
Error-Tolerant Graph Matching:
A Formal Framework and Algorithms

H. Bunke

Department of Computer Science,University of Bern,
Neubr/ickstr. 10, CH-3012 Bern, Switzerland

bunke@iam.unibe.ch

Abstract. This paper first reviews some theoretical results in error-
tolerant graph matching that were obtained recently. The results in-
clude a new metric for error-tolerant graph matching based on maximum
common subgraph, a relation between maximum common subgraph and
graph edit distance, and the existence of classes of cost functions for
error-tolerant graph matching. Then some new optimal algorithms for
error-tolerant graph matching are discussed. Under specific conditions,
the new algorithms may be significantly more efficient than traditional
methods.

Keywords: structural pattern recognition, graphs, graph matching, error-tolerant

matching, edit distance, maximum common subgraph, cost function

1 I n t r o d u c t i o n

In structural pattern recognition, graphs are widely used for object representa-

tion. Typically, parts of a complex object, or pattern, are represented by nodes,

and relations between the various parts by edges. Labels and/or attributes for

nodes and edges are used to further distinguish between different classes of nodes

and edges, or to incorporate numerical information in the symbolic representa-

tion. Using graphs to represent both known models from a database and un-

known input patterns, the recognition task turns into a graph matching problem.

That is, the database is searched for models that are similar to the unknown

input graph.

Standard algorithms for graph matching include graph isomorphism, sub-

graph isomorphism, and maximum common subgraph search [1, 2]. However,

in real world applications we can't always expect a perfect match between the

input and one of the graphs in the database. Therefore, what is needed is an

algorithm for error-tolerant matching, or equivalently, a method that computes

a measure of similarity between two given graphs.

Numerous appScations of exact and error-tolerant graph matching have been

described in the literature. In the reviews [3, 4] applications such as character

recognition, schematic drawing analysis, 2-D shape analysis, stereo matching,

interpretation of 3-D objects, dynamic scene analysis, machine learning and dis-

covery, medical image analysis and chip inspection have been reported. Addi-

tional applications are described in [5, 6, 7, 8, 9].

In this paper we review some recent work in the area of graph matching

with an emphasis on error-tolerant graph matching. Basic definitions and no-

tations are introduced in Section 2. Then in Section 3, some theoretical results

are presented, showing relations between the concepts of graph edit distance

and maximum common subgraph. Recent algorithms for error-tolerant graph

matching are discussed in Section 4. Finally, in Section 5 some conclusions are

drawn.

2 A Formal Framework for Error-Tolerant Graph

Matching

There are various notations and definitions of error-tolerant graph matching

that can be found in the literature. In this section we introduce a simple formal

framework following [10]. Let L be a set of labels for nodes and edges. (This set

may consist of objects of any type, for example, symbols from a finite alphabet,

numbers, vectors a.s.o.)

Def. 1: A graph is a triple g = (V,a, fl) where

V is the finite set of nodes,

- a : V --* L is the node labeling function,

- fl : V x V --* L is the edge labeling mnction. []

The set of edges E is implicitly given by assuming that our graphs are fully

connected, i.e., E = V x V. In other words, there exists exactly one edge be-

tween any pair of nodes. This assumption is for notational convenience only and

doesn't restrict generality. If it is necessary to model the situation where edges

exist only between distinguished pairs of nodes, we include a special label null in

the set of labels, L. Edges are directed, i.e., edge (x, y) originates at node x E V

and terminates at node y E V. An undirected graph is obtained as a special

case if fl(x, y) = fl(y, x) for any x, y E V. Node and edge labels come from the

same alphabet, for notational convenience. If node and edge labels need to be

explicitly distinguished, the set L can be partitioned into two disjoint subsets.

If V = 0 then g is called the empty graph.

Def. 2: Let g -= (V, a,/3) and gt = (W, a ' , fir) be two graphs; g' is a subgraph of

g, gt C_ g, if

- W C_ V ,

- a ' (x) = a(x) for all x E V',
- ~ ' ((x , y)) = ~ ((x , y)) for a a (x , y) e y ' × v ' . []

From Def. 2 it follows that, given a graph g = (V, a, j3), any subset V' C V of its

vertices uniquely defines a subgraph. This subgraph is called the subgraph that

is induced by V I.

Def. 3: Let gl = (Vl ,a l , f l l) and g2 = (V2,a2,/~2) be two graphs. A graph

isomorphism between gl and g2 is a bijective mapping f : V1 ~ V2 such that

- a (x) = for a l l x e Vl,

- = Z 2 ((/ (x) , / (y))) for • × []

If k] = V2 = 0, then f is called the empty graph isomorphism. If f : V~ --, V2 is

a graph isomorphism between g1 and g2, and g2 is a subgraph of another graph

g3, i.e. g2 _C g3, then f is termed a subgraph isomorphism from gl to g3.

Def. 4: Let g, gl and g2 be graphs. The graph g is a common subgraph of gl

and g2 if there exist subgraph isomorphisms from g to gl and from g to g2. []

Def. 5: Let gl and g2 be two graphs. A graph g is called a maximum common

subgraph of gl and g2 if g is a common subgraph of gl and g2, and there exists

no other common subgraph of gl and g2 that has more nodes than g. []

Def. 6: Let gl = (Vl,al,j31) and g2 = (V2,a2,~2) be two graphs. An error-

tolerant graph matching (etgm) from gl to g2 is a bijective function f : Izl --* r~2,

where r~l C_ V1 and I72 C_ V2. []

We say that node x E V1 is substituted by node y E I~2 if f (x) = y. If

at (x) = a2(f(x)) then the substitution is called an identical substitution. Oth-

erwise it is termed a non-identical substitution. Any node from V1 - t?l is deleted

from gl, and any node from V2 - r~2 inserted in g2 under f . We will use ~1 and

g~2 to denote the subgraphs of gl and g2 that are induced by the sets V1 and r~2,

respectively.

The mapping f directly implies an edit operation on each node in gl and g2.

I.e., nodes axe substituted, deleted, or inserted, as described above. Addition-

ally, the mapping f indirectly implies edit operations on the edges of gl and g2.

If f (x l) = Yl and f(x2) - Y2, then edge (xl,x2) will be substituted by edge

(Yl,Y2). If a node x is deleted from gl, then any edge incident to x is deleted,

too. Similarly, if a node x' is inserted in g2, then any edge incident to x I is in-

serted, too. Obviously, any etgm f can be understood as a set of edit operations

(substitutions, deletions, and insertions of both nodes and edges) that transform

a given graph gl into another graph g2.

E x a m p l e 1: A graphical representation of two graphs is given in Fig. 1. For

these graphs, we have:

X X X X

g , : g 2 :

Y Y Z

Fig. 1. Two graphs gl and g2

V1 = {1,2,3}; V2 = {4,5,6,7}; L = { X , Y , Z , a , b , c , null}.

a i : 1~--~ X, 2 ~-+ X, 3 ~ Y .

a2: 4~-, X, 5 H X, 6~--~ Y, 7~--~ Z.

j31: (1 , 2) ~ a, (1 , 3) ~ b, (2,3) ~ b.

&: (4, 5) ~ a, (4, 6) ~-~ c, (4, 7) ~ b, (5, 6) ~-~ c, (5, 7) ~-~ b.

All other edges are labeled with null and not shown in Fig. 1.

Three examples of etgm are:

- f l : 1 ~--~ 4,2 ~-* 5 , 3 H 7 with ~?] = {1,2,3} and V~2 = {4,5,7}

- f 2 : 1 ~-+ 4, 2 ~-~ 5, 3 ~-~ 6 with V1 = {1, 2,3} and V2 = {4, 5, 6}

- f 3 : 1 ~-* 4,2 ~ 5 with V1 = {1,2} and V2 = {4, 5}

Under f l , nodes 1,2 and 3 are substituted by nodes 4,5, and 7, respectively.

Consequently, edges (1, 2), (1, 3), and (2, 3) are substituted by (4, 5), (4, 7), and

(5, 7), respectively. The substitution of nodes 1 and 2 by 4 and 5 are identical

substitutions that involve no label change; there are no label changes involved

in the edge substitutions, either. The label Y of node 3 is substituted by Z of

node 7, and node 6 together with its incident edges (4, 6) and (5, 6) is inserted

in g2. There are, of course, many other etgm's from gl to g2. []

Def. 7: The cost of an etgm f: V1 ~ G from a graph gl = (Vl ,a l , f l l) to a

graph g2 = (V2, a2, f12) is given by

z(f) = E vl-v c d(z) + E ev -v +

where

- C•d(X) is the cost of deleting a node x E VI - ~7~ from gl,
- c,~i(x) is the cost of inserting a node x E V2 - V2 in g2,

- cn~(x) is the cost of substituting a node x e l>l by f (x) e ~'2,
- Ced(e) is the cost of deleting an edge from/~1 in gl,

- cei(e) is the cost of inserting an edge in/~2 in g2,

- ces(e) is the cost of substituting an edge e = (x,y) E

f (y)) e × ½,
- E1 × V1) - × & × Y:) - × 72).

All costs are non-negative real numbers.

171 x I71 by e'

[]

The costs introduced in Def. 7 are used to model the likehood of errors and

distortions that may corrupt ideal patterns. Typically, the more likely a certain

distortion is to occur, the lower is its cost. Concrete values of Cud , Cni,... , Ces

have to be chosen dependent on the particular application. Note that the dele-

tion of edges from I71 x I:1 and the insertion of edges in V2 x V2 is modeled via

edge substitutions (replacing label l ¢null by null, or replacing null by l ¢nulI).

Under the simple model introduced in this paper, the deletion, insertion, and

substitution of an edge form V1 × I:1 all necessarily have the same cost. However,

it is straightforward to extend this model by introducing individual substitution

costs for the edges from $71 × V1 depending on the edge label. Thus different costs

:an be assigned to the deletion, insertion and substitution of an edge from V1 x V1.

Usually it is assumed that the costs Cud(X),Cni(x), and cn~(x) don't de-

pend on node x; neither do Ced(e),Cei(e), and ces(e) depend on edge e. In

other words, Cnd(X),Cni(x), and cns(x) will be the same for any node x, and

ced(e),cei(e), and ees(e) will be the same for any edge e. Thus the notation

cud(x) = Cud, Cni(X) = C,~i,...,ces(e) = ces will be used in the following. The

tuple C = (Cud, Cni, cns, C~d, Cei, Ce~) is called a cost function. If the cost function

C is to be explicitly mentioned, the notation 7 c (f) is used instead of v(f)- Usu-

ally it is assumed that the cost of an identical node or edge substitution is zero,

while the cost of any other edit operation is greater the zero.

Def. 8: Let f be an etgm from gl to g2 and C a cost function. We will call

f an optimal etgm under C if there is no other etgm f ' from gl to g2 with

"rc(f') < "yc(f). []

The cost of an optimal etgm, ? c (f) , is also called the edit distance between

gl and g2, d(gl, g2). It corresponds to the minimum cost sequence of graph edit

operations that transform one graph into the other. For a given cost function C

there are usually several optimal etgm's from a graph gl to another graph g2.

E x a m p l e 2: Consider cost function C = (Cud, cni, cn~, Ced, cei, ces) = (1, 1, 1, 1, 1,

1). Then the etgm f l given in Example 1 has cost 7 c (f l) = 4 (one node label

substitution, one node insertion, and two edge insertions). It can be easily veri-

fied that there is no other etgm from gl to g2 that has a smaller cost under C.D

In a typical application that involves etgm we are given a database of model

graphs gl , . -- ,gu and an input graph g, and we match g with g l , . - . ,gu in order

to find the model gi that is most similar to g. Using the terminology introduced

above, we are looking for the gi that has the smallest edit distance d(g, gi) to

g. One crucial observation in the context of this task is the fact that, given two

graphs g and g', their edit distance d(g, g') crucially depends on the underlying

cost function. Following is an example.

E x a m p l e 3: The etgm fl given in Example 1 is optimal under the cost func-

tion C = (1, 1, 1, 1, 1, 1); see Example 2. However, under cost function C ~ --

(1,1,3,1,1,1) we observe 7c ' (f l) = 6 and 70,(f2) = 5. Thus f l is no longer

optimal. Actually it can be easily verified that f2 is optimal under Cq If we

consider a third cost function C" = (1, 1, 7, 1, 1, 7) then f3 becomes optimal. []

3 E r r o r - T o l e r a n t G r a p h M a t c h i n g a n d M a x i m u m

C o m m o n S u b g r a p h

As it was noticed in the last section, the underlying cost function has an impor-

tant influence on optimal etgm. For practical applications, unfortunately, there is

no automatic procedure known today in order to derive a cost function, suitable

for a given task, from a set of samples. Typically, cost functions are defined in

an ad hoc manner, purely guided by heuristics and intuition. In order to avoid

the problem of finding a suitable cost function, a new graph distance measure

based on the maximum common subgraph of two graphs was proposed in [11].

Given two non-empty graphs, gl and g2, their distance is defined as

tmcs(g , g:)l (1)
5 (m , g:) = 1 - m x(Ig l, tg21)

In this definition, mcs(91,92) denotes the maximum common subgraph of 91 and

g2, and lgl is the number of nodes of a graph g. First of all, one notices that no

edit operations are involved in eq.(3.1) and, consequently, no cost function has

to be defined to compute ~f(gl, g2) for any two given graphs gl and g2. Moreover,

it was shown in [11] that the distance in eq.(3.1) has some interesting properties.

In particular it is a metric satisfying

o t (2)

5(gl, g2) = 0 ¢:~ gl and g2 are isomorphic to each other (3)

 (gl,g2) (4)

~(gl,g3) ~ 5(gl,g~)+5(g2,g3) (5)

for any three graphs gl, g2 and g3. It is known that the edit distance d(gl,g2)
introduced in Section 2 is a metric if and only if the underlying cost function

satisfies certain conditions. These conditions, however, may be too restrictive or

counterintuitive for certain problem domains. But there are applications where

metric properties of the underlying distance measure are very much desired. One

example is information retrieval from image and video databases [6]. This area

relies heavily on browsing to locate required database elements. Thus it is neces-

sary for the distance measure to be well behaved to allow sensible navigation of

the database. For example, property (2) makes sure that the range of all possible

distances is known in advance, regardless of the particular objects to be com-

pared. By means of property (3) objects have zero distance if and only if they

are identical. Eq.(4) implies that the distance from any object A to any object B

is the same as from B to A. Finally, because of the triangular inequality (5), we

know that no two objects that are dissimilar to each other can be both similar

to the same object.

The graph distance measure according to eq.(1) is based on the maximum

common subgraph of two graphs. Obviously, it can be regarded an alternative to

graph edit distance as introduced in Section 2. However, it was recently shown

that there is also a direct relation between graph edit distance and maximum

common subgraph in the sense that graph edit distance and maximum common

subg:aph computation are equivalent to each other under a certain cost function

[12]. In [12] the following cost function was considered:

[0, if l(x) = }
cns(x) = [oc, otherwise _ for any x e 1?1,

end(X) = 1 for any x E V1 - 1~1,

c~i(x) = 1 for any x e V2 - IY2

ces(e) = { 0,o%ifotherwise~l((x,y)) = Z2((f(x), f(y))) } for any e = (x,y) E 1?i × I)1, (6)

Ced(e) = 0 for any e = (x,y) e (V1 × V1) - (~1 x ~) ,

ce (e) = 0 for any = (x ,y) e (Vh × ½) - (Y2 × Y2).

Under this cost function, any node deletion and insertion has a cost equal

to one. Identical node and edge substitutions have zero cost, while substitutions

involving different labels have infinity cost. The insertion or deletion of an edge

incident to a node that is inserted or deleted, respectively, has no cost. As for

any two graphs gl = (V1, a l , ~1) and g2 = (V2, a2, t32) there is always an etgm f
with cost c(f) = IVII+ IV2t (corresponding to the case where all nodes together

with their incident edges are deleted from gl, and all nodes with their incident

edges are inserted in g2), any edit operation with infinity cost will never need

to be considered when looking for an optimal etgm. Thus we may think of edit

operations with infinity cost as non-admissible. In other words, under the given

cost function we can restrict our attention on etgm's involving only insertions,

deletions and identical node and edge substitutions, but no non-identical substi-

tutions. For example, for the etgm f3 discussed in Example 1, we have c(f3) = 3
under the considered cost function. Obviously both f l and f2 have infinity cost.

It was shown in [12] that under this cost function the following equation

holds true for any two graphs gl and g2, and a maximum common subgraph g

of gl and g2 (this maximum common subgraph may be empty):

d(gl,g2) = Ig~l+lg21-21gl (7)

Obviously, this equation establishes a relation between the size tg[of the

maximum common subgraph of two graphs gl and g2, and their edit distance

d(gl,g2). Thus given one of the two quantities and the size of gl and g2, we

can immediately calculate the other. It was furthermore shown in [12] that the

mapping f : ~ ~ V2, defining an optimal etgm according to Deft 8, represents a

maximum common subgraph of gl and g2. I.e., f is a graph isomorphism between

#1, the graph induced by V1, and ~2, the graph induced by 1~2, and there are

no larger subgraphs in gl and g2, respectively, that are isomorphic to each other.

This theoretical result has an interesting practical consequence, namely, any

algorithm for graph edit distance computation can be applied for maximum

common subgraph computation if it is run under the cost function given in (6).

Conversely, any algorithm that computes the maximum common subgraph of

two graphs can be used for graph edit distance computation under cost function

(6), using formula (7). A similar relation between string edit distance and longest

common subsequence has been known for long [13].

The results derived in [12] were recently shown to hold not only for the cost

function given in (6), but for a whole class of infinitely many cost functions. In

[10] cost functions C with c~s = c¢~ = 0 for identical substitutions and

Cad + ¢ni < Cns and c~d + cni < ce~ (8)

are considered. (Note that (6) is a special case of this class.) It is shown that for

this whole class of cost functions the minimum cost mapping f : ~ ~ ~ repre-

sents a maximum common subgraph of gl and g2 and, conversely, any maximum

common subgraph represents a minimum cost mapping in the sense of Def. 8.

Intuitively speaking, the conditions in (8) imply that a node deletion together

with a node insertion will be always preferred over a node or an edge substitution

because of a smaller cost. This means that all nodes and edges in gl that can't be

mapped to a node or an edge with an identical label in g2 will be deleted from gl.

Similarly, all nodes and edges in g2 that are not part of the mapping f (i.e, that

don't have a corresponding node or edge with identical label, respectively) will

be inserted. What remains for the mapping f is exactly the maximum common

subgraph of gl and g2- An example is the etgm f3 in Example 1. It is optimal

under the cost function C" = (1, 1,7, 1, 1, 7) as explained in Example 3. As a

matter of fact, f3 corresponds to the maximum common subgraph of gl and g2

in Fig. 1, and cost function C" satisfies conditions (8).

The equivalence of maximum common subgraph and graph edit distance com-

putation shown in [10] is based on the assumption cei(e) = ced(e) = 0 for any

9

edge e from/~1 and/~2, respectively (see Def. 7). Thus, no individual costs for

the deletion of edges from/~1, and no individual costs for the insertion of edges

in/~2 are taken into regard. The reason is that these operations are automati-

cally implied by the deletion of nodes from (V1 - ~) , and the insertion of nodes

in (V2 - ~'2), respectively. Thus it is assumed that their costs are included in

the costs of the corresponding node deletions and insertions. In other words, the

cost of a node deletion (insertion) includes not only the cost of deleting (insert-

ing) a node, but also the deletion (insertion) of the edges that connect it to the

other nodes of the graph. This assumption may be justified in many applications.

The equivalence of graph edit distance and maximum common ~ subgraph

shown in [10] yields additional insight on the measure 6(g1,g2) of eq. (1). Al-

though no explicit costs of graph edit operations are needed to compute 6(gl, g2),
there are, nevertheless, costs involved in an implicit fashion, because the quantity

Imcs(gl, g2)l in (1) is equivalent to the graph edit distance d(gl, g:) in the sense

of eq. (7), assuming a cost function satisfying (8). In other words, whenever we

compute the maximum common subgraph of two graphs we may consider this

~s a graph edit distance computation under an arbitary cost function belonging

to the class studied in [10]. From this point of view, the measure defined in (1)

may be still regarded an advantage over convential graph edit distance compu-

tation because it is robust against changing the costs of the underlying graph

edit operations in a fairly wide range.

Another important result shown in [10] is the existence of classes of cost

functions that always result in the same optimal mapping] : V1 ---* V2 for any

two given graphs gl and g2. Intuitively speaking, if we consider two cost functions

C and C', where C' is a scaled version of C, i.e., C~nd = OLCnd , Ctni : O l C n i , . . . , C1ei =

ace~ for some a > 0, then we expect that any etgm f that is optimal under C

is also optimal under C t for any two given graphs gl and g2. Just the absolute

cost of the two optimal etgm's would differ by a factor a, i.e., 7c ' (f) = aTe(f) .

In [10] it was shown that any optimal etgm under a cost function C is optimal

under another cost function C ~ not only if C ~ is a scaled version of C, but for a

much larger class of cost functions C ~. If the conditions

(Cni -Jr C n d) / C n s ~- (Cni -~ Clnd)/Clns and (9)

= (l O)

for cost functions C and C' are satisfied then any etgm f is optimal under C if and

only if it is optimal under C I for any two given graphs gl and g2. Furthermore,

there is a relation between 7c(]) and 7c ' (]) that is similar to eq. (7). Given

the edit distance under cost function C we can analytically compute the edit

distance under C' using just the parameters of C and C r and the size of the two

graphs under consideration. Hence, given an algorithm that was designed for a

particular cost function C, we can use the same algorithm for any other cost

function C ~ for which (9) and (10) are satisfied. The existence of similar classes

of cost functions for string edit distance has been discovered recently [14].

10

4 A l g o r i t h m s f o r E r r o r - T o l e r a n t G r a p h M a t c h i n g

All results presented in Section 3 are independent of the algorithm that is actu-

ally employed for graph edit distance or maximum common subgraph computa-

tion. In the past, various approaches to etgm have been proposed. The most com-

mon approach is based on tree search with A*-like algorithms [15]. The search

space of the A* algorithm can be greatly reduced by applying heuristic error es-

timation functions. Numerous heuristics have been proposed [16, t7, 18, 19, 20].

All of this methods are guaranteed to find the optimal solution but require ex-

ponential time in the worst case. Suboptimal, or approximative methods, on

the other hand, are polynomially bounded in the number of computation steps

but may fail to find the optimal solution. For example, in [21, 22] probabilistic

relaxation schemas are described. Other approaches are based on neural net-

works such as the Hopfietd network [23] or the Kohonen map [24]. Also genetic

algorithms have been proposed recently [25, 26]. In [27] an approximate method

based on maximum flow is introduced. However, all of these approximate meth-

ods may get tracked in local minima and miss the optimal solution. Optimal

algorithms to find a maximum common subgraph of two graphs are based on

maximum clique detection [1] or backtracking [28]. A suboptimal method using

a neural network has been reported in [29].

In the remainder of this section we briefly review three optimal methods

for etgm that were proposed recently. In [30, 31] a new method is described for

matching a graph g against a database of model graphs gl , . . . , gn in order to find

the model gi with the smallest edit distance d(g, gi) to g. The basic assumption

is that the models in the database are not completely dissimilar. Instead, it is

supposed that there are graphs s'js tL~ occur simultaneously as subgraphs in

several of the g~s, or multiple times in the same gi. Under a naive procedure,

we will match g sequentially with each of the g~s. However, because of common

subgraphs sj shared by several models gi the s~.s will be matched with g multiple

times. This clearly implies some redundancy.

In the approach described in [30, 31] the model graphs g l , . . . ,gn are pre-

processed generating a symbolic data structure, called network of models. This

network is a compact representation of the models in the sense that multiple oc-

curences of the same subgraph sj are represented only once. Consequently, such

subgraphs will be matched only once with the input. Hence the computational

effort will be reduced. A further enhancement of the computational efficiency

of the method is achieved by a lookahead procedure. This lookahead procedure

returns an estimation of the future matching cost. It is precise and can be effi-

ciently computed based on the network.

Figs. 2 and 3 show the results of an experiment that was done to compare the
new method with a traditional A*-based algorithm for etgm. In this experiment

random graphs were used as input. Fig. 2 shows the computation time needed
by the new and the traditional algorithm depending on a growing number of

]]

40,0 New ,Mgod4hm t1
/

/
t

/

/

/
/

/

/
/

/ /

/
x

/
~o,o

°~o.o ~,o ~0,0

Number o~verflo~

Fig. 2. Computation time depend-
ing on the size of the underlying
graphs for constant edit distance.

~ ~,0

t
]

4O.O

l o o

'~ - - Tr adillomd A~god~*n~
~.o New A~ lh rn / ~ ~

°%:.
S,o l o .o ts.o

N u m l ~ of lab~ eeors

Fig. 3. Computation time depend-
ing on the edit distance for constant
size ot the underlying graphs.

nodes in the graphs to be matched, keeping the number of errors, i.e., the edit

distance between the two graphs, constant. Fig. 3 shows a similar experiment

where the size of the underlying graphs is kept constant but their edit distance is

increased. The figures clearly show the superior performance of the new method.

For further experimental results and a more detailed discussion see [30, 31].

In [4, 30] a fast algorithm for graph and subgraph isomorphism detection was

described. It is based on an intensive preprocessing step in which a database of

model graphs is converted into a decision tree. At run time, the input graph is

classified by the decision tree and all model graphs for which there exists a sub-

graph isomorphism from the input are detected. If we neglect the time needed for

preprocessing, the computational complexity of the new subgraph isomorphism

algorithm is only polynomial in the number of input graph vertices. Further-

more, it is independent of the number of model graphs and the number of edges

in any of the graphs. However, the decision tree that is constructed in the pre-

processing step is of exponential size in terms of the number of vertices of the

model graphs. The actual implementation described by the authors is able to

cope with a single graph in the database of up to 22 nodes, or up to 30 models

in the database consisting of up to 11 nodes each.

Recently the decision tree method was extended from exact graph and sub-

graph isomorphism detection to e~gm [32]. Actually, there are different possible

approaches. In one approach, error correction is considered at the time of the

creation of the decision tree. That is, for each model graph a set of distorted

copies are created and compiled into the decision tree. The uumber of distorted

copies depends on the maximal admissible error. At run time, the decision tree

is used to classify the unknown input graph in the same way as in case of exact

subgraph isomorphism detection. The time complexity of this procedure at run

time is only quadratic in the number of input graph nodes. However, the size of

the decision tree is exponential in the number of vertices of the model graphs

and in the degree of distortion that is to be considered. Therefore, this approach
is limited to (very) small graphs.

!2

ao,O

r=l~.D

,i/,l,o

;t';J A~

0'%0

- - Dscisio~ Tr~e
. CocwenSonet A ~ i ~ m

/ /
/

/

/

J

8 . 0 10.0 12.0 14,0 16,o

Nurrb~ of vetoes

Fig. 4. Computation time in sec-
onds for v~ = I and a growing num-
ber of vertices

1 5 0

o s.o !" " '~'"

°I 2.0 ~,o 4.0 S.o

Fig. 5. Computation time in sec-
onds for v ~ = 1 and a growing num-
ber of models.

In the second approach, the error corrections are considered at run time

only. That is~ the decision tree for a set of model graphs does not incorporate

any information about possible errors. Hence, the decision tree compilation step

is identical to the original preprocessing step and, consequently, the size of the

decision tree is exponential only in the size of the model graphs. At run time, a

set of distorted copies of the input graph are constructed such that all possible

error corrections up to a certain error threshold are considered. Each graph in

this set is then classified by the decision tree. The run time complexity of this

method is O(~n 2(~+1)) where n is the number of nodes in the input graph and

is a threshold that defines the maximum number of admissible edit operations.

Figures 4 and 5 show the results of ~n experiment where the second approach

was compared to a conventional A*-based etgm algorithm. In this experiment

the threshold was set to # = 1. The input graphs were generated by copying

one of the model graphs and then inserting or deleting an edge. Fig. 4 shows the

time needed by both algorithms when matching an input graph with one model

graph depending on the number of nodes of the input and model. In Fig. 5 the

input and the model graph consists of 11 vertices and the number of models

is varied from 1 to 5. Fig. 5 confirms the result of the theoretical complexity

analysis, i.e., the time complexity of the decision tree algorithm is independent

of the number of models in the database. The present implementation is limited

to graphs consisting of up to a maximum of 16 nodes in case of just one error.

For further details and additional experimental results see [32].

The decision tree approach was furthermore extended to maximum common

subgraph detection [7, 6]. For this problem it is necessary, unfortunately~ to con-

sider all permutations of the adjacency matr ix of the input graph, which leads

to an exponential time complexity at run time despite the fact tha t all permu-

tations of the models have been encoded in the decision tree. Using a pruning

strategy however, the run time of the resulting algorithm is still • significantly

bet ter than that of traditional algorithms. For further details and experimental

results see [6, 7].

13

5 Conclusions

Graph matching is an area where steady progress has been taking place for many

years. Recently, the focus of attention has shifted from 'simple' combinatorial

procedures, comparing two graphs at a time, to suboptimal stochastic algorithms

and optimal algorithms that employ some kind of preprocessing to reduce the

computational effort at run time. Future applications of graph matching with

new challenges are emerging, for example, image and video database retrieval, or

image sequence analysis. There are many interesting open problems in etgm, for

example, the combination of stochastic and preprocessing based optimal meth-

ods, or a deeper study of the influence of the cost function on the complexity of

matching algorithms.

References

[1] J.R. Ullman. An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery, 23(1):31-42, 1976.

[2] G. Levi. A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. Calcolo 9, pages 341-354, 1972.

[3] H. Bunke. Structural and syntactic pattern recognition, in C.H. Chen, L.F. Pan,
P. Wang, Handbook of Pattern Recognition and Computer Vision, World Scientific
Publ. Co., Singapore, 1993, 163-209.

[4] H. Bunke and B. Messmer. Recent advances in graph matching. Int. Journal of
Pattern Recognition and Art. Intell., Vol. 11, No. 1, 1997 169-203.

[5] H. Walischewski. Automatic knowledge acquisition for spatial document interpre-
tation. Proc. 4th ICDAR, Ulm, 1997, 243-247.

[6] K.1K. Shearer. Indexing and retrieval of video using spatial reasoning techniques.
PhD thesis, Curtin University of Technology, Perth, Australia, 1998.

[7] K. Shearer, H. Bunke, S. Ventakesh and D. Kieronska. Efficient graph matching
for video indexing. Accepted for publication in Computing, Springer Verlag, 1998.

[8] L.P. Cordelia, P. Foggia, C. Sansone and M. Vento. Subgraph transformations for
the inexact matching of attributed relational graphs. Accepted for publication in
Computing, Springer Verlag, 1998.

[9] T. Lourens. A biologically plausible model for corner-based object recognition
from color images. PhD thesis, University of Groningen, The Netherlands, 1998.

[10] H. Bunke. Error correcting graph matching: On the influence of the underlying
cost function. Submitted for publication.

[11] H. Bunke and K. Shearer. A graph distance metric based on maximal common
subgraph. Accepted for publication in Pattern Recognition Letters.

[12] H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18, 1997, 689-694.

[13] R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
o/ the Association for Computing Machinery, 21(1):168-173, 1974.

[14] S. Rice, H. Bunke and T. Nartker. Classes of cost functions for string matching.
Algorithmica, Vol. 18 No. 2, 271-280, 1997.

[15] N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Pato Alto, 1980.

14

[16] W.H. Tsai and K.S Fu. Error-correcting isomorphisms of attributed relational
graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cyber-

netics, 9:757-768, 1979.
[17] L.G. Shapiro and R.M. Haralick. Structural descriptions and inexact matching.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 3:504-
519, 1981.

[18] A. Sanfeliu and K.S. Fh. A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics,

13:353-363, 1983.
[19] M.A. Eshera and K.S. Fu. A graph distance measure for image analysis. IEEE

Transactions on Systems, Man, and Cybernetics, 14(3):398-408, May 1984.
[20] E. K. W0ng. Three-dimensional object recognition by attributed graphs. In

H. Bunke and A. Sanfeliu, editors, Syntactic and Structural Pattern Recognition-

Theory and Applications, pages 381-414. World Scientific, 1990.
[21] R. Wilson, E. Hancock. Graph matching by discrete relaxation. In E.S. Gelsema

and L.N. Kanal, editors, Pattern Recognition in Practice IV: Multiple Paradigms,

Comparative Studies and Hybrid Systems, pages 165-176. North-Holland, 1994.
[22] W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vi-

sion using probabilistic relaxation. IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI, 17(8):749-764, 1995.
[23] J. Feng, M. Laumy, and M. Dhome. Inexact matching using neural networks. In

E.S. Gelsema and L.N. Kanal, editors, Pattern Recognition in Practice IV: Mul-

tiple Paradigms, Comparative Studies and Hybrid Systems, pages 177-184. North-
Holland, 1994.

[24] L. Xu and E. Oja. Improved simulated annealing, Boltzmann machine, and at-
tributed graph matching. In L. Almeida, editor, Lecture Notes in Computer Sci-

ence 412, pages 151-161. Springer Verlag, 1990.
[25] A. Cross, R. Wilson, E. Hancock. Genetic search for structural matching. In B.

Buxton, R. Cipolla (eds.): Computer Vision - FCCV '96, Lecture Notes in Comp.

Science 1064, Springer Verlag, 1996, 514-525.
[26] Y. -K. Wang, K. -C Fan, J. -T Horng. Genetic-based search for error-correcting

graph isomorphism. IEEE Trans. on Systems, Man and Cybernetics, Vol. 27, May,
1997, 588-597.

[27] I. Wang, K. Zhang, G. Chirn. The approximate graph matching problem. Proc.

12th ICPR, Jerusalem 1994, 284-288.
[28] J. Mc Gregor. Backtrack search algorithms and the maximal common subgraph

problem. Software-Practice and Experience, Vol. 12, 1982, 23-34.
[29] A. Shonkry, M. Aboutabl. Neural network approach for solving the maximal

common subgraph problem. IEEE Trans. on Systems, Man and Cybernetics, Vol.
26, 1996, 785-790.

[30] B. T. Messmer. Efficient graph matching algorithms for preprocessed model
graphs. PhD thesis, University of Bern, Switzerland, 1995.

[31] B. Messmer and H. Bunke. A new algorithm for error tolerant aubgraph isomor-
phism. Accepted for publication in IEEE Trans. PAMI.

[32] B. T. Messmer and H. Bunke. Error-correcting graph isomorphism using decision
trees. To appear in Int. Journal of Pattern Recognition and Art. Intelligence.

