can more precisely evaluate the correspondence

between the inferred and the true segmentation. These metrics

still require a ground truth, which is typically not available in

mobility studies.

An alternative way to quantify the performance of trip

segmentation and mode classification algorithms, is to contrast

certain indicators, such as the modal split or the distribution

of trip distances, to known results from large scale surveys

carried out by government agencies [13]. If the techniques that

were used yield comparable values for these indicators, they

are likely sufficient. Nevertheless, researchers have to consider

that the population that participates in a mobility campaign

may be biased compared to the general survey. For example,

campaigns that study bicycle activity will likely attract a large

portion of recreational cyclists, who will often travel longer

distances at higher speeds.

D. Map matching

Map matching is an important step in the processing chain

for spatial tracking data, as it links the trajectory to the road

network. It is advantageous for two reasons. Primarily, it

provides a way to reduce the impact of positioning errors by

aligning the measured trajectory to a known road network.

It can also be used to interpolate locations, by following the

most likely route when data is missing. Finally, map matching

allows analysts to build accessible visualisations to support the

conclusions of a mobility campaign, such as speed or intensity

maps, by explicitly linking measurements to road segments.

Quddus, Noland and Ochieng have studied the influence of

map matching on tracking data quality intensively. In 2005,

they experimentally validated a map matching algorithm by

comparing its output to a ground truth [14], and found that

it exhibited a mean horizontal position error of 5.6m, which

can be reduced to 2.0m if the analysis takes the distance

between the traffic lanes and the road centreline into account.

They also show that you can reduce the error if the vehicle

speed is close to zero by using GNSS devices with dead

reckoning support. Dead reckoning can augment the position

accuracy by using information from additional sensors such

as gyrometers, accelerometers and wheel speed. Next, the

authors develop a metric that quantifies the integrity of map

matching algorithms [15]. It considers several important factors

that affect the uncertainty. The metric is quite robust for one

test route, but further experiments are necessary to test its

performance with other types of routes, such as in urban areas.

Finally, the authors focused on the effect that the road network

can have on the performance of map matching algorithms [16].

They particularly highlight five quality issues that may appear

in the road network;

• Topological errors caused by features of the real world

which were omitted or simplified

• Geometric errors due to the deviation of map features

from their actual location in the real world

• Missing segments or the existence of old segments due to

a lack of updates

• Incorrectly classified features (e.g. junction vs. round-

about)

• Timeliness of the data

They propose two additional quality metrics for map match-

ing algorithms; the along-track (|MC| = |MA| × cos(φ)) and

cross-track (|AC| = |MA|× sin(φ)) accuracy. For more detail

we refer to their work.

These metrics can be useful to compare several map match-

ing algorithms if a ground truth is available, but are not suitable

for realtime assessment of the map matching quality. Moreover,

they fail to take into account some less obvious reasons why

map matching can go wrong, such as:

• Network selection, for example if the transport mode of

a segment was incorrectly classified

• Unauthorized manoeuvres, such as buses and taxis that

can use bus lanes which are not available in the network.

Some drivers also do not respect the transit regulations.

• Simplistic map matching methods may not take into ac-

count the driving direction, which can lead to inconsistent

or even impossible paths.

• Some transport modes, such as walking and biking, have

an inherently high freedom of movement which cannot

always be constrained to a network.

• Missing data may lead the algorithm to assume a different

trajectory than the true trajectory
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Fig. 1. Schematic view on the error propagation in mobility studies that use spatial tracking data. Data is transformed from raw coordinates to high level
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III. PROCESSING STAGES

The transformation from raw GNSS data points to mobility

indicators and visualisations is a multi-stage procedure. Shen

and Stopher subdivide this procedure into 5 interconnected

stages: preprocessing, trip identification, mode detection, pur-

pose imputation and final result [3]. The preprocessing stage

downloads the data from the sensors, and does some prelim-

inary validation. The validated GNSS data is then used as

input for a trip identification algorithm. The resulting trips are

issued to a transport mode classifier. Optionally, trip purpose

imputation, i.e. the determination of the goal of the trip, can be

performed using the results from the transport mode detection.

Finally, the results are aggregated into a list of all trips,

transport modes and purposes. In their conclusion, the authors

mention that the outcome of the transport mode and purpose

classification is likely manipulated in part by errors in the trip

detection and segmentation processes that preceed it.

Our model, which is presented schematically in Figure 1,

expands upon this line of thought by explicitly marking which

errors are generated by which processing stages and by indicat-

ing how these errors can propagate from the raw GNSS sensor

data all the way to mobility indicators and visualisations, which

are used by policy makers to make informed decisions.

In this section, we establish an architecture for the sys-

tematic preparation of mobility indicators and visualisations,

organized in five levels [7] as shown in Table I. We further

elaborate on the role of each component of the processing chain

and how they are influenced by errors in previous processing

steps.

A. Level 0 – Raw (unprocessed) data

Like most sensing and measurement devices, GNSS sensors

exhibit a fundamental uncertainty in their measurements. For

GNSS sensors in particular, the sources of this uncertainty

can be categorized into three clusters. A first group includes

inherent errors, such as measurement errors due to deviations

in satellite clocks, signal delays in the tropo- and ionosphere

TABLE I
DATA PROCESSING LEVELS

Level Description

Level 0 (L0) Raw (unprocessed) data, it is data gathered from data
sources (sensors, smartphones, etc.) at full resolution.

Level 1 (L1) Annotated data, it is the original data at full resolution
but annotated with ancillary information, time refer-
enced and transformed to a standardized format.

Level 2 (L2) Derived data from automatic processes, including qual-
ity improvements.

Level 3 (L3) Augmented data, L2 data enriched by means of infer-
ence, data mining techniques and external data sources.

Level 4 (L4) Aggregated data as insights and analytics.

and the unpredictable effects of receiver noise and multipath

fading [17]. These errors are typically of the order of 1 meter.

The second cluster groups errors caused primarily by the

spatial context in which the GNSS device is being utilized.

The inability to accurately determine a position in urban

canyons or underground has been established repeatedly in

literature [5, 18]. Similarly, land use and – in the case of

mobility studies – the transportation mode can significantly

influence the accuracy of coordinates gathered using GNSS.

Thus, these issues can lead to positioning errors if the position

fix is inaccurate, or missing data in case a fix could not be

determined at all. Finally the difference between cold, warm

and hot starts of the GNSS sensor device can also lead to

missing data [7].

B. Level 1 - Annotated data

In this stage the raw GNSS data is annotated, time referenced

and converted to a standardized format for further processing.

The data itself is not modified, therefore no additional errors

are introduced unless the transformation process is flawed, for

instance as a result of software bugs.



C. Level 2 - Derived data

Processes at this level may execute some operations to

prepare the data for further analysis and to potentially improve

the quality of the data. Several such processes can be applied.

Interpolation is used to replace missing data with calculated

information derived from adjacent points [19]. Positioning

errors can also be reduced by attempting to snap coordinates

to a known network, by filtering outliers based on one or more

properties of the measurements [20] or their context [21], or

by applying smoothing techniques [11].

D. Level 3 - Augmented data

After the preprocessing stage, the spatio-temporal measure-

ments are passed through an activity detection algorithm,

which is responsible for discovering potential activity of the

user (i.e. movement). If an activity is detected, it continues

to the trip segmentation process. There, the activity is further

analyzed to detect intermediate stops. These stops might indi-

cate a change of transport mode. The transport mode for each

segment is determined. Finally each segment is map matched

to align the GNSS track to the road network. This step can

help with reducing missing data, by imputing intermediate

locations, and can also reduce positioning errors, by aligning

the geometry to the network.

Once the trip geometries are aligned to the network, it is

fairly trivial to link specific measurements to the most appro-

priate edge in the network graph. This enables the aggregation

of speeds, traffic intensities, etc. for specific network edges.

Other processes, such as trip purpose imputation, may also

run at this level. The data can also be augmented with, for

example, weather information or personal information about

the people undertaking the trips (e.g. age, social status, . . . ).

E. Level 4 - Aggregated data as insights and analytics

The trips and trip segments, along with their purposes,

transport modes and other annotations can now be aggregated

into specific indicators that are useful for researchers, urban

planners and policy makers, such as the modal split, distribu-

tions of the travelled distance and origin-destination matrices.

Additionally, the network linked measurements can be used to

construct speed and intensity maps.

IV. ERROR PROPAGATION

As geospatial data is usually the subject of a large number

of transformations and Geographic Information System (GIS)

operations, the propagation of errors present in the data is of

utmost importance [22, 23]. Errors the input data propagate

to the outputs of each individual process. As some of these

processes may run sequentially, the output of one process is

likely used as input for other processes, and therefore the

errors continue to propagate. Heuvelink proposes the use of

Taylor series expansion to quantify the output error U(.) if

the GIS operation g(.) is non-linear. Alternatively, one can

use the Monte Carlo method, where one computes statistics of

the output distribution by executing g(a1, . . . , am) repeatedly

with randomly sampled values ai from the input distribution.

The Monte Carlo method is easier to apply than the Taylor

series expansion if g(.) is a complex operation, but only

yields numerical results, and care has to be taken to properly

condition the input values in case their distributions Ai are

correlated.

The processing required for GNSS mobility studies requires

complex transformations that cannot easily be described in

terms of mathematical formulas or in- and output distributions.

Often the input values will also be heavily correlated. As shown

in Section II, a number of metrics to define the output quality

of some of these individual processes have been described in

literature, but the error propagation within a process chain

formed by these individual modules has not yet been suffi-

ciently studied.

Figure 2 illustrates how low-level errors can propagate to

higher levels and thereby affect derived information, such as

modal split statistics, average distances or trip durations. In

this example, a trip consisting of consecutive segments of

foot, car and foot transportation is oversegmented, introducing

short walking and driving segments, during periods which

exclusively consist of car and walking, respectively. These

oversegmentations and mode misclassications lead to vastly

different travel statistic and modal split outputs. Further steps

in the processing chain can exacerbate this issue. If the map

matching fails because the raw locations are too distant from

the network, it can create a gap in the matched trajectory, which

potentially decreases its length. Two additional problems may

occur if there has been a transport mode misclassification. The

points could either be linked to the wrong type of network (e.g.

the pedestrian instead of the car network), which can cause

needless detours and therefore increase the trip length, or the

misclassifications could lead to gaps if there is no network for

the incorrectly chosen transport mode.

V. ADDITIONAL METRICS

To be to able to accurately characterize the quality and

credibility of reported transport indicators, it is necessary to

calculate quality measurements for each step in the processing

chain separately. These measurements can then be aggregated

into distributions if several measurements are combined to

form a new, higher level entity, such as the segmentation of

a set of spatio-temporal measurements into one or more trip

segments. These calculations preferably occur for each entity

that is produced by the process individually, but if no such

calculations exist, one can instead fall back to using more

general, pre-calculated metrics. We present such metrics for

spatio-temporal measurement sequences and map matched trip

segments.

A. Spatio-temporal measurement sequences

For spatio-temporal measurement sequences in GNSS track-

ing data, we calculate seven metrics. First, we determine the

distribution of the time differences between subsequent points.

Secondly, the heading changes between subsequent points are

measured. Then the distance and time difference between

the subsequent points are used to calculate the speeds. That



information is later used to determine the speed difference

between successive measurements, along with the discrepancy

between the calculated speed and the speed that is measured

by the GNSS device, if that is available. For each of these

metrics, a distribution is sketched using Bowley’s seven-figure

summary [24].

B. Map matched trip segments

Map matching services are typically not able to completely

match a trajectory to a given network. This can lead to gaps

in the matching, or to the non-alignment of a number of

individual points. Thus, we determine the number of non-

aligned points and the ratio of non-aligned points compared

to the total number of points in the segment. For the gaps, we

calculate the distance and duration between the start and the

end of the gap (i.e. the final aligned point before the gap and

the first aligned point after the gap, respectively). Additionally,

we also consider the distribution of the distances between the

original and network-aligned coordinates, and the duration and

length of the micro-segments that are created by the matching

process. Finally, if the specific map matching implementation

supports this, we also keep track of the confidence values that

are produced by the algorithm along with the actual matching.

VI. CONCLUSIONS

This paper presents a systematic analysis of error sources

and error propagation in mobility studies. Previous research has

focused on the validity of specific processes. These processes

form a chain of operations that transform raw data to high level

mobility indicators. Research has shown that errors that occur

in the early processing stages can have profound effects on the

later stages and the final results. Traditional metrics such as

accuracy and recall are useful in many cases, but care must be

taken to interpret those metrics correctly. Accuracies as high

as 94% can be achieved for transport mode classification, but

they may hide subtle issues, such as oversegmentation, which

can have a serious impact on the validity of common mobility

indicators, such as travelled time and distance with each

transport mode. Our future research will focus on developing

metrics that can be used to more clearly define the propagation

of errors throughout the processing chain, along with applying

and evaluating this technique on a number of data sets.
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