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Abstract. This paper first reviews some theoretical results in error- 
tolerant graph matching that were obtained recently. The results in- 
clude a new metric for error-tolerant graph matching based on maximum 
common subgraph, a relation between maximum common subgraph and 
graph edit distance, and the existence of classes of cost functions for 
error-tolerant graph matching. Then some new optimal algorithms for 
error-tolerant graph matching are discussed. Under specific conditions, 
the new algorithms may be significantly more efficient than traditional 
methods. 
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1 I n t r o d u c t i o n  

In structural pattern recognition, graphs are widely used for object representa- 

tion. Typically, parts of a complex object, or pattern, are represented by nodes, 

and relations between the various parts by edges. Labels and/or attributes for 

nodes and edges are used to further distinguish between different classes of nodes 

and edges, or to incorporate numerical information in the symbolic representa- 

tion. Using graphs to represent both known models from a database and un- 

known input patterns, the recognition task turns into a graph matching problem. 

That is, the database is searched for models that are similar to the unknown 

input graph. 

Standard algorithms for graph matching include graph isomorphism, sub- 

graph isomorphism, and maximum common subgraph search [1, 2]. However, 

in real world applications we can't always expect a perfect match between the 

input and one of the graphs in the database. Therefore, what is needed is an 

algorithm for error-tolerant matching, or equivalently, a method that computes 

a measure of similarity between two given graphs. 

Numerous appScations of exact and error-tolerant graph matching have been 

described in the literature. In the reviews [3, 4] applications such as character 



recognition, schematic drawing analysis, 2-D shape analysis, stereo matching, 

interpretation of 3-D objects, dynamic scene analysis, machine learning and dis- 

covery, medical image analysis and chip inspection have been reported. Addi- 

tional applications are described in [5, 6, 7, 8, 9]. 

In this paper we review some recent work in the area of graph matching 

with an emphasis on error-tolerant graph matching. Basic definitions and no- 

tations are introduced in Section 2. Then in Section 3, some theoretical results 

are presented, showing relations between the concepts of graph edit distance 

and maximum common subgraph. Recent algorithms for error-tolerant graph 

matching are discussed in Section 4. Finally, in Section 5 some conclusions are 

drawn. 

2 A Formal Framework for Error-Tolerant Graph 

Matching 

There are various notations and definitions of error-tolerant graph matching 

that  can be found in the literature. In this section we introduce a simple formal 

framework following [10]. Let L be a set of labels for nodes and edges. (This set 

may consist of objects of any type, for example, symbols from a finite alphabet, 

numbers, vectors a.s.o.) 

Def.  1: A graph is a triple g = (V,a, fl) where 

V is the finite set of nodes, 

- a : V --* L is the node labeling function, 

- fl : V x V --* L is the edge labeling mnction. [] 

The set of edges E is implicitly given by assuming that  our graphs are fully 

connected, i.e., E = V x V. In other words, there exists exactly one edge be- 

tween any pair of nodes. This assumption is for notational convenience only and 

doesn't restrict generality. If it is necessary to model the situation where edges 

exist only between distinguished pairs of nodes, we include a special label null in 

the set of labels, L. Edges are directed, i.e., edge (x, y) originates at node x E V 

and terminates at node y E V. An undirected graph is obtained as a special 

case if fl(x, y) = fl(y, x) for any x, y E V. Node and edge labels come from the 

same alphabet, for notational convenience. If node and edge labels need to be 

explicitly distinguished, the set L can be partitioned into two disjoint subsets. 

If V = 0 then g is called the empty graph. 

Def.  2: Let g -= (V, a,/3) and gt = (W, a ' ,  fir) be two graphs; g' is a subgraph of 

g, gt C_ g, if 

- W C_ V ,  

- a ' (x)  = a(x) for all x E V', 
- ~ ' ( ( x , y ) )  = ~ ( ( x , y ) )  for a a  ( x , y )  e y '  × v ' .  [] 



From Def. 2 it follows that,  given a graph g = (V, a, j3), any subset V' C V of its 

vertices uniquely defines a subgraph. This subgraph is called the subgraph that  

is induced by V I. 

Def.  3: Let gl = (Vl ,a l , f l l )  and g2 = (V2,a2,/~2) be two graphs. A graph 

isomorphism between gl and g2 is a bijective mapping f : V1 ~ V2 such that  

- a (x) = for  a l l  x e Vl,  

- = Z 2 ( ( / ( x ) , / ( y ) ) )  for  • × [] 

If k] = V2 = 0, then f is called the empty graph isomorphism. If f : V~ --, V2 is 

a graph isomorphism between g1 and g2, and g2 is a subgraph of another graph 

g3, i.e. g2 _C g3, then f is termed a subgraph isomorphism from gl to g3. 

Def.  4: Let g, gl and g2 be graphs. The graph g is a common subgraph of gl 

and g2 if there exist subgraph isomorphisms from g to gl and from g to g2. [] 

Def.  5: Let gl and g2 be two graphs. A graph g is called a maximum common 

subgraph of gl and g2 if g is a common subgraph of gl and g2, and there exists 

no other common subgraph of gl and g2 that  has more nodes than g. [] 

Def.  6: Let gl = (Vl,al,j31) and g2 = (V2,a2,~2) be two graphs. An error- 

tolerant graph matching (etgm) from gl to g2 is a bijective function f : Izl --* r~2, 

where r~l C_ V1 and I72 C_ V2. [] 

We say that  node x E V1 is substituted by node y E I~2 if f (x)  = y. If 

at (x) = a2(f(x)) then the substitution is called an identical substitution. Oth- 

erwise it is termed a non-identical substitution. Any node from V1 - t?l is deleted 

from gl, and any node from V2 - r~2 inserted in g2 under f .  We will use ~1 and 

g~2 to denote the subgraphs of gl and g2 that  are induced by the sets V1 and r~2, 

respectively. 

The mapping f directly implies an edit operation on each node in gl and g2. 

I.e., nodes axe substituted, deleted, or inserted, as described above. Addition- 

ally, the mapping f indirectly implies edit operations on the edges of gl and g2. 

If f ( x l )  = Yl and f(x2) - Y2, then edge (xl,x2) will be substituted by edge 

(Yl,Y2). If a node x is deleted from gl, then any edge incident to x is deleted, 

too. Similarly, if a node x' is inserted in g2, then any edge incident to x I is in- 

serted, too. Obviously, any etgm f can be understood as a set of edit operations 

(substitutions, deletions, and insertions of both nodes and edges) that  transform 

a given graph gl into another graph g2. 

E x a m p l e  1: A graphical representation of two graphs is given in Fig. 1. For 

these graphs, we have: 



X X X X 

g ,  : g 2  : 

Y Y Z 

Fig. 1. Two graphs gl and g2 

V1 = {1,2,3}; V2 = {4,5,6,7}; L = { X , Y , Z , a , b , c ,  null}. 

a i :  1~--~ X, 2 ~-+ X, 3 ~ Y .  

a2: 4~-, X,  5 H  X, 6~--~ Y, 7~--~ Z. 

j31: ( 1 , 2 ) ~  a, ( 1 , 3 ) ~  b, (2,3) ~ b. 

&:  (4, 5) ~ a, (4, 6) ~-~ c, (4, 7) ~ b, (5, 6) ~-~ c, (5, 7) ~-~ b. 

All other edges are labeled with null and not shown in Fig. 1. 

Three examples of etgm are: 

- f l :  1 ~--~ 4,2 ~-* 5 , 3 H  7 with ~?] = {1,2,3} and V~2 = {4,5,7} 

- f 2 : 1  ~-+ 4, 2 ~-~ 5, 3 ~-~ 6 with V1 = {1, 2,3} and V2 = {4, 5, 6} 

- f 3 : 1  ~-* 4,2 ~ 5 with V1 = {1,2} and V2 = {4, 5} 

Under f l ,  nodes 1,2 and 3 are substituted by nodes 4,5, and 7, respectively. 

Consequently, edges (1, 2), (1, 3), and (2, 3) are substituted by (4, 5), (4, 7), and 

(5, 7), respectively. The substitution of nodes 1 and 2 by 4 and 5 are identical 

substitutions that  involve no label change; there are no label changes involved 

in the edge substitutions, either. The label Y of node 3 is substituted by Z of 

node 7, and node 6 together with its incident edges (4, 6) and (5, 6) is inserted 

in g2. There are, of course, many other etgm's from gl to g2. [] 

Def.  7: The cost of an etgm f:  V1 ~ G from a graph gl = (Vl ,a l , f l l )  to a 

graph g2 = (V2, a2, f12) is given by 

z(f) = E  vl-v  c d(z) + E ev -v  + 

where 

- C•d(X) is the cost of deleting a node x E VI - ~7~ from gl, 
- c,~i(x) is the cost of inserting a node x E V2 - V2 in g2, 

- cn~(x) is the cost of substituting a node x e l>l by f (x )  e ~'2, 
- Ced(e  ) is the cost of deleting an edge from/~1 in gl, 

- cei(e) is the cost of inserting an edge in/~2 in g2, 



- ces(e) is the cost of  substituting an edge e = (x,y) E 

f ( y ) )  e × ½, 
- E1 × V1) - × & × Y:) - ×  72). 

All costs are non-negative real numbers. 

171 x I71 by e' 

[] 

The costs introduced in Def. 7 are used to model the likehood of errors and 

distortions that may corrupt ideal patterns. Typically, the more likely a certain 

distortion is to occur, the lower is its cost. Concrete values of Cud , Cni,... , Ces 

have to be chosen dependent on the particular application. Note that  the dele- 

tion of edges from I71 x I:1 and the insertion of edges in V2 x V2 is modeled via 

edge substitutions (replacing label l ¢null  by null, or replacing null by l ¢nulI). 

Under the simple model introduced in this paper, the deletion, insertion, and 

substitution of an edge form V1 × I:1 all necessarily have the same cost. However, 

it is straightforward to extend this model by introducing individual substitution 

costs for the edges from $71 × V1 depending on the edge label. Thus different costs 

:an be assigned to the deletion, insertion and substitution of an edge from V1 x V1. 

Usually it is assumed that  the costs Cud(X),Cni(x), and cn~(x) don't  de- 

pend on node x; neither do Ced(e),Cei(e), and ces(e) depend on edge e. In 

other words, Cnd(X),Cni(x), and cns(x) will be the same for any node x, and 

ced(e),cei(e), and ees(e) will be the same for any edge e. Thus the notation 

cud(x) = Cud, Cni(X) = C,~i,...,ces(e) = ces will be used in the following. The 

tuple C = (Cud, Cni, cns, C~d, Cei, Ce~) is called a cost function. If the cost function 

C is to be explicitly mentioned, the notation 7 c ( f )  is used instead of v(f)-  Usu- 

ally it is assumed that  the cost of an identical node or edge substitution is zero, 

while the cost of any other edit operation is greater the zero. 

Def.  8: Let f be an etgm from gl to g2 and C a cost function. We will call 

f an optimal etgm under C if there is no other etgm f '  from gl to g2 with 

"rc(f') < "yc(f). [] 

The cost of an optimal etgm, ? c ( f ) ,  is also called the edit distance between 

gl and g2, d(gl, g2). It corresponds to the minimum cost sequence of graph edit 

operations that  transform one graph into the other. For a given cost function C 

there are usually several optimal etgm's from a graph gl to another graph g2. 

E x a m p l e  2: Consider cost function C = (Cud, cni, cn~, Ced, cei, ces) = (1, 1, 1, 1, 1, 

1). Then the etgm f l  given in Example 1 has cost 7 c ( f l )  = 4 (one node label 

substitution, one node insertion, and two edge insertions). It can be easily veri- 

fied that  there is no other etgm from gl to g2 that  has a smaller cost under C.D 

In a typical application that  involves etgm we are given a database of model 

graphs gl , .  -- ,gu and an input graph g, and we match g with g l , . - .  ,gu in order 

to find the model gi that  is most similar to g. Using the terminology introduced 



above, we are looking for the gi that  has the smallest edit distance d(g, gi) to 

g. One crucial observation in the context of this task is the fact that,  given two 

graphs g and g', their edit distance d(g, g') crucially depends on the underlying 

cost function. Following is an example. 

E x a m p l e  3: The etgm fl given in Example 1 is optimal under the cost func- 

tion C = (1, 1, 1, 1, 1, 1); see Example 2. However, under cost function C ~ -- 

(1,1,3,1,1,1)  we observe 7c ' ( f l )  = 6 and 70,(f2) = 5. Thus f l  is no longer 

optimal. Actually it can be easily verified that  f2 is optimal under Cq If we 

consider a third cost function C" = (1, 1, 7, 1, 1, 7) then f3 becomes optimal. [] 

3 E r r o r - T o l e r a n t  G r a p h  M a t c h i n g  a n d  M a x i m u m  

C o m m o n  S u b g r a p h  

As it was noticed in the last section, the underlying cost function has an impor- 

tant influence on optimal etgm. For practical applications, unfortunately, there is 

no automatic procedure known today in order to derive a cost function, suitable 

for a given task, from a set of samples. Typically, cost functions are defined in 

an ad hoc manner, purely guided by heuristics and intuition. In order to avoid 

the problem of finding a suitable cost function, a new graph distance measure 

based on the maximum common subgraph of two graphs was proposed in [11]. 

Given two non-empty graphs, gl and g2, their distance is defined as 

tmcs(g , g:)l (1) 
5 ( m ,  g:)  = 1 - m x(Ig l, tg21) 

In this definition, mcs(91,92) denotes the maximum common subgraph of 91 and 

g2, and lgl is the number of nodes of a graph g. First of all, one notices that  no 

edit operations are involved in eq.(3.1) and, consequently, no cost function has 

to be defined to compute ~f(gl, g2) for any two given graphs gl and g2. Moreover, 

it was shown in [11] that the distance in eq.(3.1) has some interesting properties. 

In particular it is a metric satisfying 

o t (2) 

5(gl, g2) = 0 ¢:~ gl and g2 are isomorphic to each other (3) 

 (gl,g2) (4) 

~(gl,g3) ~ 5(gl,g~)+5(g2,g3) (5) 

for any three graphs gl, g2 and g3. It is known that  the edit distance d(gl,g2) 
introduced in Section 2 is a metric if and only if the underlying cost function 

satisfies certain conditions. These conditions, however, may be too restrictive or 

counterintuitive for certain problem domains. But there are applications where 



metric properties of the underlying distance measure are very much desired. One 

example is information retrieval from image and video databases [6]. This area 

relies heavily on browsing to locate required database elements. Thus it is neces- 

sary for the distance measure to be well behaved to allow sensible navigation of 

the database. For example, property (2) makes sure that  the range of all possible 

distances is known in advance, regardless of the particular objects to be com- 

pared. By means of property (3) objects have zero distance if and only if they 

are identical. Eq.(4) implies that the distance from any object A to any object B 

is the same as from B to A. Finally, because of the triangular inequality (5), we 

know that  no two objects that  are dissimilar to each other can be both similar 

to the same object. 

The graph distance measure according to eq.(1) is based on the maximum 

common subgraph of two graphs. Obviously, it can be regarded an alternative to 

graph edit distance as introduced in Section 2. However, it was recently shown 

that  there is also a direct relation between graph edit distance and maximum 

common subgraph in the sense that  graph edit distance and maximum common 

subg:aph computation are equivalent to each other under a certain cost function 

[12]. In [12] the following cost function was considered: 

[ 0, if  l(x) = } 
cns(x) = [ oc, otherwise _ for any x e 1?1, 

end(X) = 1 for any x E V1 - 1~1, 

c~i(x) = 1 for any x e V2 - IY2 

ces(e) = { 0,o%ifotherwise~l((x,y)) = Z2((f(x), f(y)))  } for any e = (x,y) E 1?i × I)1, (6) 

Ced(e) = 0 for any e = (x,y) e (V1 × V1) - (~1 x ~ ) ,  

ce (e) = 0 for any = (x ,y )  e (Vh × ½ )  - (Y2 × Y2). 

Under this cost function, any node deletion and insertion has a cost equal 

to one. Identical node and edge substitutions have zero cost, while substitutions 

involving different labels have infinity cost. The insertion or deletion of an edge 

incident to a node that  is inserted or deleted, respectively, has no cost. As for 

any two graphs gl = (V1, a l ,  ~1) and g2 = (V2, a2, t32) there is always an etgm f 
with cost c(f) = IVII+ IV2t (corresponding to the case where all nodes together 

with their incident edges are deleted from gl, and all nodes with their incident 

edges are inserted in g2), any edit operation with infinity cost will never need 

to be considered when looking for an optimal etgm. Thus we may think of edit 

operations with infinity cost as non-admissible. In other words, under the given 

cost function we can restrict our attention on etgm's involving only insertions, 

deletions and identical node and edge substitutions, but no non-identical substi- 

tutions. For example, for the etgm f3 discussed in Example 1, we have c(f3) = 3 
under the considered cost function. Obviously both f l  and f2 have infinity cost. 



It was shown in [12] that under this cost function the following equation 

holds true for any two graphs gl and g2, and a maximum common subgraph g 

of gl and g2 (this maximum common subgraph may be empty): 

d(gl,g2) = Ig~l+lg21-21gl (7) 

Obviously, this equation establishes a relation between the size tg[ of the 

maximum common subgraph of two graphs gl and g2, and their edit distance 

d(gl,g2). Thus given one of the two quantities and the size of gl and g2, we 

can immediately calculate the other. It was furthermore shown in [12] that the 

mapping f : ~ ~ V2, defining an optimal etgm according to Deft 8, represents a 

maximum common subgraph of gl and g2. I.e., f is a graph isomorphism between 

#1, the graph induced by V1, and ~2, the graph induced by 1~2, and there are 

no larger subgraphs in gl and g2, respectively, that are isomorphic to each other. 

This theoretical result has an interesting practical consequence, namely, any 

algorithm for graph edit distance computation can be applied for maximum 

common subgraph computation if it is run under the cost function given in (6). 

Conversely, any algorithm that computes the maximum common subgraph of 

two graphs can be used for graph edit distance computation under cost function 

(6), using formula (7). A similar relation between string edit distance and longest 

common subsequence has been known for long [13]. 

The results derived in [12] were recently shown to hold not only for the cost 

function given in (6), but for a whole class of infinitely many cost functions. In 

[10] cost functions C with c~s = c¢~ = 0 for identical substitutions and 

Cad + ¢ni < Cns and c~d + cni < ce~ (8) 

are considered. (Note that (6) is a special case of this class.) It is shown that for 

this whole class of cost functions the minimum cost mapping f : ~ ~ ~ repre- 

sents a maximum common subgraph of gl and g2 and, conversely, any maximum 

common subgraph represents a minimum cost mapping in the sense of Def. 8. 

Intuitively speaking, the conditions in (8) imply that a node deletion together 

with a node insertion will be always preferred over a node or an edge substitution 

because of a smaller cost. This means that all nodes and edges in gl that can't be 

mapped to a node or an edge with an identical label in g2 will be deleted from gl. 

Similarly, all nodes and edges in g2 that are not part of the mapping f (i.e, that 

don't have a corresponding node or edge with identical label, respectively) will 

be inserted. What remains for the mapping f is exactly the maximum common 

subgraph of gl and g2- An example is the etgm f3 in Example 1. It is optimal 

under the cost function C" = (1, 1,7, 1, 1, 7) as explained in Example 3. As a 

matter of fact, f3 corresponds to the maximum common subgraph of gl and g2 

in Fig. 1, and cost function C" satisfies conditions (8). 

The equivalence of maximum common subgraph and graph edit distance com- 

putation shown in [10] is based on the assumption cei(e) = ced(e) = 0 for any 
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edge e from/~1 and/~2, respectively (see Def. 7). Thus, no individual costs for 

the deletion of edges from/~1, and no individual costs for the insertion of edges 

in/~2 are taken into regard. The reason is that these operations are automati- 

cally implied by the deletion of nodes from (V1 - ~ ) ,  and the insertion of nodes 

in (V2 - ~'2), respectively. Thus it is assumed that their costs are included in 

the costs of the corresponding node deletions and insertions. In other words, the 

cost of a node deletion (insertion) includes not only the cost of deleting (insert- 

ing) a node, but also the deletion (insertion) of the edges that connect it to the 

other nodes of the graph. This assumption may be justified in many applications. 

The equivalence of graph edit distance and maximum common ~ subgraph 

shown in [10] yields additional insight on the measure 6(g1,g2) of eq. (1). Al- 

though no explicit costs of graph edit operations are needed to compute 6(gl, g2), 
there are, nevertheless, costs involved in an implicit fashion, because the quantity 

Imcs(gl, g2)l in (1) is equivalent to the graph edit distance d(gl, g:) in the sense 

of eq. (7), assuming a cost function satisfying (8). In other words, whenever we 

compute the maximum common subgraph of two graphs we may consider this 

~s a graph edit distance computation under an arbitary cost function belonging 

to the class studied in [10]. From this point of view, the measure defined in (1) 

may be still regarded an advantage over convential graph edit distance compu- 

tation because it is robust against changing the costs of the underlying graph 

edit operations in a fairly wide range. 

Another important result shown in [10] is the existence of classes of cost 

functions that always result in the same optimal mapping ] : V1 ---* V2 for any 

two given graphs gl and g2. Intuitively speaking, if we consider two cost functions 

C and C', where C' is a scaled version of C, i.e., C~nd = OLCnd , Ctni : O l C n i , . . .  , C1ei = 

ace~ for some a > 0, then we expect that any etgm f that is optimal under C 

is also optimal under C t for any two given graphs gl and g2. Just the absolute 

cost of the two optimal etgm's would differ by a factor a, i.e., 7c ' ( f )  = aTe(f) .  

In [10] it was shown that any optimal etgm under a cost function C is optimal 

under another cost function C ~ not only if C ~ is a scaled version of C, but for a 

much larger class of cost functions C ~. If the conditions 

(Cni -Jr C n d ) / C n  s ~- (Cni -~ Clnd)/Clns and (9) 

= ( l O )  

for cost functions C and C' are satisfied then any etgm f is optimal under C if and 

only if it is optimal under C I for any two given graphs gl and g2. Furthermore, 

there is a relation between 7c( ] )  and 7c ' ( ] )  that is similar to eq. (7). Given 

the edit distance under cost function C we can analytically compute the edit 

distance under C' using just the parameters of C and C r and the size of the two 

graphs under consideration. Hence, given an algorithm that was designed for a 

particular cost function C, we can use the same algorithm for any other cost 

function C ~ for which (9) and (10) are satisfied. The existence of similar classes 

of cost functions for string edit distance has been discovered recently [14]. 
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4 A l g o r i t h m s  f o r  E r r o r - T o l e r a n t  G r a p h  M a t c h i n g  

All results presented in Section 3 are independent of the algorithm that is actu- 

ally employed for graph edit distance or maximum common subgraph computa- 

tion. In the past, various approaches to etgm have been proposed. The most com- 

mon approach is based on tree search with A*-like algorithms [15]. The search 

space of the A* algorithm can be greatly reduced by applying heuristic error es- 

timation functions. Numerous heuristics have been proposed [16, t7, 18, 19, 20]. 

All of this methods are guaranteed to find the optimal solution but require ex- 

ponential time in the worst case. Suboptimal, or approximative methods, on 

the other hand, are polynomially bounded in the number of computation steps 

but may fail to find the optimal solution. For example, in [21, 22] probabilistic 

relaxation schemas are described. Other approaches are based on neural net- 

works such as the Hopfietd network [23] or the Kohonen map [24]. Also genetic 

algorithms have been proposed recently [25, 26]. In [27] an approximate method 

based on maximum flow is introduced. However, all of these approximate meth- 

ods may get tracked in local minima and miss the optimal solution. Optimal 

algorithms to find a maximum common subgraph of two graphs are based on 

maximum clique detection [1] or backtracking [28]. A suboptimal method using 

a neural network has been reported in [29]. 

In the remainder of this section we briefly review three optimal methods 

for etgm that were proposed recently. In [30, 31] a new method is described for 

matching a graph g against a database of model graphs gl , . . . ,  gn in order to find 

the model gi with the smallest edit distance d(g, gi) to g. The basic assumption 

is that the models in the database are not completely dissimilar. Instead, it is 

supposed that there are graphs s'js tL~  occur simultaneously as subgraphs in 

several of the g~s, or multiple times in the same gi. Under a naive procedure, 

we will match g sequentially with each of the g~s. However, because of common 

subgraphs sj shared by several models gi the s~.s will be matched with g multiple 

times. This clearly implies some redundancy. 

In the approach described in [30, 31] the model graphs g l , . . .  ,gn are pre- 

processed generating a symbolic data structure, called network of models. This 

network is a compact representation of the models in the sense that multiple oc- 

curences of the same subgraph sj are represented only once. Consequently, such 

subgraphs will be matched only once with the input. Hence the computational 

effort will be reduced. A further enhancement of the computational efficiency 

of the method is achieved by a lookahead procedure. This lookahead procedure 

returns an estimation of the future matching cost. It is precise and can be effi- 

ciently computed based on the network. 

Figs. 2 and 3 show the results of an experiment that was done to compare the 
new method with a traditional A*-based algorithm for etgm. In this experiment 

random graphs were used as input. Fig. 2 shows the computation time needed 
by the new and the traditional algorithm depending on a growing number of 
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nodes in the graphs to be matched, keeping the number of errors, i.e., the edit 

distance between the two graphs, constant. Fig. 3 shows a similar experiment 

where the size of the underlying graphs is kept constant but their edit distance is 

increased. The figures clearly show the superior performance of the new method. 

For further experimental results and a more detailed discussion see [30, 31]. 

In [4, 30] a fast algorithm for graph and subgraph isomorphism detection was 

described. It is based on an intensive preprocessing step in which a database of 

model graphs is converted into a decision tree. At run time, the input graph is 

classified by the decision tree and all model graphs for which there exists a sub- 

graph isomorphism from the input are detected. If we neglect the time needed for 

preprocessing, the computational complexity of the new subgraph isomorphism 

algorithm is only polynomial in the number of input graph vertices. Further- 

more, it is independent of the number of model graphs and the number of edges 

in any of the graphs. However, the decision tree that is constructed in the pre- 

processing step is of exponential size in terms of the number of vertices of the 

model graphs. The actual implementation described by the authors is able to 

cope with a single graph in the database of up to 22 nodes, or up to 30 models 

in the database consisting of up to 11 nodes each. 

Recently the decision tree method was extended from exact graph and sub- 

graph isomorphism detection to e~gm [32]. Actually, there are different possible 

approaches. In one approach, error correction is considered at the time of the 

creation of the decision tree. That is, for each model graph a set of distorted 

copies are created and compiled into the decision tree. The uumber of distorted 

copies depends on the maximal admissible error. At run time, the decision tree 

is used to classify the unknown input graph in the same way as in case of exact 

subgraph isomorphism detection. The time complexity of this procedure at run 

time is only quadratic in the number of input graph nodes. However, the size of 

the decision tree is exponential in the number of vertices of the model graphs 

and in the degree of distortion that is to be considered. Therefore, this approach 
is limited to (very) small graphs. 
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In the second approach, the error corrections are considered at run time 

only. That  is~ the decision tree for a set of model graphs does not incorporate 

any information about possible errors. Hence, the decision tree compilation step 

is identical to the original preprocessing step and, consequently, the size of the 

decision tree is exponential only in the size of the model graphs. At run time, a 

set of distorted copies of the input graph are constructed such that  all possible 

error corrections up to a certain error threshold are considered. Each graph in 

this set is then classified by the decision tree. The run time complexity of this 

method is O(~n 2(~+1)) where n is the number of nodes in the input graph and 

is a threshold that  defines the maximum number of admissible edit operations. 

Figures 4 and 5 show the results of ~n experiment where the second approach 

was compared to a conventional A*-based etgm algorithm. In this experiment 

the threshold was set to # = 1. The input graphs were generated by copying 

one of the model graphs and then inserting or deleting an edge. Fig. 4 shows the 

time needed by both algorithms when matching an input graph with one model 

graph depending on the number of nodes of the input and model. In Fig. 5 the 

input and the model graph consists of 11 vertices and the number of models 

is varied from 1 to 5. Fig. 5 confirms the result of the theoretical complexity 

analysis, i.e., the time complexity of the decision tree algorithm is independent 

of the number of models in the database. The  present implementation is limited 

to graphs consisting of up to a maximum of 16 nodes in case of just one error. 

For further details and additional experimental results see [32]. 

The decision tree approach was furthermore extended to maximum common 

subgraph detection [7, 6]. For this problem it is necessary, unfortunately~ to con- 

sider all permutations of the adjacency matr ix of the input graph, which leads 

to an exponential time complexity at run time despite the fact tha t  all permu- 

tations of the models have been encoded in the decision tree. Using a pruning 

strategy however, the run time of the resulting algorithm is still • significantly 

bet ter  than that  of traditional algorithms. For further details and experimental 

results see [6, 7]. 
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5 Conclusions 

Graph matching is an area where steady progress has been taking place for many 

years. Recently, the focus of attention has shifted from 'simple' combinatorial 

procedures, comparing two graphs at a time, to suboptimal stochastic algorithms 

and optimal algorithms that  employ some kind of preprocessing to reduce the 

computational effort at run time. Future applications of graph matching with 

new challenges are emerging, for example, image and video database retrieval, or 

image sequence analysis. There are many interesting open problems in etgm, for 

example, the combination of stochastic and preprocessing based optimal meth- 

ods, or a deeper study of the influence of the cost function on the complexity of 

matching algorithms. 
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